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Abstract

As plants evolved to function on land, they developed stomata for effective gas exchange,
for photosynthesis and for controlling water loss. We have recently shown that sugars, as
the end product of photosynthesis, close the stomata of various angiosperm species, to
coordinate sugar production with water loss. In the current study, we examined the sugar
responses of the stomata of phylogenetically different plant species and species that employ
different photosynthetic mechanisms (i.e., C3, C, and CAM). To examine the effect of
sucrose on stomata, we treated leaves with sucrose and then measured their stomatal aper-
tures. Sucrose reduced stomatal aperture, as compared to an osmotic control, suggesting
that regulation of stomata by sugars is a trait that evolved early in evolutionary history and
has been conserved across different groups of plants.

Introduction

The conquest of land by plants was an evolutionary process that began more than 450 million
years ago [1]. Fossil, phylogenetic and molecular records indicate that the green algae and
stoneworts (Charales) are probably the extant origin group of all land plants [2]. Extant land
plants include three ‘non-vascular’ lineages, the liverworts, mosses and hornworts, collectively
known as bryophytes. The remaining extant land plants are known as vascular plants (i.e., pte-
ridophytes, gymnosperms and angiosperms), as they all possess complex water-conducting
xylem tissue.

The terrestrial ecosystem posed numerous challenges to plants with aquatic ancestry,
including drought. To survive in the terrestrial environment, early plants evolved an imperme-
able outer cuticle that prevents desiccation, but also restricts the direct exchange of gases with
the surroundings, limiting the entry of CO, required for photosynthesis [3]. To facilitate gas
exchange, land plants developed microscopic pores called stomata on their outer surface.
These can be seen in the mosses and hornworts and in the subsequent evolutionary vascular
lineages [4], although the stomata of hornworts and mosses might facilitate desiccation of
spore capsules [5].

Stomata are made up of two guard cells that can swell or shrink. Swelling opens the stomata
and shrinking closes the stomata. This swelling and shrinking is caused by turgor changes
within the guard cells. The movement of water into the guard cells increases their turgor, caus-
ing the guard cells to swell and opening the stomata. Movement of water out of the guard cells
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reduces their turgor, causing the guard cells to shrink and closing the stomata. Changes in
guard-cell turgor occur in response to different environmental and physiological conditions.
Those turgor changes may be caused by passive changes in guard-cell water content due to
hydration or dehydration of the epidermis and guard cells, or by active processes that increase
or decrease the levels of guard-cell osmolytes. Increased osmolyte content drives water into the
guard cells, opening the stomata, and decreased osmolyte content drives water out of the
guard cells, closing the stomata. Light stimulates stomatal opening in many plant species and
active stomatal opening in response to light was probably a trait of the earliest bryophytes [6].
Active stomatal closure due to reduced osmolyte content of guard cells, which decreases the
turgor of those cells causing the stomata to close, evolved in gymnosperms and angiosperms.
However, the existence of this mechanism in the earliest evolutionary lineages is still a matter
of debate [7, 8].

It was long thought that sugars are the primary osmolytes that accumulate in guard cells at
dawn to open stomata [9]. That theory was later replaced by the discovery that potassium ions,
together with malate and chloride counter-ions, are the primary osmolytes that open stomata
[10-14]. Yet, based on the correlations between the ion content of guard cells, their sugar con-
tent and stomatal aperture over the course of the day, it has been suggested that potassium
ions open stomata at dawn and that sucrose replaces those potassium ions in the middle of the
day, taking up the role of the osmolyte that keeps the stomata open [15]. Other studies have
found that over the course of the photoperiod, the concentration of sucrose in the leaf apoplast
of Vicia faba increases up to 2 mM and that some of that sucrose is carried by the transpiration
stream toward the guard cells and accumulates outside the guard cells to reach a concentration
of up to 150 mM, perhaps imposing an extracellular osmotic effect that drives water out of the
guard cells and closes the stomata [16-20]. However, recent discoveries have shown that su-
crose, the primary end product of photosynthesis, does indeed close rather than open the sto-
mata of Arabidopsis, tomato (Solanum lycopersicum) and V. faba, but that occurs independent
of any extracellular osmotic effect [21-24]. Rather, stomatal closure by sucrose is mediated by
hexokinase (HXK) within guard cells, a well characterized sugar sensor [21, 23, 25]. Based on
these observations, it has been suggested that sugar-sensing within guard cells is a feedback
mechanism that coordinates photosynthesis with the rate of transpiration [21].

