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Abstract

Despite the identification of many susceptibility genes our knowledge of the underlying

mechanisms responsible for complex disease remains limited. Here, we identified a type 2

diabetes disease module in endosomes, and validate it for functional relevance on selected

nodes. Using hepatic Golgi/endosomes fractions, we established a proteome of insulin

receptor-containing endosomes that allowed the study of physical protein interaction net-

works on a type 2 diabetes background. The resulting collated network is formed by 313

nodes and 1147 edges with a topology organized around a few major hubs with Cdk2 dis-

playing the highest collective influence. Overall, 88% of the nodes are associated with the

type 2 diabetes genetic risk, including 101 new candidates. The Type 2 diabetes module is

enriched with cytoskeleton and luminal acidification–dependent processes that are shared

with secretion-related mechanisms. We identified new signaling pathways driven by Cdk2

and PTPLAD1 whose expression affects the association of the insulin receptor with TUBA,

TUBB, the actin component ACTB and the endosomal sorting markers Rab5c and Rab11a.

Therefore, the interactome of internalized insulin receptors reveals the presence of a type 2

diabetes disease module enriched in new layers of feedback loops required for insulin sig-

naling, clearance and islet biology.

Introduction

The insulin receptor (IR) belongs to the receptor tyrosine-kinase (RTK) family of cell-surface

receptors [1, 2]. Early work on insulin and epidermal growth factor (EGF) revealed the presence

of signaling molecules in hepatic endosomes fractions [3]. The concept of endosomal signaling

is now well established [4], but the rules underlying IR trafficking and signaling compared with
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Québec. M. B-D acknowledges funding from the

Fondation du CHU de Québec and the CRCHUQ. S.
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those underlying the EGF receptor (EGFR) remain relatively unknown; this may be because

proper insulin signaling and trafficking correlate with the maintenance of cell polarity [5].

Type 2 diabetes (T2D) is the result of a chronic energy surplus [6] coupled with a strong

hereditary component. Estimates for the heritability of T2D range from 20 to 80% with a sib-

ling relative risk of approximately 2, with obesity being an important driver in every popula-

tion. The detailed genetic architecture of T2D was recently elucidated, and unlike type 1

diabetes (T1D) where the genetic risk is mostly concentrated in the HLA region, the genetic

component explaining part of the heritability of T2D is primarily due to a combination of

numerous common variants of small effect scattered across the genome [7–9]. T2D is charac-

terized by both resistance to the action of insulin and defects in insulin secretion; the former

has been an important motivating factor in the exploration of insulin signaling [1, 2]. Previous

efforts to demonstrate that the genes mapping close to T2D risk loci are enriched for estab-

lished insulin signaling pathways, however met with limited success; the most robust finding

to date implicates seemingly unrelated cellular mechanisms, the majority of which affect insu-

lin secretion and beta cell function [8–12].

An accumulation of proteins associated with T2D was previously observed in the interac-

tome of the IRs endocytosed in an hepatic Golgi/endosomes fraction [13], suggesting the exis-

tence of a disease module at this intracellular locus that could help to further understand IR

routing mechanisms, the primary mechanisms of the disease and drive the development of

rational approaches for new therapies [14–16]. Here, starting from a proteome of IR-contain-

ing endosomes to narrow the space search, and the construction of a T2D-protomodule using

validated genes, we reveal the presence of a T2D disease module with functional relevance

both to insulin targets and insulin producing cells.

Materials and methods

Cell Fractions- Harlan Sprague-Dawley rats (female 120–140 g, b.w.) were purchased from

Charles River Ltd. (St. Constant, Québec, Canada) and were maintained under standard labo-

ratory conditions with food and water available ad libitum, except that the food was removed

18 hours before the experiments. All animal procedures were approved by the Comité de Pro-

tection des animaux du Centre de Recherche du Centre Hospitalier de L’Université Laval

(CPA-CRCHUQ, certificate 055–3). The G/E and the PM fractions were prepared and charac-

terized in terms of enzyme markers, electron microscopy (EM) and ligand-mediated endocy-

tosis, as originally described and used directly [3]. The G/E fraction was also characterized in

terms of proteomic survey and construction of the protein interaction network (GEN) [13].

The compiled yield for the G/E fraction was 0.47 ± 0.04 mg protein/g liver weight (n = 57). A

compiled yield of 2.4 ± 0.6 mg of protein/g of liver (n = 25) was obtained. IR-immuno-

enriched endosomes were prepared as originally depicted [17] from the parent mixed hepatic

Golgi/endosomal (G/E) fraction with only minor modifications [18]. Dynabeads (Dynal-A,

Invitrogen, San Francisco, CA, USA) that were pretreated with 0.1% BSA and coated with the

anti-IR β-subunit antibody (Sc-711, Santa Cruz Biotechnology, Santa Cruz, CA, USA), were

incubated with freshly prepared G/E fractions (10 mg of protein) for 1 hour at 4˚C under gen-

tle agitation. Beads were then rapidly rinsed before being subjected to EM, immunoblotting

and mass spectrometry (MS) analysis. There was no major differences in the size and morphol-

ogy of the vesicles immuno-isolated after 2 minutes or after 15 minutes of stimulation. They

were relatively homogeneous with a diameter of 70–200 nm and some tubular elements. The

IR was detected by Liquid chromatography-multiple reaction monitoring analysis (LC-MRM)

using the peptide TIDSVTAQELR (P15127_IR, Q1 charge 660.3 (+2), Q3 charge 804.4 (2y7,

+1) [13]. The amount of total protein bound to the beads was calculated by substracting the
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nonbound from the starting material [17] [18]. A 16–23 range fold- purification over the par-

ent fraction was measured.

Protein in-gel digestion- Beads were washed 3 times with 50 mM ammonium bicarbonate

buffer. They were suspended in 25 0μl of 50 mM ammonium bicarbonate, following which tryp-

sin (1 μg) was added. Proteolysis was done at 37˚C and stopped by acidification with 3% acetoni-

trile-1% TFA-0.5% acetic acid. Beads were removed by centrifugation, and peptides were

purified from the supernatant by stage tip (C18) and vacuum dried before MS injection. Samples

were solubilized into 10 μl of 0.1% formic acid and 5 μl was analyzed by mass spectrometry [19].

Mass spectrometry- Peptide samples were separated by online reverse-phase (RP) nanoscale

capillary liquid chromatography (nanoLC) and analyzed by electrospray mass spectrometry

(ES MS/MS). The experiments were performed with an Agilent 1200 nano pump connected to

a 5600 mass spectrometer (AB Sciex, Framingham, MA, USA) equipped with a Nanoelectros-

pray ion source. Peptide separation occurred on a self-packed PicoFrit column (New Objec-

tive, Woburn, MA) packed with Jupiter (Phenomenex, Torrance, CA) 5 μl, 300A C18, 15 cm x

0.075 mm internal diameter. Peptides were eluted with a linear gradient from 2–30% solvent B

(acetonitrile, 0.1% formic acid) in 30 minutes at 300 nl/min. Mass spectra were acquired using

a data-dependent acquisition mode using Analyst software version 1.6. Each full scan mass

spectrum (400 m/z to 1250 m/z) was followed by collision-induced dissociation of the twenty

most intense ions. Dynamic exclusion was set for a period of 3 sec and a tolerance of 100 ppm.

All MS/MS peak lists (MGF files) were generated using Protein Pilot (AB Sciex, Framingham,

MA, USA, Version 4.5) with the paragon algorithm. MGF sample files were then analyzed

using Mascot (Matrix Science, London, UK; version 2.4.0). MGF peak list files were created

using Protein Pilot version 4.5 software (ABSciex) utilizing the Paragon and Progroup algo-

rithms. (Shilov). MGF sample files were then analyzed using Mascot (Matrix Science, version

2.4.0) [20], and rodent databases (S1 Table). The number of newly identified proteins pla-

teaued at approximately 10–20% of total for the second and third experiments, indicating that

we were close to the completion point with this method [21] (S1A Fig).

