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Abstract

Post-mixing aggression in pigs is a harmful and costly behaviour which negatively impacts

both animal welfare and farm efficiency. There is vast unexplained variation in the amount of

acute and chronic aggression that dyadic behaviours do not fully explain. This study

hypothesised that certain pen-level network properties may improve prediction of lesion out-

comes due to the incorporation of indirect social interactions that are not captured by dyadic

traits. Utilising current SNA theory, we investigate whether pen-level network properties

affect the number of aggression-related injuries at 24 hours and 3 weeks post-mixing (24hr-

PM and 3wk-PM). Furthermore we compare the predictive value of network properties to

conventional dyadic traits. A total of 78 pens were video recorded for 24hr post-mixing.

Each aggressive interaction that occurred during this time period was used to construct the

pen-level networks. The relationships between network properties at 24hr and the pen level

injuries at 24hr-PM and 3wk-PM were analysed using mixed models and verified using per-

mutation tests. The results revealed that network properties at 24hr could predict long term

aggression (3wk-PM) better than dyadic traits. Specifically, large clique formation in the first

24hr-PM predicted fewer injuries at 3wk-PM and high betweenness centralisation at 24hr-

PM predicted increased rates of injury at 3wk-PM. This study demonstrates that network

properties present during the first 24hr-PM have predictive value for chronic aggression,

and have potential to allow identification and intervention for at risk groups.

Introduction

Post-mixing aggression occurs as a means of establishing a social hierarchy amongst unfamil-

iar conspecifics [1]. In commercial industry, pigs are frequently regrouped as they are trans-

ferred between production stages. Regrouping starts at four weeks when piglets are weaned

from the sow and moved to their weaner group (which can be mixed or single sex groups) con-

sisting of multiple different litters. This process is repeated when pigs are moved from their

weaner groups to grower and finisher housing. Mixing will occur again once animals are
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transported to the abattoir and kept in lairage. Whilst aggression during the first 24hr post-

mixing is mostly explained by the need to establish dominance relationships, pigs also display

chronic aggression associated with the maintenance of these relationships within stable groups

of familiar conspecifics [1] [2].

Pig aggression is highly overt and causes injury in the form of skin lesions (hereby referred

to as lesions), the location and number of which correspond to the type and duration of

aggressive interactions [3]. Lesions provide a distinctive and quantifiable cost to the interac-

tion, and a reliable outcome measure for hypothesis testing. In addition to physical injury,

aggression induced stress is associated with elevated cortisol and heart rate [4,5], and compro-

mised immunocompetence [6]. Aggression also reduces carcass and meat quality [7,8], as well

as stunting growth and reducing feed efficiency [9,10].

A group’s ability to form a lasting dominance hierarchy is necessary for long term group

stability, and there is evidence that engagement in aggression soon after mixing can improve

productivity and reduce chronic aggression over the growing-finishing period [11]. In con-

trast, avoidance of aggression during the acute post-mixing phase tends to only delay aggres-

sion [12]. This suggests that there is a trade-off situation whereby aggression during the acute

phase appears to be necessary in order to reduce chronic aggression, improve welfare, and

maintain productivity. However, a large proportion of variation in the severity of aggression at

both time points remains unexplained by the animals’ engagement in aggressive behaviours at

the dyadic level. Even where cluster analysis identifies pigs that share greater than 80% similar-

ity in dyadic behavioural traits (behaviours that describe the direct interactions that an animal

has engaged in), large differences exist between these pigs in their number of chronic injuries.

This suggests that a more refined approach to quantify behaviours may be necessary in order

to fully understand the variation in injuries [13].

Social network analysis (SNA) has rapidly risen in popularity amongst behavioural scien-

tists [14], as it offers the ability to capture and quantify social behaviours beyond the dyadic

framework. A growing body of evidence suggests that an animals’ indirect social connections

or ‘friends of friends’ [15] have important fitness consequences, highlighting the need to con-

sider animal behaviour within its wider social context. Although the majority of SNA has been

largely descriptive in nature [16,17], there has been a considerable increase in experimental

and predictive use of network properties in recent years. Individual network position is an

important predictor for survival in wild Barbary macaques [18] and juvenile male dolphins

[19]. Most notably, network position exceeds the predictive value of dyadic traits for offspring

survival in baboons [20]. Network level properties have also been found to be predictive of

aggressive outbreaks [21], parasitism load, and infectious disease spread among social animals

[22]. However, despite having considerable potential for improving welfare [23], application

of SNA to farm animal behaviour, especially in a predictive context, is considerably underrep-

resented in the literature [24–26].