According to this hypothesis, when sugar production exceeds phloem-loading and translo-
cation capacity, more sugars might be carried toward the guard cells, enter those cells and be
sensed within guard cells, stimulating stomatal closure [21, 26, 27]. Sucrose may enter the
guard cells via a sucrose transporter and then be cleaved within the guard cells, or cleaved by
apoplastic invertase to glucose and fructose, which may then enter the guard cells via hexose
transporters; all of these transporters have been identified in guard cells [28-30]. The hexose
monomers (glucose and fructose) are substrates of HXK and as such can be sensed by HXK
within guard cells and stimulate stomatal closure, forming a feedback mechanism that coordi-
nates sugar production with transpiration, to reduce water loss [21, 25].

The sucrose-induced stomatal closure effect has, to date, been observed in a few angio-
sperms: Arabidopsis, tomato and V. faba [21-24]. In the current study, we examined the sugar
response of stomata in different angiosperm species, including species that use different photo-
synthetic mechanisms (i.e., C3, C4, and CAM).

Materials and methods
Plant material

The plant material used in this study was grown under semi-controlled greenhouse conditions
or under natural (ambient light) conditions. Plant material was collected at the ARO Center
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(http://www.agri.gov.il) and the botanical garden of Tel Aviv University (http://botanic.tau.ac.
il). The plant species used in this study are listed in S1 Table.

Stomatal measurements

Stomatal aperture was determined using the rapid imprinting technique described by Geisler
and Sack [31] with minor modifications [21]. In brief, light-bodied vinylpolysiloxane dental
resin (Heraeus-Kulzer, Hanau, Germany) was attached to the abaxial leaf side and then rem-
oved as soon as it had dried (approx. 30 s to 1 min). The resin epidermal imprints were covered
with nail polish, which was removed once it had dried and served as a mirror image of the
resin imprint. The nail-polish imprints were transferred to glass slides and photographed
under a bright-field inverted microscope [Leica DMLB epi-fluorescence microscope (Leica
Microsystems, Wetzlar, Germany) with Nikon DS-Fil digital camera using NIS-Elements BR
3.0 software (Japan)]. Stomatal images were later analyzed to determine aperture size using the
Image] software (http://rsb.info.nih.gov/ij/) fit-ellipse tool.

To asses stomatal response, leaves / leaflets (including the petiole, if possible), were cut and
immediately immersed in artificial xylem sap solution (AS, control) [32] or AS containing
sucrose (Duchefa Biochemie) or sorbitol (Sigma-Aldrich). The sorbitol treatment served as a
non-metabolic osmotic control. For plants with too wide or elongated leaves, pieces of leaf
were cut and immersed in the above mentioned solutions. Imprints were taken 3 h after imm-
ersion and stomatal aperture was analyzed. Experiments were conducted 2 h after sunrise and
were carried out for 3 h between 9:00 a.m. to 12:00 p.m., with the exception of B. daigremontia-
num, a CAM (Crassulacean Acid Metabolism) plant with stomata that are open at night, for
which experiments were carried out between 18:00 and 20:30. Each experiment was repeated
two to three times with similar results.

Stomatal reactivity to sucrose and minimal-water-requirement data

Stomatal reactivity to sucrose (percentage) was calculated as 1 - (aperture g,crose / aperture sorpi-
to1); the ratio between stomatal aperture following treatment with sucrose, divided by the aper-
ture following treatment with sorbitol. The minimal water requirement was defined as the
minimal amount of water needed to complete a full season of growth, from germination to
yield production. Minimal-water-requirement data for the different species used in this study
were obtained from previous publications and public databases, as follows: Populus angulate
[33], Ricinus communis (https://www.cabi.org/isc/datasheet/47618), Catharanthus roseus
(https://www.cabi.org/isc/datasheet/16884), Moringa oleifera [34], Vitis vinifera [35], Melia
azadirachta [36], Triticum aestivum [37], Zea mays [38], Sorghum bicolor [39], Oxalis cornicu-
lata (http://www.herbiguide.com.au/Descriptions/hg_Soursob.htm), Citrullus lanatus [40],
Cucumis melo [41], Cucurbita pepo [42] and Ocimum basilicum [43].