Databases and network analyses- Conversion to human orthologs was performed using the

InParanoid8 database (S2 Table). The PPIN was generated from a listing of protein-coding

genes generated and named according to HUGO database nomenclature. Proteins found to be

associated with IR in hepatic endosomes were included in the analysis: ATIC, PTPLAD1,

SHP1, Cdk2, PLVAP1, CdkN1B and CCNE1. The interactions were curated using Y2H binary

interactions of the CCSB human interactome, physical complexes and direct interactions from

Intact, Database of Interacting Protein (DIP, UCLA), REACTOME, HITPREDICT and HINT

databases, affinity complexes from BIOGRID and HPRD databases. Proteins having nonspe-

cific interactions such as chaperones, ribosomal (RPL family) proteins, ubiquitylation and

sumoylation processes (UBC, CUL), elongation factors were removed [22–24]. The Cytoscape

platform (Version 3.2.0) was used for network visualization [25]. Self-loops and duplicated

edges were removed prior the analyses. The cytoHubba algorithm was used to compute and

rank nodes according to their centrality « Betweenness and Connectivity » scores in the net-

work [22, 26, 27] (S3 Table). Cellular component grouping and functional analysis were per-

formed after a gene ontology analysis with the Biological Networks Gene Ontology tool

(BINGO version 2.44). Hypergeometric test was used for statistical analysis and the Benjamin

& Hochberg False Discovery Rate correction was set as multiple testing correction when per-

forming gene ontology analysis with BINGO. Kinase predictions were performed with GPS

3.0 [28], phosphosites [29] and NetworKIN [30] version 3.0 (KinomeXplorer) using the high-

throughput workflow option. Data from GPS 3.0 were additionally filtered by a differential

score (difference between Score and Cut of) higher or equal to 1.0. Networking associations
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were considered if the Networkin score was observed to be higher than 2.0. Analyses were per-

formed on November 10 2017. http://dx.doi.org/10.17504/protocols.io.[PROTOCOL DOI.

Candidate gene analysis and identification- GO analysis- We verified the probability of intra-

cellular colocalization for candidates and seeds using the plugin BINGO adapted for the Cytos-

cape platform. We clustered the hybrid network (S2 Fig) based on enrichment in the same

cellular compartment by GO. In IREP proteins coming from Golgi-endosomal fractions, 21

seeds were found to be enriched in the Golgi apparatus (p< 5.6822 x 10−14, after correction)

and endosomes (p< 1.1315 x 10−16, after correction). Of the 126 IREP candidates identified by

PPIN, 32 have at least three interactors among the 21 Golgi-endosomal seeds. The analysis was

expanded to other compartments with 7 candidates interacting each with three seeds in the

cytosol cluster (p< 6.8728 x 10−17, after correction), 10 candidates in the endoplasmic reticu-

lum (p< 1.6173 x 10−12, after correction), 25 in the plasmamembrane (p< 5.6570 x 10−8, after

correction), and 13 in the extracellular region (p< 4.6024 10 x 10−5, after correction). Taken

together, 54 nonredundant IREP coding genes among the 126 identified by PPIN were found to

be colocalized with validated seeds based on GO analysis (S3 Fig and S4 Table).

Fine-mapping approach- We performed a linkage disequilibrium (LD) analysis and identi-

fied proximal SNPs correlated to diabetes GWAS signals (p�10−3) using replicated data as

displayed in tables from the Wellcome Trust Case Control Consortium (WTCCC), GWAS

Central portal, GWAS catalog or DIAGRAM GWAS-Metabochip or trans-ethnic data. This

analysis provided a list of 130 IREP coding genes falling in genomic loci reliably associated

with diabetes (S5 Table).

Genes expression analysis- Most of the SNPs identified by GWAS are intergenic or fall in

intronic regions of genes suggesting a regulatory role [7, 9]. Among the 130 candidates identi-

fied by fine-mapping, we verified which ones had SNPs experimentally shown to affect gene

expression and to likely regulate some transcription factor binding as described in category-1

of high-confidence associations in the RegulomeDB database [31]. We identified 15 IREP cod-

ing genes fulfilling these criteria, consequently forming a first pool of IREP candidates based

on gene expression regulation (S6 Table). A second pool was made-up of IREP genes showing

or predicted to have similar patterns of expression with at least three of the 184 seeds by RNA--

Seq analysis and simultaneously sharing regulatory binding motifs either for transcription fac-

tors or for miRNA. The candidates and seeds pairs were considered coexpressed if they were

mutually ranked among the top 1% of coexpressed genes pairs by the Genefriends database

[32]. The transcription factor targets (TFTs) or microRNA targets were analyzed using the top

10 grouping of the Gene Set Enrichment Analysis [33, 34] with (p< 4.35 x 10–16 after correc-

tion for TFTs and p< 2.88 x 10–6 for miRNA targets). In all, 296 IREP coding genes were

found to share TFTs with at least three diabetes genes compared with 112 for miRNA targets

and 109 for RNA-Seq. Only 80 genes from the RNA-Seq analysis were considered for the sec-

ond pool of candidates because they simultaneously showed some shared binding targets with

at least three DAGs for TFs (72 genes) and/or for miRNA (28 genes). Taken together, 94 non-

redundant IREP coding genes from the first and second pools are considered candidates based

on shared regulatory elements with validated DAGs (S6 Table).

IR endosomal autophosphorylation- IR endosomal autophosphorylation was measured as

previously reported [35] with minor modifications [13]. SiRNA in vivo: Rats were injected via

the jugular vein with a scrambled or predesigned stabilized rat PTPLAD1 sequence (100 mg/

100 g bw; IVORY in vivo siRNA GGGGCAGUCUAAUUCGGUGUGCU, D-00203-0200-V; puri-

fied/desalted by RP/IEX-HPLC; Riboxx Life Sciences, Germany; Liver In vivo transfection

reagent 5061, Altogen Biosystems, Las Vegas, CA) 48 and 24 hours before isolating the G/E frac-

tion. The PTPLAD1 mRNA expression level was measured against GAPDH in liver sections

using quantitative polymerase chain reaction (qPCR) and was decreased by 52 +/- 6.2%, n = 3.
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Cell culture and analysis- HEK293 cells were maintained in DMEM high-glucose

medium with 10% foetal bovine serum. PTPLAD1 siRNA knockdown was performed as

previously described [13] using the predesigned human sequence as follows: GACCCAGAGG
CAGGUAAACAUUACANM_016395_STEALTH_367. Cells were transfected using Lipofecta-

mine 2000TM (Life Technologies) for 48 hours and subjected to the described experiments.

For overexpression experiments PTPLAD1 WT and Cdk2 WT were cloned into the

pcDNA3 expression vector. Transfection was performed with Lipofectamine 2000TM and

plasmid DNA (300 ng/ml). Cells were preincubated at 37 0C without serum for 5 hours

before insulin (35 nM) stimulation for the indicated times. Immunoprecipitation (IP) were

done under solubilization conditions that preserve the integrity of insulin-dependent com-

plexes (Empigen BB 0.3%, 2 hours, 4˚C) [18].