In this study we quantified commonly studied group-level network properties [23,27] in

multiple groups of pigs (Sus scrofa), with the objective of examining the hypothesis that net-

work properties can be used to predict subsequent levels of injury resulting from aggressive

interactions and account for variation that is unexplained by dyadic behaviours. Additionally,

we compared the predictive value of network properties to that of conventional dyadic interac-

tions in order to determine whether network properties (in particular, network properties that

incorporate indirect social connections) are an important factor for subsequent injury rate. It

is anticipated that applying social network analysis to post-mixing aggression in pigs will reveal

the mechanisms by which certain groups manage to establish stable social relationships more

rapidly and effectively than others.

Social network properties predict chronic aggression in commercial pig systems
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Method

Data collection

The study was conducted and the video data collected on a private commercial farm in Ransta,

Sweden with permission from the farm owner. The study comprised 1,170 pigs housed in sin-

gle sex (intact males, castrated males and females), and single breed (705 purebred Yorkshire

and 465 crossbred Yorkshire x Landrace). Analyses conducted with a larger dataset on the

same farm have revealed no significant breed effects for aggressivity [28]. The groups were

comprised of 15 pigs; 3 from 5 separate litters. The pigs were moved into their new social

groups at 8 weeks old, creating 78 pens of 15 pigs. One pig was removed from the study due to

injury, and which left one pen containing only 14 animals. There is a positive correlation

between live weight and aggression [29,30], and weight asymmetry within a group can signifi-

cantly affect the type of aggression and duration of fighting that occurs. Therefore, where pos-

sible, pigs of similar weight were grouped together (mean 27.6 kg (SD = 5.6)) to limit this

effect.

Each group was video recorded for 24hr post-mixing. Using all-occurrence sampling, the

details of aggressive interactions that each individual engaged in was recorded, including time,

type of aggressive interaction (see ‘behaviours’), initiator, and receiver, as well as the animals’

pen identity, sex, breed, litter identity, and unique pig identification. Video analysis was con-

ducted by three observers using time-lapse video software to record the duration of each beha-

vioural occurrence to the nearest second. Inter-observer reliability was tested using three

1-hour samples of data and showed a significant degree of inter-observer agreement (mean r =
0.83, p< 0.001).

Lesions were counted at three intervals: before being mixed, 24hr post-mixing (24hr-PM),

and 3 weeks later (3wk-PM) once the groups were assumed to be stable. Lesions were recorded

in three regions of the body; anterior, central, and posterior, as these regions are associated

with different aggressive behaviours. Lesions in the anterior portion of the body are predomi-

nantly associated with engaging in reciprocal fighting, and lesions to the posterior portion of

the body are predominantly associated with receipt of non-reciprocal aggression (referred to

as bullying in this study) [3]. Lesions were recorded immediately before mixing and were sub-

tracted from those recorded at 24hr to estimate the number of lesions received due to the

establishment of new dominance relationships.

Behaviours

Pigs display both reciprocated fighting and unreciprocated bullying. Fighting was defined as

aggression that lasted at least one second where both pigs engaged in biting, pushing, or head

knocking the opponent. Bullying occurred when one pig received or delivered aggression with

no observable retaliation occurring [28]. In this paper we define dyadic behavioural traits as

behaviours derived from direct interactions (e.g. the amount of time the animals spent fight-

ing; the number of fights that occurred). Dyadic behavioural traits derived from fighting and

bullying behaviours are detailed in Table 1. These behaviours were selected due to being previ-

ously identified as significantly associated with lesions at both 24h-PM and 3wk-PM [12], and

provided a useful benchmark with which to compare the ability of network properties to pre-

dict lesions.