Statistical analysis

The statistical analysis was performed using the JMP 5.0 software program. Means were compared
using Tukey’s HSD. Means were considered to be significantly different at P < 0.05. The number
of biological repeats and number of stomata analyzed for each species are listed in S1 Table.

Results
Stomatal response to sucrose among eudicots and monocots

The effect of sucrose on stomatal aperture was examined among a diverse collection of 20 spe-
cies of vascular plants by immersing leaves in artificial xylem (apoplastic) solutions (AS) [32]
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with and without 200 mM sucrose (Suc), about the concentration (150 mM) previously mea-
sured around guard cells of V. faba during the photoperiod [20]. To distinguish between osm-
otic and a non-osmotic effects, we used sorbitol as an osmotic control. The decision to use a
concentration of 200 mM was based on several previous observations: Medeiros [24] observed
stronger closure of Arabidopsis stomata by 100 mM sucrose than by 10 mM and, in a previous
study, we observed stronger closure of tomato stomata by 200 mM glucose than by 100 mM glu-
cose [21]. We also examined the stomatal responses of two other species belonging to different
families, wheat (Triticum aestivum) and watermelon (Citrullus lanatus), to 100 mM and 200
mM sucrose (Fig 1). In both of those species, the stomatal closure by 200 mM sucrose was stron-
ger than that triggered by 100 mM sucrose, and the closure induced by 100 mM sucrose was sig-
nificantly stronger than that triggered by 200 mM sorbitol (the osmotic control), indicating that
sucrose closes stomata regardless of any increase in the osmolarity of the external solution that
could potentially arise from cleavage of sucrose by apoplastic invertase into glucose and fruc-
tose. This conclusion is corroborated by previous results obtained with Arabidopsis and tomato
plants. In Arabidopsis, it was shown that 10 mM of sucrose stimulates stomatal closure more
strongly than 100 mM mannitol, the osmotic control [24]. In tomato it was shown that 100 mM
sucrose stimulates stomatal closure more strongly than 200 mM mannitol, the osmotic control
[21], eliminating the possibility that stomatal closure by sucrose occurs due to increased osmo-
larity from sucrose cleavage. Due to the stronger stomatal closure induced by 200 mM sucrose
and due to the previous report of a 150 mM concentration of sucrose in the apoplast of V. faba
guard cells [20], we chose 200 mM as a standard concentration for our assays. Using a standard
concentration also allowed us to compare the stomatal response across various species.

Following the sucrose-induced stomatal closure observed in wheat and watermelon (54% and
26% relative to the osmotic control, respectively; Fig 1), we examined additional species belonging
to eight different families of the eudicot class of angiosperms. We tested the stomatal response to
Suc in Ricinus communis (Euphorbiaceae), Populus angulata (Salicaceae), Oxalis corniculata (Oxa-
lidaceae), Vitis vinifera (Vitaceae), Catharanthus roseus (Apocyanaceae), Pelargonium hortorum
(Geraniaceae), Melia azadirachta (Meliaceae) and Moringa oleifera (Moringaceae) (Fig 2). Suc
decreased stomatal aperture size relative to the osmotic control in all eight of these species (Fig 2).
While a mild closure response was noted for V. vinifera (12%) and P. hortorum (13%), more
intense responses were documented for R. communis, P. angulate and M. azadirachta (27%, 27%
and 25%, respectively). Out of the eight eudicot species examined, three displayed an even stron-
ger response; from 34% in C. roseus to 42% and 44% in M. oleifera and O. corniculata, respectively
(Fig 2). In a few cases, reduced stomatal apertures were also observed for the osmotic control, per-
haps due to an extracellular osmotic effect (Fig 2A-2C and 2F). In M. oleifera the osmotic control
sorbitol had a slight opening effect (Fig 2H). However, in all cases, Suc had a stronger closure
effect when compared to the osmotic control, supporting an osmotic-independent role for Suc in
the regulation of stomatal closure, a response that varies in its intensity among different species.