Reagents and antibodies- Porcine insulin (I5523) was obtained from Sigma-Aldrich

(St. Louis, MO, USA). The following antibodies were used: anti-phosphotyrosine (PY20,

Sigma-Aldrich, St. Louis, MO, USA). The IR β-subunit (Sc-711), Rab5c (sc-365667) and Cdk2

(sc-163, sc-163AC) antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA,

USA). The anti-PTPLAD1 was from Abcam (ab57143, Cambridge MA, USA). The anti-tubu-

lin antibodies were obtained from Sigma-Aldrich (T5168, TUB 2.1, St. Louis, MO, USA). The

anti-MAD2 was from Bethyl Laboratories (Montgomery, TX, USA). The RILP antibody was

from Invitrogen (PA5-34357, Waltham, MA, USA). The generic anti-phosphothreonine was

from Zymed (San Francisco, CA, USA). The antibody against Rab11a was from ThermoFisher

Scientific (Rockford, IL, USA). Peroxidase-conjugated secondary antibodies were used

(1:10,000, Jackson Immuno Research Laboratories, West Grove, PA, USA). Membranes

(PVDF) were analyzed using a chemiluminescence kit (ECL, Perkin Elmer Life science, Bos-

ton, MA) or using an ImageQuant LAS 40 000 imager (GE Healthcare Biosciences, Baie

d’Urfé, QC, CA). [γ-32P]-ATP (1000–3000 Ci/mmol) was from New England Nuclear Radio-

chemicals (Lachine, Québec). Other chemicals and reagents were of analytical grade and were

purchased from Fisher Scientific (Sainte-Foy, Québec, CAN) or from Roche Laboratories

(Laval, Québec, CAN).

Results and discussion

Rabs, V-ATPase subunits, tyrosine phosphatases, and cell cycle proteins

shape IR-containing endosomes

To determine the proteomic environment of the internalized IRs, we performed a survey of

IR-containing endosomes fractions. We started with a mixed Golgi/endosomes fraction (G/E)

using a single dose of insulin (1.5 μg/100 g body weight [b.w.]) that resulted in 50% saturation

of rat liver receptors. Fractions were prepared at the 2-minute time peak of IR accumulation

and the 15-minute 50% decline time [13, 36] to collect a larger proteome. Freshly prepared

fractions were then incubated with anti-IR (β-subunit)-coated magnetic beads, and endosomes

were collected with a magnet [17, 18]. We identified a total of 620 proteins with high confi-

dence (named IREP: IR Endosome Proteome, Fig 1A and S1 Table).

Gene ontology (GO) analysis revealed enrichment of proteins involved in trafficking and

signaling (MGI database; Biological Network Gene Ontology (BINGO) tool). These were pri-

marily represented by coat-forming elements, small GTPases, components of the actin cyto-

skeleton, microtubules and motor proteins of the microtubule cytoskeleton and regulators of

the cell cycle (Fig 1A and 1B left panel). Immunoblotting analysis confirmed the peak of IR

accumulation occurring at 2 minutes post-insulin injection (Fig 1B right panel). The protein

PTPLAD1 (HACD3), previously observed to be associated with the IR in G/E fractions after

insulin stimulation [13], was also detected here at 15 minutes post-insulin injection (Fig 1B,
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right panel). Consistent with the presence of sets of Rabs [17, 37], thirteen Rabs were identi-

fied. They were shown to be involved in transport from early to recycling endosomes (Rab22a,

2 minutes post-insulin injection) or late recycling endosomes (Rab11a, Rab17) [38]. Rab8a,

reported to act exclusively in the trans-Golgi network to plasma membrane transport, was

identified at 15 minutes post-insulin injection (Fig 1A). Other Rabs identified at both times

(Rab6a, Rab5c, Rab1a, Rab2b, Rab11b, Rab14, Rab1b, Rab7a and Rap1b) are all implicated in

recycling, transcytotic or Golgi transport events [17, 38]. Among signaling proteins, the trans-

membrane protein tyrosine phosphatase (PTP) of the R subfamily [39], PTPRF (also named

leukocytes antigen-related, LAR) was identified (Fig 1A). PTPRs are generally associated with

IR tyrosine dephosphorylation [40–43], acting preferentially on the juxtamembrane sites Y960

and Y1146 located in the IR activation loop [41, 43]. The putative PTP Dnajc6 (also called aux-

illin) is a chaperone involved in clathrin-mediated endocytosis of EGFR [44, 45]. PTPN6

(SHP-1) is a known IR regulator in the liver [46]. The large representation of regulators of the

cell cycle was less expected but is consistent with the attenuation of endocytosis during cell

division [47]. The proton translocation machinery necessary to achieve optimal lumenal acidic

pH is also particularly well represented (ATPv1a, ATPv1b2, ATPv1f, Atpv1e1, ATPv0a1; 2

minutes post-insulin injection) (Fig 1A and 1B left panel, S1 Table). Efficient acidification by

V-ATPase is particularly important for the ligand dissociation-degradation sequence accord-

ing to the law of mass action and is specific to insulin in contrast with EGF or prolactin com-

plexes. This sequence is followed by a rapid recycling of the freed IR under the concerted

action of endosomal protein tyrosine phosphatases (PTPs), thus supporting efficient circulat-

ing clearance [3, 48].

Genes at risk for type-2 diabetes form a proto-module enriched for

transport and oxygen species regulation

Most of the established T2D genes are supported by low and high probability GWAS signals of

their identified variants [8, 9]. To verify if the IREP is associated with T2D, we used comple-

mentary data sources (DIAGRAM consortium, SNPs provided in replicated GWAS from the

NHGRI-EBI GWAS catalog and GWAS Central portal, source S7 Table) to compile a list of

452 T2D and associated trait genes on the basis of single-nucleotide polymorphisms (SNPs)

identified in their genomic loci (diabetes-associated gene: DAG; p-value < 5 x 10−8; S8 Table).

This list also contains relevant genes associated with T2D Mendelian traits described in the

OMIM database and tagged with the symbol (3) indicative of known molecular associations

(S8 Table-sheet OMIM). To reduce false-positive associations, the 452 DAG products were val-

idated in a physical protein interaction network (PPIN) [14, 24]. We gathered physical pro-

tein-protein interaction data from the Biological General Repository Interaction Datasets

(BIOGRID), the human interactomes I and II generated with Y2H systems from the Center

for System Biology (CCSB) interactome, Intact, Reactome, Database of Interacting Proteins

(DIP, UCLA), HitPredict databases or from the Human Proteins Repository Database

(HPRD). The network was visualized with Cytoscape [25]. The 452 DAG products formed a

Fig 1. Network of enriched cellular processes in IR-containing endosomes. (A) Workflow of network construction: Inbound

endosomal proteins (IREP) were classified into major functional groups according to the MGI database and using the tool BINGO.

The triangles (2 minutes) and the squares (15 minutes) are indicative of the insulin post-injection time before endosomal preparation.

The circles indicate proteins identified at both times. The hexagonal nodes and their respective border paints represent the functional

groups associated linked proteins. Proteins associated with more than one functional group have the border paints of the most

statistically significant functional group (S1 Table). (B) (left panel), Comparative enrichment profiles of trafficking proteins according

to the insulin post-injection time. (right panel), the bound fraction (equal amount of starting material, see methods, S1 Fig) was

blotted and pieces were incubated with antibodies against IR (95 kDA β-subunit), phosphotyrosine (PY-20, PY-95 kDA) and

PTPLAD1.

https://doi.org/10.1371/journal.pone.0205180.g001
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PPIN of 184 proteins and 309 interactions we called the proto-T2D module (Fig 2A and S3

Table- sheet T2DN-protomodule).

The proto-T2D module is made up essentially of protein coding-genes from OMIM (26%),

GWAS variants with a p-value < 1x10-8; 69%, and GWAS variants with 5 x 10−8 < p-value <1

x 10−8; 5%, (Fig 2B). It displays a scale-free topology relying on a few hubs of large size such as

HNF4A surrounded by a majority of the peripheral nodes (more than 38% of the nodes have

only one interactor) [14, 15] (Fig 2A and 2C and S3 Table-sheet ProtoT2Dmodule). Protein

transport (p < 1.82 x 10−34) and response to oxygen-containing compounds (p< 1.32 x 10−32)

are the most enriched cellular processes identified by a gene ontology (GO) analysis with the

presence of trafficking proteins (Rab5b, RABEPP1, RABEPP2) and transcription factors from

the HNF (HNF4A, HNF1A or HNF1B), FOX (FOXO3, FOXA2) and TCF families (TCF7L2,

TCF4, and TCF19). Signaling modules associated with insulin sensitivity are also present

(INSR, IRSs, GRB14, PTPN1) (Fig 2A and S3 Table-sheet GO analysis-T2D-protomodule).