Social network analysis

Networks were constructed in R (version 3.2.3) using the R package igraph [31]. The unit of

analysis was the pen level network, providing 78 independent data points. Degree, eigenvector
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and betweenness centralisation values were obtained via the centralization.degree, centr_eigen,

and centralization.betweenness functions in igraph.

Separate networks were constructed for fighting and bullying behaviours in order to deter-

mine whether they offered different predictive value. Networks were also constructed contain-

ing all aggressive behaviours (both fighting and bullying), which we refer to as ‘combined’.

Network terminology. In SNA, networks are presented as graphs, comprised of the indi-

viduals (referred to as nodes) and the line that connects two nodes (referred to as an edge). A

directed edge allows the direction of the interactions (e.g. from the sender towards the

receiver) to be incorporated in the network, whereas an undirected edge represents a bidirec-

tional relationship [32]. SNA provides methods of describing networks as a whole (global mea-

sures), the substructures within a network, and the individuals’ network position (local

measures). Identifying whether an individual holds an important or ‘central’ position within

the network (known as individual centrality) is a commonly studied local measure. There are a

number of different methods to define what constitutes an important position in a network

and thus which individual is considered to be central [33]. For example, individuals that con-

nect otherwise unconnected groups may play an important role in group cohesiveness [34].

Network properties

The primary aim of this study was to identify pen-level network properties that explain the var-

iation in injurious outcomes that is not explained by dyadic traits. Due to the limited informa-

tion regarding the network properties that form during post-mixing aggression in pigs, the

decision was made to include a selection of commonly used network measures in animal

behaviour and identify traits that were most closely associated with the number of lesions

using a stepwise regression (further details under ‘Statistical analysis’). A full list of network

properties analysed in this study can be found in the supplementary material S1 and descrip-

tions of each trait are detailed in S2. Measures that were relevant to the results section are dis-

cussed in detail below.

Centralisation. Freeman’s centralisation equation calculates a network level metric from

individual centrality scores by summarising the disparity in centrality that exists within a net-

work. A global value for a network (the network property) is obtained by the sum of differ-

ences in individual centrality scores between the most central animal and all other animals in

the network. This sum is divided by the theoretical largest sum of differences in any network

of the same size to give a value between 0 and 1, where 1 is considered a maximally centralised

network [35] (further details on centralisation can found be supplementary material S1 File).

Fig 1 provides an example of a non-centralised network (Fig 1A) and a highly centralised

Table 1. Description of dyadic traits.

Behaviour Description

Mean duration of fighting and

bullying.

Mean duration of each fight and bout of bullying that the focal pig was involved in.

Total fight duration. Total duration of all fights that the focal pig was involved in.

Number of fights involved in. Total number of reciprocal fights the focal pig was involved with, regardless of

which pig initiated the attack.

Proportion injurious fights. Proportion of time the focal pig spent in reciprocal fights engaged in what was

deemed to be injurious fighting. Injurious fighting was defined as acts of aggression

where bites were delivered at an approximate rate of 1 per 3s [3].

Duration of bullying given. Duration of time spent in bullying in which the focal pig was the initiator.

Duration of bullying received. Duration of time spent in bullying in which the focal pig was the recipient of the

attack.

https://doi.org/10.1371/journal.pone.0205122.t001
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Fig 1. Example networks with different centralisation. A) A non-centralised ‘ring’ network. B) A maximally

centralised ‘star’ network.

https://doi.org/10.1371/journal.pone.0205122.g001

Social network properties predict chronic aggression in commercial pig systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0205122 October 4, 2018 5 / 18

https://doi.org/10.1371/journal.pone.0205122.g001
https://doi.org/10.1371/journal.pone.0205122


network (Fig 1B). Freeman’s equation has been successfully used to describe the structures of a

number of animal social networks [24,25,36,37]. Here we describe ‘degree’, ‘betweenness’, and

‘eigenvector’ centralisation.

Degree centralisation. Degree centrality describes the number of direct connections an

animal has. In this paper, we present three forms of degree centralisation: in-degree, out-

degree and total degree. In-degree calculates how many incoming interactions an animal has

(i.e. how many animals attacked the focal animal), and out-degree calculates the number of

out-going interactions (i.e. how many animals the focal animal attacked) [38]. As a pen-level

network property, degree centralisation describes whether certain individuals in the network

either give or receive considerably more aggression than the rest of the animals in the network.