Similar results were obtained when we tested the stomatal response to Suc among species
belonging to the Monocot class of angiosperms. Sucrose stimulated stomatal closure relative to
the osmotic control in Triticum aestivum, Zea mays, Musa paradisiaca and Sorghum bicolor by
54%, 28%, 59% and35%, respectively (Figs 1A and 3). It appears that in monocots, the stomatal
response to Suc is stronger than that seen in eudicots. Yet, both eudicots and monocots share a
similar pattern of response to Suc (Figs 2 and 3).

Stomatal response to sucrose with respect to the phloem-loading pathway

The movement of sugar from photosynthetic cells to the phloem may occur apoplastically or
symplastically [44]. Apoplastic transport involves the movement of sugar from the mesophyll
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Fig 1. Sucrose-induced stomatal closure in wheat and watermelon. Stomatal response to sucrose in A) T. aestivum
and B) C. lanatus. This response was assayed by immersing detached leaves for 3 h in artificial apoplastic sap (AS,
control) or AS containing 100 mM or 200 mM sorbitol (as an osmotic control) or 100 mM or 200 mM Suc. Data
points are means + SE. [The numbers of independent biological repeats and stomata (n) analyzed for each species are
listed in S1 Table.] Different letters indicate a significant difference (Tukey’s HSD test, P < 0.05).

https://doi.org/10.1371/journal.pone.0205359.9001

cells into the intracellular space and subsequent loading into the phloem sieve elements. Sym-
plastic transport involves the movement of sugar via plasmodesmata into the companion-cell
sieve element complex in the phloem [44]. It has been suggested that the accumulation of
sugar in the guard cells’ apoplast corresponds to an apoplastic phloem-loading mechanism, so
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Fig 2. Sucrose-induced stomatal closure in eudicots. Stomatal response to sucrose in the eudicots A) R. communis,
B) P. angulata, C) O. corniculata, D) V. vinifera, E) C. roseus, F) P. hortorum, G) M. azadirachta and H) M. oleifera.
This response was assayed by immersing detached leaves for 3 h in artificial apoplastic sap (AS, control) or AS
containing 200 mM sorbitol (as an osmotic control) or 200 mM Suc. Data points are means + SE. [The numbers of
independent biological repeats and stomata (1) analyzed for each species are listed in S1 Table.] Different letters
indicate a significant difference (Tukey’s HSD test, P < 0.05).

https://doi.org/10.1371/journal.pone.0205359.g002
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Fig 3. Sucrose-induced stomatal closure in monocots. Stomatal response to sucrose in the monocots A) Z. mays, B)
M. paradisiaca and C) S. bicolor. This response was assayed by immersing detached leaves for 3 h in artificial apoplastic
sap (AS, control) or AS containing 200 mM sorbitol (as an osmotic control) or 200 mM Suc. Data points are

means + SE. [The numbers of independent biological repeats and stomata (1) analyzed for each species are listed in S1
Table.] Different letters indicate a significant difference (Tukey’s HSD test, P < 0.05).

https://doi.org/10.1371/journal.pone.0205359.9003
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that sugars carried by the transpiration stream accumulate in significant amounts near the
guard cells of apoplastic-loading plants; whereas the concentrations of sugar in the leaves and
around the guard cells of symplastic loaders are lower than those seen in apoplastic loaders
[45]. Nonetheless, sugars, including sucrose, are found in the apoplast of symplastic loaders
[46-49] and, therefore, may also stimulate stomatal closure. To test the effect of sucrose on
symplastic loaders, we examined Cucurbitaceae species and basil (Ocimum basilicum) to see
how their stomata respond to sucrose. The stomatal apertures of Citrullus lanatus, Cucumis
melo Cucurbita pepo and O. basilicum decreased in size by 26%, 25%, 19% and 13%, respec-
tively, when they were treated with sucrose instead of the osmotic control (Figs 1B, 4A and
4B). Yet, in O. basilicum sorbitol had a slight opening effect, and stomatal closure was observed
only relative to sorbitol and not relative to the non-osmotic control (Fig 4C). With the possible
exception of the data collected in basil, these results suggest that the stomatal response to Suc
also occurs in symplastic phloem-loading species.