The affinity for these biological processes is supported by the enriched subcellular component

analysis which revealed an accumulation of the coding genes associated with risk for T2D in

endosomes and endoplasmic reticulum among the major genes. Proteins from the histocom-

patibility complex are also among the most significant clusters in the T2D-protomodule (Fig

2A and S3 Table sheet GO analysis-T2D-protomodule).

Overall, 62% of the 452 selected DAGs are disconnected (267/452). Five factors likely con-

tribute to this fragmentation as follows:

i) True lack of binary or indirect physical interaction.

ii) Interactome incompleteness [24].

iii) False positives (not all genes have a known mechanistic association with the disease), and

genes associated with late complications of the disease.

iv) The T1D-T2D paradox and disease classification [7].

v) Missing heritability [8, 9].

A total of 101 high confidence candidate genes for type 2 diabetes risk are

identified in IREP

Genes that fall within one of the known disease loci and whose protein products interact with

a known risk factor are predicted to be 10-fold enriched in a true disease gene. By considering

the cellular localization as well, the network information leads to a 1000-fold enrichment over

random genes [14, 49]. We used a combination of approaches to identify candidate genes con-

fidently associated with diabetes traits. The candidates were grouped and ranked according to

i) their topological proximity with the 184 previously validated DAG “seeds” in the PPIN

approach, ii) the probability of co-localization in the same subcellular locus (S4 Table), iii) the

identification of proximal variants correlating with the diabetes GWAS signal by fine-mapping

analysis (S5 Table) and iv) the similarity of gene expression regulation with the 184 seeds of

the proto-T2D-module (S6 Table) (see Methods).

A total of 246 nonredundant IREP coding genes are associated with diabetes traits when

considering each of the approaches individually. Of these, 38 were validated by at least three of

the approaches mentioned previously. This list includes the Cdk2 gene which is located in the

risk area composed of 4 blocks in strong LD around the T2D SNP rs2069408 (S4A Fig and S5

Table). ATIC, which was previously observed to be associated with the IR in endosomes
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Fig 2. Diabetes-associated genes form a protomodule. (A) Overall, 452 diabetes-associated gene (DAGs; GWAS p value< 5 x 10−8 and OMIM) products form

a PPIN of 184 proteins and 309 interactions termed T2D-protomodule. (B) In total, 10% (11/102) of the high-confidence DAGs with a probability less than 5 x

10−8, 53% of the DAGs with a probability less than 1 x 10−8 (141/266) and 49% of the OMIM genes (49/84) are recovered in the proto-T2D module, showing a

tendency to select the highest level of reliability. (C) Nodes–degree distribution: More than 38% of nodes (70 nodes) in the proto-T2D module are peripheral with

a minority of hubs from transcription factor families. The general topology of the protomodule is characteristic of a disease network with the presence of few

central hubs of large size, surrounded by numerous peripheral hubs of smaller size (S3 Table).

https://doi.org/10.1371/journal.pone.0205180.g002

The type 2 diabetes disease module

PLOS ONE | https://doi.org/10.1371/journal.pone.0205180 October 9, 2018 9 / 25

https://doi.org/10.1371/journal.pone.0205180.g002
https://doi.org/10.1371/journal.pone.0205180


together with PTPLAD1 and AMPK [13]; PTPN6 (SHP-1); the small GTPases of Rab the fam-

ily (Rab14, and Rab5c); and a series of coat components (i.e., AP complexes, CAV1, COPA,

SEC23A and SEC24C) are also present (Table 1).

Sixty-three other IREP coding genes are shown to have reliable association with diabetes

after validation with any two approaches. This list includes the HACD3 (PTPLAD1) gene,

located in a risk area (S4B Fig and S5 Table), that was also previously associated with T2D in

human islets [50]. PRKAA1 (AMPK); the Cdk2 regulators (CDKN1B, CCNE1); a V-ATPase

subunit (ATP6VA1); the small GTPase Rab1a, Rab1b and Rab8a; several coat components; the

putative tyrosine phosphatase DNAJC6; ACTB and TUBA also fall into this category (Table A

in S4 Table). IREP is also enriched in genes associated with the T2D risk with 15 of the 184 val-

idated DAGs from the human genome being identified indicating a nonrandom concentration

of diabetes genes variants during IR endocytosis (p-value of 3.44 x 10−4; hypergeometric test)

(S2 Table- sheet IREP-HUGO).

Collectively, IREP consists of more than 20% (15 validated DAGs from the T2D-protomo-

dule and 101 candidates) of gene products confidently associated with the T2D risk.

The insulin receptor-containing endosome network (IREN) displays a type-

2 diabetes disease module architecture

A disease module can be defined as a connected subnetwork showing mechanistic evidence

for a phenotype [14, 15]. To identify the molecular mechanisms associated with IREP, we con-

structed a PPIN of IR-containing endosomes. The cytoHubba algorithm was used to compute

and to rank nodes in the network [26]. The resulting collated PPIN is formed by 313 nodes

and 1147 edges (55% of IREP proteins; named IREN, Insulin Receptor Endosome Network).

The general topology of IREN is based on few major hubs, with the kinase Cdk2 displaying the

highest centrality. Large nodes represented by the IR itself, proteins of the actin cytoskeleton

(ACTB), and those involved in vesicular trafficking (CAV1) were observed. More peripheral

nodes were also present as follows: coats (GOLGA2, CLTC), V-ATPase subunits (ATP6V1A),

and cargos (APOA1) (Fig 3 and S3 Table-sheet IREN).

From the 101 high-confidence candidates (Table 1 and Table A in S4 Table) and 15 of the

184 validated DAGs identified in IREP, 94 of the candidates and 10 of the DAGs are present in

IREN. They form a single-connected subnetwork of 94 nodes with 330 interactions (Fig 3 and

S3 Table). To test whether this module could arise by chance in the context of IR endocytosis,

we made random reiterations of any 94 nodes of IREN. The results showed that the subnetwork

is robust (p-value < 0.0049, S5 Fig; http://dx.doi.org/10.17504/protocols.io.[PROTOCOL

DOI]). Its collective influence was analyzed by expanding it to the first adjacent nodes. This

resulted in a connected network of 271 nodes (88% of nodes) and 1070 out of 1147 IREN inter-

actions (Figs 3 and S5), coverage that is largely more than expected by chance (S5 Fig). GO anal-

ysis also revealed an enrichment for vesicle transport (p< 1.85< 10−51) and response to oxygen

species (p< 8.52 x 10−20), with the most enriched cell components being endosomes (p< 7.00

x 10−25), Golgi apparatus (p< 1.77 x 10−27) and endoplasmic reticulum (p< 2.13 x 10−23),

showing that the T2D-protomodule expansion coincides with a functional expansion (Fig 3 and

S3 Table-sheet IREN, GO analysis). Of the 94 of the 101 high-confidence candidates in IREP, 94

have credible tyrosine phosphorylation motifs with the IREN kinases (Table 1 and S9 Table). Of

the 87 present in IREN, 71 have at least one of their kinase-substrate interactions confirmed in

IREN (Fig 3 and S9 Table), further emphasizing the mechanistic association. Taken together,

these results indicate that IREN is a T2D-disease module.

The type 2 diabetes disease module

PLOS ONE | https://doi.org/10.1371/journal.pone.0205180 October 9, 2018 10 / 25

https://webmail.chuq.qc.ca/owa/redir.aspx?C=797c4a416d7845bb8b338bef0531bb0f&URL=http%3a%2f%2fdx.doi.org%2f10.17504%2fprotocols.io.%5bPROTOCOL
https://doi.org/10.1371/journal.pone.0205180


Table 1. List of candidates. Thirty-eight IREP coding genes are validated for association with diabetes traits by at least three out of four distinct approaches. (PPIN) pro-

tein-protein interactions network. (GO) Gene Ontology, Subcellular co-localization. (GWAS) fine-mapping. (COEXPRESSION) same expression pattern.