Betweenness centralisation. Betweenness centrality measures the number of shortest

social paths between every pair of group members in the network that pass through a particu-

lar individual. (e.g. node 5 in Fig 2 has high betweenness). In behavioural terms, networks that

have high betweenness centralisation tend to contain individuals who connect other individu-

als that do not directly interact [39]. For example, removal of node 5 would result in the net-

work dividing into two separate groups (Fig 2).

Eigenvector centralisation. At the individual level, eigenvector centrality reflects the sum

of the centralities of an individual’s neighbours. An individual may achieve high centrality due

to having many connections (high degree), or by interacting with individuals with a high

degree, or a combination of both [40,41]. Thus eigenvector centrality extends the scope of

degree centrality, by accounting for the quality and not just the quantity of connections an

individual has. At a network level, a pen with high levels of eigenvector centralisation would

have a small number of well-connected individuals, with the rest of the group being consider-

ably less well connected. In terms of aggressive networks in this study, it would suggest that

engagement in aggressive behaviour (both giving and receipt) is unevenly displayed within the

group.

Size of largest clique. A clique represents a fully connected subgroup of individuals

whereby each individual in the clique directly interacted with all others in the clique [32,34].

In this paper we present the size of the largest clique. In Fig 2 the nodes 1, 2, 3, and 4 form the

largest clique in the network. To calculate the size of the largest clique in each network, we

used the igraph function “clique_num”. This function finds the largest clique in each network

and returns the number of individuals that belong to this subgroup.

Statistical analysis

All statistical analysis was carried out in SAS v9.4.

Fig 2. Model network. Dashed lines represent substructures (cliques).

https://doi.org/10.1371/journal.pone.0205122.g002
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Identification of predictive network and dyadic traits using mixed models. Our statisti-

cal approach was designed to test the extent to which network properties accounted for the

remaining variation in the pen level lesion scores once the fixed effects of breed, sex, mean

body weight of the pen, and experimental batch had been accounted for. Furthermore, as the

number of aggressive interactions that occur within a pen is a strong predictor of the number

of lesions [12], this too was included as a fixed effect. Our statistical approach consisted of

three steps. The first step was to run a mixed model with the lesion scores as the response vari-

ate and fixed effects as predictors to obtain residuals reflecting the variance in lesion scores not

accounted for by the fixed effects (hereafter referred to as the ‘partial model’). The next step

was to run a stepwise regression containing the lesion score residuals from the partial model as

the response variate and the network and dyadic traits as the predictors in order to identify

traits that best accounted for the remaining variation in lesion score residuals. The final step

was to incorporate the identified network or dyadic trait into the partial model (hereafter

referred to as the ‘full model’) to provide full model fit statistics. This allowed us to compare

the improvement that the network properties and dyadic traits provided in contrast with the

partial model.

Partial model. To isolate the variation in lesions not accounted for by fixed effects, the aver-

age number of lesions in each body region in the pen (calculated by summing the number of

lesions in each pen and dividing by the number of animals in the pen) was entered as the

response variable. The pen average was used due to the loss of one animal in a pen, which led

to one pen having 14 animals rather than 15. Breed, sex, and mean number of aggressive inter-

actions that occurred in the pen were entered as fixed effects; experimental batch was entered

as a random effect, and mean body weight of the pen as a covariate. This was carried out using

the SAS mixed procedure. The mixed model provided pen level lesion score residuals reflect-

ing the remaining variance.

Stepwise regression. Stepwise regressions provide a method of fitting regression models by

adding or removing predictor variables by an automatic procedure. Variables are either added

or removed based upon the test statistics of the estimated coefficient [42]. This was carried out

using the SAS regression procedure with stepwise model selection method.

To identify which network properties provided the best model fit once the fixed effects of

the pen had been accounted for, the pen level lesion score residuals were entered as the

response variable in a stepwise regression with all network properties (see S1 Table) as the pre-

dictors. The stepwise regression identified the network trait(s) that provided the best model fit

(based on the test statistics of the estimated coefficient) to account for the remaining variance

in pen level lesion score residuals. The stepwise regression was then repeated for a list of dyadic

traits (see Table 1).