Stomatal response to sucrose with respect to photosynthetic strategy

Over the course of evolution, several different photosynthetic strategies have evolved (i.e., Cs,
C,, C5-Cy, and CAM). These strategies involve different leaf anatomy and differences in the
timing of stomatal opening. Unlike the dispersed mesophyll cells in C; plants, the mesophyll
cells of C, plants are arranged in a ring around a bundle-sheath (BS) layer that surrounds the
vascular tissue [50]. Sugar production takes place in the BS cells, minimizing the distance
between the site of sugar production (in the BS layer) and the phloem-loading site. As a conse-
quence, the responsiveness of the stomata of C, plants to sugars might be different from that
of C; plants. As shown above, Suc stimulates stomatal closure of the monocot C, plants Z.
mays, M. paradisiaca and S. bicolor (Fig 3A-3C). We also tested two additional eudicot C, spe-
cies, Amaranthus viridis and Tribulus terrestris, which belong to the Amaranthaceae and Zygo-
phyllaceae families, respectively (Fig 5A and 5B). Suc triggered stomatal closure in both of
those species, decreasing the size of the stomatal apertures of A. viridis and T. terrestris by 44%
and 24%, respectively (Fig 5A and 5B).

In addition to the spatial separation of mesophyll cells from sugar production found in C,
plants, CAM plants also employ temporal separation. The stomata of CAM plants are open at
night, during which time malate (C4 molecule) is formed using CO,, following several enzy-
matic steps. The C, is stored in the vacuole (as C4 malic acid) during the night. During the
day, when the stomata of CAM species are closed, the C4 molecules move from the vacuole
into the chloroplast, where they are decarboxylated, releasing CO,, which is fixed to produce
sugar [51]. Since sugar is produced in CAM plants when the stomata are closed, we tested
whether the stomata of CAM plants are at all responsive to sugar. We initially tested Bryophyl-
lum daigremontianum and found that Suc significantly reduced its stomatal closure (25%) rela-
tive to Sorb (Fig 5C). Next, we assayed Portulaca oleracea, a C;~-CAM plant that functions as a
C, plant under normal conditions and shifts to a CAM strategy under drought conditions
[52]. The stomata of P. oleracea were found to be highly responsive to Suc, which decreased
stomatal aperture size by 53% relative to the osmotic control (Fig 5D). Taken together, these
results show that Suc induces stomatal closure independent of the photosynthetic strategy
used (Fig 5), further indicating that the stomatal response to Suc might be found across a wide
range of plant species.

Discussion

Stomatal opening is essential for CO, uptake for photosynthesis and stomatal closure is neces-
sary to reduce transpiration, maintain plant water potential and prevent desiccation. The
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Fig 4. Stomatal response to sucrose in symplastic loaders. Stomatal response to sucrose in the symplastic phloem-
loading plants A) C. melo, B) C. pepo and C) O. basilicum. This response was assayed by immersing detached leaves for
3 h in artificial apoplastic sap (AS, control) or AS containing 200 mM sorbitol (as an osmotic control) or 200 mM Suc.
Data points are means + SE. [The numbers of independent biological repeats and stomata (1) analyzed for each species
are listed in S1 Table.] Different letters indicate a significant difference (Tukey’s HSD test, P < 0.05).

https://doi.org/10.1371/journal.pone.0205359.9004
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eudicots A) A. viridis and B) T. terrestris, the CAM plant C) B. daigremontianum and the C4,-CAM plant D) P.
oleracea. This response was assayed by immersing detached leaves for 3 h in artificial apoplastic sap (AS, control) or AS
containing 200 mM sorbitol (as an osmotic control) or 200 mM Suc. Data points are means + SE. [The numbers of
independent biological repeats and stomata (1) analyzed for each species are listed in S1 Table.] Different letters
indicate a significant difference (Tukey’s HSD test, P < 0.05).