CANDIDATES/

SUBSTRATES

CANDIDATES NAMES UPSTREAM KINASES IN IREP VALIDATION

CDK2 Cyclin-Dependent Kinase 2 CDK2 PPIN/GO/GWAS/

COEXPRESSION

B2M Beta-2-Microglobulin - PPIN/GO/COEXPRESSION

ATP2A2 Sarcoplasmic/Endoplasmic Reticulum Calcium Atpase 2 AMPKA1/CAMKK2/CDK2/ROCK1 PPIN/GO/COEXPRESSION

CTNNB1 Catenin Beta-1 AMPKA2/CAMKK2/CDK2/CIT/INSR/ROCK1 PPIN/GO/GWAS

GNB4 Guanine Nucleotide-Binding Protein Subunit Beta-4 CAMKK2/ROCK1 PPIN/GO/GWAS

HSPA8 Heat Shock Protein Family A (Hsp70) Member 8 AMPKA1/CAMKK2/CDK2/CIT/INSR PPIN/GO/GWAS

RAB14 Ras-Related Protein Rab-14 AMPKA1 PPIN/GO/GWAS

SEC24A Protein Transport Protein Sec24a AMPKA1/AMPKA2/CAMKK2/CDK2 PPIN/GO/GWAS

SEC31A Protein Transport Protein Sec31a AMPKA1/AMPKA2/CDK2/CIT/INSR PPIN/GO/GWAS

TFRC Transferrin Receptor Protein 1 CAMKK2/CDK2/CIT/INSR PPIN/GO/GWAS

ALB Albumin - PPIN/GO/COEXPRESSION

AP1B1 Ap-1 Complex Subunit Beta-1 CAMKK2/CDK2/CIT PPIN/GO/COEXPRESSION

AP1G1 Ap-1 Complex Subunit Gamma-1 AMPKA2/CAMKK2/CIT PPIN/GO/COEXPRESSION

AP1M1 Ap-1 Complex Subunit Mu-1 AMPKA1/CDK2/CIT/INSR/ROCK1 PPIN/GO/COEXPRESSION

AP1S1 Ap-1 Complex Subunit Sigma-1a CDK2 PPIN/GO/COEXPRESSION

APOC2 Apolipoprotein C-Ii - PPIN/GO/COEXPRESSION

ATIC Bifunctional Purine Biosynthesis Protein Purh CAMKK2/INSR/ROCK1 PPIN/GO/COEXPRESSION

AP2M1 Ap-2 Complex Subunit Mu AMPKA1/CAMKK2/CDK2/CIT PPIN/GO/COEXPRESSION

CALR Calreticulin AMPKA2/CDK2/ERBB4 PPIN/GO/COEXPRESSION

CAV1 Caveolin-1 INSR PPIN/GO/COEXPRESSION

CD74 Hla Class Ii Histocompatibility Antigen Gamma Chain AMPKA1/CAMKK2/INSR/ROCK1 PPIN/GO/COEXPRESSION

CLTC Clathrin Heavy Chain 1 AMPKA2/CAMKK2/CDK2/CIT/INSR/ROCK1 PPIN/GO/COEXPRESSION

EEF1A1 Elongation Factor 1-Alpha 1 CDK2 PPIN/GO/COEXPRESSION

FGA Fibrinogen Alpha Chain AMPKA2/CAMKK2/CDK2/CIT/INSR PPIN/GO/COEXPRESSION

GNAI2 Guanine Nucleotide-Binding Protein G CAMKK2/CIT/INSR PPIN/GO/COEXPRESSION

HPX Hemopexin CDK2/CIT/ERBB4/INSR PPIN/GO/COEXPRESSION

JUP Junction Plakoglobin AMPKA2/CaMKK2/CDK2/ERBB4 PPIN/GO/COEXPRESSION

LRP1 Low-Density Lipoprotein Receptor-Related Protein 1 AMPKA1/AMPKA2/CaMKK2/CDK2/CIT/

ERBB4/INSR/ROCK1

PPIN/GO/COEXPRESSION

PTPRF Receptor-Type Tyrosine-Protein Phosphatase F AMPKA1/AMPKA2/CAMKK2/CDK2/ERBB4/

INSR

PPIN/GO/COEXPRESSION

RAB5C Ras-Related Protein Rab-5c CAMKK2/CDK2/CIT/INSR PPIN/GO/COEXPRESSION

RAP1A Ras-Related Protein Rap-1a CDK2/ERBB4 PPIN/GO/COEXPRESSION

SDC1 Syndecan-1 AMPKA1/CDK2/INSR PPIN/GO/COEXPRESSION

SEC23A Protein Transport Protein Sec23a AMPKA1/CDK2/INSR PPIN/GO/COEXPRESSION

SEC24C Protein Transport Protein Sec24c AMPKA2/CAMKK2/CDK2/CIT/INSR PPIN/GO/COEXPRESSION

ATP5B Atp Synthase Subunit Beta, Mitochondrial AMPKA1/AMPKA2/CDK2/CIT PPIN/GWAS/

COEXPRESSION

COPA Coatomer Subunit Alpha AMPKA1/AMPKA2/CDK2/ERBB4 PPIN/GWAS/

COEXPRESSION

GBF1 Golgi-Specific Brefeldin A-Resistance Guanine Nucleotide

Exchange Factor 1

AMPKA1/AMPKA2/CAMKK2/CDK2/ERBB4/

ROCK1

PPIN/GWAS/

COEXPRESSION

PTPN6 (SHP1) Tyrosine-Protein Phosphatase Non-Receptor Type 6 AMPKA2/CAMKK2/CDK2/INSR PPIN/GWAS/

COEXPRESSION

MTHFD1 C-1-Tetrahydrofolate Synthase, Cytoplasmic AMPKA2/CAMKK2/CDK2/CIT/INSR/ROCK1 PPIN/GWAS/

COEXPRESSION

https://doi.org/10.1371/journal.pone.0205180.t001
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Cdk2 affects the association of IR with microtubules

A prerequisite in the description of interaction maps is the validation of hubs in terms of pertur-

bation responses. We then tested examples here of hub complexes in term of insulin response.

We verified first whether Cdk2, which displays the highest centrality and is a high-confidence

candidate (Table 1 and S4A Fig), is indeed associated with key elements. Microtubules, for

instance, rely on dimerization of tubulin subunits alpha and beta for their assembly and Rab5--

containing endosomes have a capacity to move along microtubules [51]. We noticed that the

tubulin alpha subunit (TUBA), a reported substrate for the IR in vitro [52, 53], is preponderant

within the IREN (Fig 3). We show that TUBA indeed readily associates with the IR after insulin

stimulation in HEK293 cells, while TUBB has a different profile (Fig 4A). In addition, the asso-

ciation was nearly abolished upon Cdk2 overexpression, confirming the presence of complexes

and indicating that Cdk2 levels can effect complexes organization within IREN (Fig 4A).

PTPLAD1 expression affects the IR autophosphorylation activity and

association with Cdk2, Rab5c, Rab11a and actin

Compared with Cdk2, PTPLAD1 is an example of good centrality, but it is poorly studied

and identified as a moderate candidate (Table A in S4 Table and Fig 3). Because the fatty

acid elongation enzymatic activity was not confirmed, it was recently hypothesized that

PTPLAD1 (HACD3) is involved in the elongation of specialized forms of 3-OH acyl-CoAs,

such as those containing a short or branched alkylic chain [54]. An interaction with Rac1

was also reported [55]. PTPLAD1 has a well-positioned conserved cysteine C(X)5K motif in

the soluble cytosolic loop, residues 257–279, and its partial deletion in cultured HEK293

cells coincided with IR tyrosine hyper-phosphorylation [13]. We verified whether

PTPLAD1 acts on IR tyrosine phosphorylation outside a whole-cell context. We used an in

vitro assay, whereby IR-loaded endosomes were incubated in the presence of ATP. We

observed that a prior siRNA-mediated depletion in rat PTPLAD1 nearly abolished the

PTPLAD1 presence from isolated endosomes, which coincided with a marked increase in

IR autophosphorylation, demonstrating that the IR tyrosine-phosphorylated state is modi-

fied by PTPLAD1 (Fig 4B right panels). Low, but consistent, enzymatic activity towards the

artificial substrate pNPP was measured (Fig 4B left panel) resembling the loss of PTP activ-

ity towards the IR observed previously observed after membrane solubilization [35]. In

accordance with these results, and with prior PTPLAD1 depletion experiments [13], we

observed that overexpression of PTPLAD1 in HEK293 cells markedly decreases the IR tyro-

sine-phosphorylated state (Fig 4C). Of further interest, the candidate Rab5c (Table 1) also

associates with the IR and this association increases in an insulin-regulated (Fig 4C). Rab5a

and b are well documented as playing a role in the early events of EGFR endocytosis but the

role of Rab5c remains unclear [56]. Rab5c may therefore be particularly important for IR

action as we noted the presence of an IR phosphorylation motifs located in the GTP binding

site (Y83) (S9 Table) that resembles an inhibitory feedback loop described previously for

Rab24 [57]. In support of this finding, we detected Rab5c and Cdk2, but not Rab11a, in

anti-phosphotyrosine affinity complexes, and this association was markedly decreased after

Fig 3. The physical protein interaction network of IR-containing endosomes (IREN) has a Cdk2 centrality and is highly associated with type 2 diabetes risk.

The 557 IREP proteins were grouped and linked according to their physical association. The resulting network is formed by 313 nodes and 1147 edges (56% of

IREP proteins). The general topology of IREN is based on few major hubs, with the kinase Cdk2 displaying the highest centrality (S3 Table). Candidates (yellow

and blue colors and black characters; Tables 1 and Table A in S4 Table) and DAGs (pink color and black characters) form a single-connected disease module of 94

nodes (33% of IREN nodes) with 330 interactions (28,7% of IREN interactions). An expansion to the first level of adjacent nodes results in a connected subnetwork

of 272 nodes (88% of nodes) covering 92% of interactions (1070 out of 1147 IREN interactions). The functional groups are represented according to the colors of

the borders indicated in the legends.

https://doi.org/10.1371/journal.pone.0205180.g003

The type 2 diabetes disease module

PLOS ONE | https://doi.org/10.1371/journal.pone.0205180 October 9, 2018 13 / 25

https://doi.org/10.1371/journal.pone.0205180.g003
https://doi.org/10.1371/journal.pone.0205180


The type 2 diabetes disease module

PLOS ONE | https://doi.org/10.1371/journal.pone.0205180 October 9, 2018 14 / 25

https://doi.org/10.1371/journal.pone.0205180


PTPLAD1 overexpression (Fig 4C). In addition, both IR and Rab5c were present in Cdk2

affinity complexes, and this association decreased following PTPLAD1 overexpression (Fig

4C). To further test the importance of PTPLAD1 on IR complexes, we verified and noticed

an insulin-dependent association of IR with Rab11a, a known marker at the intersection

between the endocytic and exocytic pathways [38, 58]. This supports a role for PTPLAD1 in

cycling from endosomes to the plasmamembrane (PM). On another hand, we confirmed

that under the same circumstances PTPLAD1 deletion, using siRNA, increases IR tyrosine

phosphorylation and the presence of actin in IR immunoprecipitates (Fig 4D) [13].

We also observed an insulin-dependent recruitment of the Rab- interacting lysosomal

protein (RILP) in IR immunoprecipitates that was nearly abolished by PTPLAD1 deletion

(Fig 4D). RILP was demonstrated to be required for EGFR confinement and degradation

in late endosome compartments [59] and is an inhibitor of V-ATPase activity [60]. This

supports the importance of the PTPLAD1 node within IREN. Collectively, the data sup-

port the presence of dynamic insulin-dependent interactions for Cdk2 between the IR,

PTPLAD1, Rab5c, Rab11a, tubulin and actin cytoskeletons whereby PTPLAD1 controls IR

tyrosine phosphorylation and key interactions.

To verify the idea that cell cycle components have expanded their action on endocytic traf-

fic, we verified whether the protein MAD2, which binds to the MAD2-interacting motif

(MIM) located in the carboxyterminal domain of the IR β-subunit during clathrin-mediated

endocytosis [61], is responsive to insulin at the cell surface. The results demonstrate that

MAD2 readily disappears from the PM fractions following IR tyrosine kinase activation (Fig

4E), thus supporting the idea that cells use cell cycle regulators for both early [61] and later

events of IR endocytosis. No MAD2 signals were detected in the G/E fraction, suggesting a

rapid dissociation of the complexes toguether with the clathrin coat.

Fig 4. Cdk2 and PTPLAD1 interact with IR complex organization. (A) HEK293 cells were transfected with

pcDNA3-Cdk2 (T) or pcDNA3 (NT) for 48 hours. They were preincubated in serum-free medium for 5 hours and

then stimulated for the indicated times with insulin (35 nM). Proteins were resolved by SDS-PAGE and were blotted

for the indicated proteins. The autoradiograms depict data from a typical experiment. Statistical values for salient time

points are mean ± s.d. of % of initial densitometric values (two-tailed unpaired Student’s t-test). Left panel: IR

immunoprecipitation (IP: IRβ), IR autophosphorylation (PY 95 kDa) and Cdk2, TUBA and TUBB presence. TUBA:

NT 0 vs 2 min: Fold increase, 45 ± 7.5, n = 3, p� 0.001; TUBB: NT 0 vs 2 min: Fold decrease, 55 ± 8, n = 3, p� 0.001).

Right panel: Immunoblots (WB) of CDK2, IR-β-subunit, TUBA, B (pieces of the same membrane except PY-95 kDa

(PY20 antibody); 3 independent experiments). (B) IR autophosphorylation increases in isolated endosomes depleted of

PTPLAD1. Right panel: Rats were injected with a scrambled (SCR) or siRNA oligonucleotide targeting PTPLAD1 for

48 hours. The G/E fractions were then prepared from livers at their IR concentration time-peak (2 minutes after

insulin injection; 1.5 μg/100 g, b.w.). The presence of IR and PTPLAD1 was verified by immunoblot (IB: G/E, input

50 μg of protein, pieces of the same membrane). IR immunoprecipitation (IP: IR0β) and IR autophosphorylation (PY

95 kDa) were measured after suspending endosomes in a cell-free system in the presence of ATP for 2 minutes at 37
oC. After stopping the reaction, autophosphorylation was detected by immunoblotting using an anti-phosphotyrosine

antibody (PY20). Normalized values shown in the right panel are means ± s.d. (� P<0.001 n = 3). Left panel: PTPLAD1

was immunoprecipitated from the same fractions (input 30 mg protein of solubilized G/E) and incubated with p-NPP

in the presence or absence of 50 μM bpV(phen). The measured activity was expressed as a percentage of 0.55 +/- 0.8

mmoles/min/mg of cell extract, n = 4. (C) Cells were transfected with PTPLAD1-pcDNA3 (T) or pcDNA3 (NT) for 48

hours, incubated in serum-free medium for 5 hours and then stimulated for the indicated times with insulin (35 nM).

The panel on the right shows immunoblots from the total cell lysates. Left panel, IPs of IRβ, phosphotyrosine (PY20

antibody, middle left), and Cdk2 (bottom left). IPs IRβ: Rab5c: NT, 0 vs 2 min: Fold increase, 250 ± 45, n = 3,

p� 0.001; 0 NT vs 0 T: Fold decrease 45 ± 9.5, n = 3, p� 0.01); 15 NT vs 15 T: Fold increase 310 ± 35, n = 3,

p� 0.001). IPs Cdk2, Rab5c: 0 NT vs) T: Fold decrease 52 ± 7.5 n = 3, p� 0.01). (D) PTPLAD1 siRNA knockdown.