https://doi.org/10.1371/journal.pone.0205359.g005

coordination between photosynthesis and water loss has been fine-tuned by the evolution of
mechanisms that open and close stomata. Passive hydration-dehydration guard-cell move-
ments in ancient primitive plant species have evolved into sophisticated mechanisms activated
by physiological and environmental signals, which lead to changes in the osmolyte content of
guard cells and stomatal aperture. Light, CO, concentration, vapor pressure deficit, tempera-
ture and water availability are among the environmental signals that affect stomatal movement
[53, 54]. Yet, a direct effect of the primary product of photosynthesis, sucrose, on stomatal
aperture has received little research attention over the years [55]. Red (photosynthetic) light
opens stomata and mesophyll cells enhance stomatal opening, indicating that there is a meso-
phyll-derived product that opens stomata [56, 57]. Over the years, several studies have sought
to identify the photosynthetic mesophyll product that opens stomata [56, 58] and sucrose, the
obvious mesophyll-exported product, should have been be the primary mesophyll-derived
candidate to be considered. Nevertheless, for many years, no functional study reported that
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sucrose opens stomata and two studies that did report an effect of sucrose found no opening
effect and even a closing effect [59, 60]. We assume that those observations regarding the clo-
sure effect of sucrose were neglected because they ran counter to the prevailing hypothesis that
sucrose is an osmolyte that opens stomata.

It was only recently that a stomatal-closure effect caused by sucrose independent of its
extracellular osmotic effect was demonstrated in Arabidopsis, tomato and V. faba [21-24].
Recent studies examined the response of stomata to different concentrations of sucrose. While
low concentrations of sucrose (0.1 and 1 mM) had no effect on stomatal aperture, concentra-
tions of 10 and 100 mM reduced stomatal apertures, supporting the notion that the accumula-
tion of sucrose at the guard cells when photosynthesis rates are high stimulates stomatal
closure, thereby coordinating photosynthesis with transpiration [21]. In a multispecies meta-
analysis of data from several studies, the relationship between primary metabolism and gas-
exchange parameters was modeled and a clear negative correlation was observed between
sugar (Suc, glucose and fructose) content and stomatal conductance, further supporting the
stomatal-closure effect of sugar [61].

We assumed that coordination between water loss and sugar production may be a general
feature of plants and examined stomatal responses to sucrose in various species representing
different evolutionary lineages, photosynthetic systems and phloem-loading strategies. Sucrose
appeared to stimulate stomatal closure in most of the examined species (with O. basilicum
being possible exception), regardless of the photosynthetic mechanism (C;, C, and CAM) or
phloem-loading pathway (symplastic or apoplastic) used. The extent of stomatal closure varied
among the different species and may represent species-specific responses that follow no gen-
eral trends (Fig 6A). Yet, taking a more global perspective, it seems that monocots do display
greater stomatal responsiveness to Suc than eudicots. In our study, the monocots presented a
responsiveness of about 44% while the average response of the eudicots was about 28% (Fig
6A). It was previously suggested that the overall responsiveness of grass (monocot) stomata to
environmental inputs is indeed greater; mainly due to the presence of subsidiary cells adjacent
to guard cells, which provide osmolytes for faster responses [8]. Furthermore, this strong sensi-
tivity of grasses is associated with drier climates and habitats in which environmental condi-
tions fluctuate rapidly [8, 62, 63]. Considering this, it appears that stomatal responsiveness to
Suc is well correlated with overall stomatal responsiveness. We, therefore, speculate that dur-
ing evolution, the selection for species that perform better under drought, such as the grasses,
occurred in the presence of a need for strict regulation of the relationship between photosyn-
thesis and transpiration, making Suc as a major player in that relationship.