IPs of the IR β, ACTβ: 0 vs 2 min Si RNA PTPLAD1, Fold increase 420 ± 47, n = 3, p� 0.001; RILP: 0 vs 2 min SCR,

Fold increase 325 ± 35, n = 3, p� 0.001 (E) The plasmamembrane (PM) fractions were prepared from rat liver at the

indicated time following the injection of insulin (1.5 μg/100 g b.w.). Fractions were monitored for the PM-associated

MAD2 by immunoblotting (50 μg proteins).

https://doi.org/10.1371/journal.pone.0205180.g004
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Inhibition of V-ATPase shifts the IR accumulation rate in endosomes in

vivo

V-ATPase subunits are well represented in IREP (Fig 1 and S1 Table), forming large, more

peripheral nodes in IREN (Fig 3) with ATP6V1A being identified here as moderate candidate

(Table A in S4 Table) for type 2 diabetes risk. We thus verified whether the kinetics of IR endo-

cytosis are affected in vivo after treatments with two different potent V-ATPases inhibitors.

We observed that the peak of IR accumulation in endosomes is markedly shifted towards later

times of endocytosis following either concanamycin A or bafilomycin A1 pretreatments as

demonstrated by immunoblotting and hexokinase activity measurements, indicating that

V-ATPase reduces IR degradation and transport or decreases IR recycling to the plasma mem-

brane [62] or both (Fig 5A). Concanamycin A does not affect IR on going IR autophosphoryla-

tion in vitro, showing that V-ATPase inhibitors do not inadvertently function through PTPs

inhibition (Fig 5B left panel). We noted however a strong and consistent reconstituted threo-

nine phosphorylation signal that was readily abolished by concanamycin A (Fig 5B right

panel), suggesting the presence of additional feedback loop layers, which have yet to be charac-

terized, informing the cell that the lumenal acidification process is optimized. We verified

whether V-ATPases elements contains IR phosphorylation motifs. The kinase network analy-

sis indicated that ATP6V1A (Table A in S4 Table) and ATP6V1E1 are indeed strong candidate

substrates for the IR as well as for Cdk2 and AMPK (PRKAA1) (Fig 5C and S9 Table).

Conclusion

Using a combination of cell fractionation and computational approaches, we found a T2D dis-

ease module in IR-containing endosomes. The starting point of our analysis was a list of seed

genes with established genetic T2D association and high GWAS p-values (1 x 10−8) against the

background of random variation. They carry enough information to build a robust T2D-proto-

module (Fig 2). The functional specialization of the T2D-protomodule also found in IREN (Fig

3) is in accord with the connection of these processes (protein transport, transcriptional factors

and response to oxygen) in insulin action [1, 2]. The topological features of a scale-free network,

with the view that hubs with the highest influence represent important points in biological net-

works [14, 26], coupled with the large enrichment in T2D genetic risk is particularly well repre-

sented by Cdk2 (Fig 3 and Table 1). Cdk2 regulators were independently and repeatedly

reported by GWAS and their role, with many other common variants, was interpreted more in

terms of insulin production and secretion indicating that the beta-cell is a more appropriate

place to find a T2D-disease module [9, 11, 63, 64]. Indeed, mice lacking Cdk2 are viable [65, 66]

and targeted Cdk2 deletion in the pancreas induces glucose intolerance primarily by affecting

glucose-stimulated insulin secretion [67]. Similar to endosomes, the secretory pathway consists

of multiple dynamic compartments linked via anterograde and retrograde transport [68, 69].

The T2D-disease module thus can be co-functional in endosomes and insulin-secreting cells. In

this regard, in the liver the presence of insulin-regulated Cdk2/cyclinE/p27kip1complexes having

a capacity to inhibit hybrid endosome formation in vitro has been previously reported [70].

In contrast with Cdk2, PTPLAD1 has less topological influence in IREN and is a less-stud-

ied protein. PTPLAD1 is, however, functionally well connected as the control of IR activity

may be achieved at several endosomal targets by PTPLAD1 that, together with Cdk2, seems to

have a considerable local influence on actin and microtubule networks, Rabs and V-ATPase.

The finding that IR complexes are under the control of PTPLAD1 would also be particularly

important because PTPLAD1 mobilization in response to insulin inputs has also interesting

consequences by favoring tyrosine phosphorylated-IR quanta formation, which is considered

as an emergent property of endosomes as signaling devices [4]. This PTP activity is yet to be
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fully characterized and can be supported elsewhere in the cell by the small fraction of the endo-

plasmic reticulum-associated PTP-1B with high specific activity that can reach the plasma-

membrane at specific points of cell-cell contact [71], by cytosolic PTPs (SHP1/2) (Fig 2 and

Table 1) that couple to RTK phosphorylation in a negative feedback manner at the PM with

longer delays [72], and by PTPRs that are thought to display low specific activity towards basal

RTK autophosphorylation activities occurring at the cell surface [73]. Through a concerted

action on microtubules and actin elements, IREN supports a model in which Cdk2 controls

the microtubules-based traffic, and PTPLAD1 is an insulin-dependent switch deciding the

choice of IR interaction with microtubules versus actin routing events (Fig 4). Interesting

times are ahead for investigating insulin responses in the context of IREN. The question arises

as to the extent of crosstalk between the IR-Tyr kinase and the predominantly Ser/Thr kinases

(Cdk2, AMPK) that drive IR trafficking and signaling, and when and where this crosstalk

occurs. Apart from the presence of multiple high-confidence substrates for Cdk2 and AMPK

in IREN, the current results strongly point to the internalized IR as a relatively pleiotropic

writer in the disease module (Tables 1, S4 and S9. For example, ATP6V1E1: Y-464; AMPK: Y-

247; ATIC: Y-151; Rab5c: Y-83) and PTPLAD1 as the insulin-dependent eraser with short

delay. A related challenge will be systematically matching these phospho-sites to their cognate

physiological readers [74].

Another connected example of the IR regulatory mechanism associated with the T2D

genetic risk concerns the marked effect of the proton pumping activity on IR in vivo (Fig 5). A

concrete problem for the cell concerns the energy sources, and it seems that an efficient solu-

tion was found to connect IR activity with intermediary metabolism and trafficking by linking

V-ATPase subunits (continuous energy demand) with AMPK (energy sensor and action on IR

trafficking) and the metabolic enzyme ATIC (ATP production) (Fig 5) further supporting the

idea of the presence of an IR/ATIC/AMPK/PTPLAD1 circuit [13, 75]. The decreased presence

of ATIC homodimers, using a small interface interactor, indeed activates AMPK and improve

glucose intolerance in a mouse model [76]. We also noted the presence of related candidate

enzyme, MTHFD1 (Fig 3 and Table 1: PPIN, GWAS, co-expression). The fact that V-ATPase

controls the activity of AMPK [77] emphasizes the idea that all the conditions are present in

IREN to auto-regulate this node and thus IR routing, signaling and hepatic clearance in rela-

tion to global cell energy status. The presence of the V-ATPase inhibitor RILP [60] in IR

immunoprecipitates, which was nearly abolished by PTPLAD1 deletion (Fig 4D), further sup-

ports the idea that PTPLAD1 has a large capacity for action to decide IR routing towards early

versus late compartments [59].

A facet of IR trafficking in endosomes that can affect indirectly insulin production and secre-

tion is the insulin dissociation/degradation sequence occurring in endosomes, which supports

Fig 5. The pharmacological inhibition of V-ATPase affects the time peak of IR accumulation in endosomes. Rats that were treated

with concanamycin A (Conca A, 4.0 μg/100 g, b.w.) or were left untreated, were then stimulated with insulin (1.5 μg/100 g, b.w.) for the

indicated time and the G/E fractions were isolated. (A) Left panel, immunoblot of IR using the anti-IRβ subunit or αPY20 (95 kDa PY)

antibodies (50 μg of protein). Right panel, rats were left untreated or treated with bafilomycin A1 (Baf A1, 0.5 μg/100 g, b.w.). IRs from G/E

fractions prepared at the noted time following insulin administration (1.5 μg/100 g, body weight) were partially purified by WGA-

sepharose affinity chromatography and subjected to exogenous kinase assay. 32P incorporation into poly Glu-Tyr (4:1) is expressed as

pmol/μg protein. Values shown are means ± s.d. (P<0.0001, 2 minutes and 15 minutes, n = 3). (B) G/E liver fractions were prepared at

their IR concentration time peak (2 minutes after insulin injection; 1.5 μg/100 g b.w.) and immediately suspended in the cell-free system

for 0 and 2 minutes at 37 oC and in the presence of ATP and the absence or presence of fresh cytosol (diluted 1/10) and Conca A. After

stopping the reaction (0 and 2 minutes), the fractions were immunoblotted (input 50 μg of protein; 12% resolving gels) with the anti-

phosphotyrosine (anti-p-Tyr, left panel) or anti-phosphothreonine (anti-pThr, right panel) antibodies. (C) Subnetwork extracted from

IREN (Fig 3) depicting the connectivity of V-ATPase subunits. The V-ATPase subunits ATP6V1A, ATP6V1E1, ATP6VDA1 and

ATP6V1B2 containing high confidence IR-tyrosine kinase phosphorylation and Ser/Thr kinases Cdk2, PRKAA1 (AMPK) and Citron

phosphorylation motifs (S9 Table) are marked according to the legend.

https://doi.org/10.1371/journal.pone.0205180.g005
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efficient hepatic insulin clearance [3, 48]. A reduction in hepatic insulin clearance is viewed as

an adaptive mechanism that relieves the burden on pancreatic beta-cells [6, 78]. On the other

hand, as shown by a mouse model, moderate chronic hyperinsulinemia can be the primary

mechanism resulting in insulin resistance [79]. The idea that the complex genetic heterogeneity

converges towards a single module co-functional in insulin-producing and target cells, implies

a mechanistic promiscuity between insulin signaling, transport and production, that can explain

the prevalence of insulin clearance in insulin sensitivity found in some animal models [80].

We acknowledge that some endosomal structures might not be accessible to the IR β-sub-

unit antibody and the limitations inherent to the fractionation approaches such as true tubular

connection between different organelles versus contaminants [17, 81]. Nonetheless, the pres-

ent IREN helps us narrow the search space of the full organism interactome and focus a search

in a well-localized network neighborhood. Quantitative proteomic approaches are needed to

establish how changes in endosomes occur in space and time according to low (around 10%

saturating) versus large saturating insulin doses. This will provide a more complete picture of

IREN dynamics that takes the in vivo polarized situation into account [5].

In conclusion, our results establish that the endosomal apparatus contains a T2D disease

module located in close proximity to the IR. It senses the state of IR activation and seems co-

functional with insulin secretion and islets biology. It helps to explain disease heterogeneity

and represents a valuable new resource to understand insulin action and to classify related

metabolic traits [82]. Rewiring a network, distorted under the combined genetic and environ-

mental pressures [83], with designed surface interactors [24], provides a mechanistic rationale

for the exploration of personalized medicine and elaborate new necessary drugs [1, 2, 84].

Supporting information

S1 Fig. Controls IR containing endosomes and IPs. A) IREP, the number of newly identified

proteins from one independent experiment to another (tryptic peptides, see Methods). B) upper

panel: The G/E fraction was prepared 2 minutes after insulin injections and incubated with

uncoated beads (C), with beads coated with an unrelated IgG (IgG) or beads coated with the anti-

IR (2 min). The bound fraction was blotted and incubated with the antibody against IR β-subunit.

Lower panel: HEK293 cells were preincubated in serum-free medium for 5 hours and then stimu-

lated for the indicated times with insulin (35 nM). Left, IP with an unrelated IgG (IgG) or the

anti-IR antibody (anti-IR). Right, IP with an unrelated IgG (IgG) or the anti-Cdk2 antibody.

(TIF)

S2 Fig. The hybrid T2D-protomodule/IREP module. In total, 126 IREP proteins were

selected on the basis of having each at least three interactors among 112 of the 184 seeds of the

T2D protomodule (S4 Table-sheet hybrid module). The 126 IREP coding genes make up the

list of candidates based on the PPIN approach. The diabetes-associated genes (DAGs) are rep-

resented according to the colors indicated in the legend. Orange: Diabetes-associated traits.

Blue: Insulin-associated traits. Dark green: Obesity-associated traits. Green: Glycemic traits

(S3 Table-sheet validated DAGs seeds). White: IREP candidates.

(TIF)

S3 Fig. The extracted IREN subnetwork of DAGs physically associated with candidates.

The general topology of IREN is conserved and based on few major hubs, with the kinase Cdk2

displaying the highest centrality (S8 Table). Candidates (yellow and blue colors and black charac-

ters; Tables 1 and 2) and DAGs (pink color and black characters) form a single-connected disease

module of 94 nodes (33% of IREN nodes) with 330 interactions (28,7% of IREN interactions).

An expansion to the first level of adjacent nodes results in a connected subnetwork of 272 nodes
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(88% of nodes) covering 92% of interactions (1070 out of 1147 IREN interactions). The func-

tional groups are represented according to the colors of borders indicated in the legends.

(TIF)

S4 Fig. LD display (Haploview) of the CDK2 and HACD3 genes. For all graphs, a reference

track with chromosomal location, SNP position, and gene position runs along the top. (Red)

indicates strong LD between markers; (white) no LD; (light blue) lack of information to evalu-

ate LD. The block-like patterns of LD are evident in the triangles representing regions of high

LD, divided by narrow areas where even adjacent markers are completely independent. The

SNP in the red box are associated with T2D. A) Cdk2 genotyped in European population

(CEU TSI FIN GBR) as part of the 1000 Genomes project (release 2013/05/03). The pop-up

represents the haplotype block of the SNP rs2069408 implicated in T2D (S2 Table). B) The

HACD3 genotype in an African population (YRI) as part of the 1000 Genomes project (release

2013/05/03). Three SNPs associate with T2D (rs3759852, rs3784448 and rs3743171, S2 Table)

and SNPs in strong LD with these three SNPs in the gene HACD3 (PTPLAD1).

(TIF)

S5 Fig. Random simulation of T2D subnetworks. Subnetworks were constructed by 10 000

reiterations of 94 randomly selected IREN nodes. For each simulation, the number of interac-

tions was computed protocols.iodx.doi.org/10.17504/protocols.io.sdqea5w). A) The distribu-

tion of the number of nodes for each subnetwork with the neighborhood of 94 selected nodes;

the number of nodes observed with the T2D subnetwork is in red. B) The distribution of the

number of interactions in the same subnetwork used in A; in red, the number of interaction

observed with the T2D subnetwork. C) Distribution of the number of interactions; the number

of interactions observed from the 94 T2D nodes is in red.

(TIF)

S1 Table. Proteome: Proteins and spectra reports.

(XLS)

S2 Table. Listing of IREP proteins orthology and networks listing.

(XLSX)

S3 Table. IREN and T2D-protomodule construction with Hubaa; GO analysis.

(XLS)

S4 Table. Gene ontology (GO) subcellular analysis.

(XLSX)

S5 Table. Fine mapping analysis: LD analysis of IREP coding genes and DAGs variants.

(XLSX)

S6 Table. TF motifs and coexpression analysis.

(XLS)

S7 Table. Source list of T2D and associated traits (glucose intolerance, obesity) genes.

(XLSX)

S8 Table. Selected DAGs and validated seeds.

(XLSX)

S9 Table. Kinase-substrate analysis based on Phosphositeplus, Networkin and GPS 3.0

databases.

(XLSX)
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