In addition, a slight tendency of heightened guard-cell response to sucrose was observed in
species that can survive on lower amounts of water (Fig 6B), suggesting that, under limited-
water conditions, a survival advantage may be conferred by a stronger stomatal response to
sugar. Such a correlation is notable in the monocots wheat and sorghum, which are generally
grown in a semi-arid environments and have minimum water requirements of 400 mm and
300 mm, respectively (Fig 6B), and which displayed enhanced stomatal response to sucrose
(54% and 35% for wheat and sorghum, respectively). In contrast, species with tropical origins,
such as maize, displayed an opposite pattern of a high water requirement (610 mm) alongside
a lower stomatal response to sucrose (28%, Fig 6B). We assume that the stomatal response to
sugar is an advantage that has evolved to improve the coordination of photosynthesis and tran-
spiration. In plants with highly sensitive responses, the sensing of high sugar levels leads to
enhanced (and perhaps faster) closure of the stomata, in order to preserve more water. These
differences in stomatal response could be one of the traits that account for sorghum’s growth
advantage over maize under drought conditions [64].
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It is easy to envision increasing sucrose levels in the apoplast of apoplastic loaders [20], but
sucrose also exists in the apoplast of symplastic loaders [46-49, 65-67]. In addition, guard cells
are symplastically isolated and probably obtain mesophyll-produced sugars through the apo-
plast. Guard cells of various species possess sucrose and glucose transporters, indicating the
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uptake of apoplastic sugar by guard-cells [28-30]. It is likely that, in symplastic loaders, in
addition to the main symplastic route, a certain amount of sucrose is naturally exported to the
apoplast to feed non-photosynthetic cells such as the epidermis and guard cells. We assume
that this apoplastic sugar also enables the sugar-sensing feedback mechanism leading to stoma-
tal closure that coordinates photosynthesis with transpiration. Nevertheless, compared to the
responses observed among the monocots and some of the eudicots, the response in the sym-
plastic loaders was less intense (22%; Fig 6A).

The purpose of this study was to explore how widespread the phenomenon of stomatal clo-
sure by sucrose is, rather than to identify the lowest possible concentration of sucrose that can
stimulate stomatal closure. When looking for responses to various compounds, it is quite com-
mon to use concentrations that might be greater than physiological concentrations (which we
believe is not the case here, see below). For example, the discovery of sugar-sensing in plants
was done with 6% (~330 mM) glucose in the media, completely unnatural and non-physiologi-
cal conditions [68, 69]. That is to say that use of non-physiological conditions might be neces-
sary sometimes, in order to observe effects that otherwise might be too small to be noticed.
However, we believe that 200 mM is not too far from the sucrose concentrations found under
physiological conditions. Overall, there is a very limited knowledge about sugar concentrations
in the leaf apoplast, let alone the guard-cell apoplast (perhaps due to technical difficulties inv-
olved in collecting such data), except for V. faba, which accumulates about 150 mM sucrose at
its guard-cell apopalst [20]. We assume that under different environmental conditions, such as
high light intensity and high VPD, even more sugar might be carried toward and accumulate
at the guard cells.

The use of non-metabolic sugars such as sorbitol as an osmotic control for metabolic sugar
is very common [21, 23, 70-73]. If sorbitol does not enter the guard cells, it is expected that it
will reduce stomatal aperture due to its extracellular osmotic effect. However, if sorbitol does
enter the guard cells and reaches a balance with its extracellular concentration, then no effect
on stomatal aperture is expected. In several cases, sorbitol did not change the stomatal aper-
ture. But in most cases, sorbitol reduced stomatal apertures, as compared to the non-isosmotic
control (artificial sap-AS), probably due to its extracellular osmotic effect. However, in some
cases, sorbitol increased stomatal aperture relative to the control (Figs 1A, 2H, 4C and 5C). We
assume that, in those cases, sorbitol entered and perhaps accumulated in guard cells, thereby
contributing to the guard cells’ osmotic potential and opening stomata. Yet, sucrose or its
cleavage products glucose and fructose also enter the guard cells via sucrose and hexose trans-
porters [28-30] and may contribute to guard-cell osmotic potential. But unlike sorbitol that
opens stomata in few cases, sucrose closes stomata, supporting a sugar-closure effect.

The results of this study show that stomatal closure by sucrose (observed in all of the species
examined in this study (with the possible exception of basil) might have evolved early in evolu-
tion and been preserved in divergent plant species that use different photosynthetic and sugar-
transport strategies. Whether it also exists in earlier lineages such as pteridophytes and bryo-
phytes, which might employ a hydration-dehydration passive stomatal response, remains to be
determined. Nevertheless, stomatal response to sucrose might be a universal response aimed at
coordinating sugar production with water loss.
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