Full model. Finally, the network properties and dyadic traits that were identified via the

stepwise regression to provide the best model fit were then added to the full model in order to

provide full model fit statistics (RMSE, AIC, R2). The full model was the same as the partial

model described above, with the addition of the traits that provided the best fit for the remain-

ing variance.

Model assumptions including normality and variance inflation factors were checked and

confirmed to be within the acceptable range.

Permutations

In social network analysis permutations are routinely used in order to generate replicates to

compare to the observed dataset and to account for the non-independence of the data [43].

Conventional statistics have been successfully applied in other network data studies that
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contained adequate replication and independent data (34,41). In this study we had 78 observed

replicates, that each provided an independent network metric. Thus conventional statistics

were appropriate [43] and were the primary statistical methodology utilised in this study. The

use of conventional statistics was also prioritised as it allowed us to compare model fit between

dyadic traits and network properties more easily than would be achieved using permutation

methodology alone. An additional reason for using permutations in SNA is to evaluate

whether the observed network is representative of the real network [41]. In this study we

recorded and included all interactions that occurred in the 24h period of interest, which pro-

vides a high level of confidence that our networks are representative of the real network for

this period of time.

However, we utilise permutation tests in this study in order to confirm the results of the

mixed models and the significance of the network properties identified by the stepwise

regression.

Keeping all other effects stable, the permuted network properties (betweenness centralisa-

tion and largest clique size) were entered into the full model to obtain a coefficient for the net-

work property of interest. This was repeated 5000 times to provide a distribution of

coefficients with which the coefficient from the observed network could be compared. A p-

value was obtained by calculating the number of times the observed network coefficient was

greater than the coefficients derived from the permuted networks, divided by the number of

permutations. This value was deducted from 1 in the case where the observed network model

provided a negative coefficient (indicating that the network property predicted a reduction in

lesion scores), in order to provide an accurate p-value [44].

Correlation of predictive network and dyadic traits

A Spearman rank correlation of the dyadic and network properties was performed to verify

the uniqueness of traits and to avoid errors due to duplication.

Ethical note

This study was carried out in accordance with the recommendation outlined in the European

Guidelines for accommodation and care of animals and the UK Government DEFRA animal

welfare codes. The work was approved by SRUC’s Animal Ethics Committee (application

number ED AE 5/2005).

Results

Descriptive statistics

A total of 9313 aggressive interactions were recorded during the 24hr period post introduction.

Animals that did not engage in aggression were still included in the networks as isolates. Fight-

ing and bullying occurred with approximately equal frequency (mean number of fights per

pen = 62.38, SD = 24; mean number of bullying interactions per pen = 57, SD = 26.4).

Despite the standardisation of resource provision and the abiotic environment in this

study, considerable variation in network structure existed. As expected, there was also large

variation in the amount of group level injury at 24hr-PM and 3wk-PM (see Table 2). The max-

imum size of a fighting or bullying clique was 7 individuals (47% of pen members).

Further information on the characteristics of lesions can be found in Desire et al (2015)

(12). Descriptive statistics for all network properties analysed in this study can be found in sup-

plementary material S3.
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Fixed effects on number of lesions

There was a significant breed effect for skin lesions in all body regions at 3wk-PM (anterior:

F1,59 = 8.13, p = 0.006; central: F1,59 = 8.81, p = 0.004; posterior: F1,59 = 5.93, p = 0.018; total:

F1,59 = 9.74, p = 0.003) with pure Yorkshire having significantly higher lesions at 3wk-PM than

Yorkshire Landrace crossbreeds. There was also a significant experimental batch effect on

lesions at 24hr-PM (anterior: F13, 58 = 2.22, p = 0.002; central: F13, 59 = 2.14, p = 0.024; posterior:

F13, 54 = 2.68, p = 0.006; total: F13, 58 = 3.07, p = 0.002) and 3wk-PM (anterior: F13, 59 = 3.79,

p<0.001; central: F13, 59 = 2.16, p = 0.023; posterior: F13, 59 = 5.17, p<0.001; total: F13, 59 = 3.39,

p<0.001). The number of fights per pen was not found to have a significant effect at either

time point.

Predictive value of SNA and dyadic traits on number of lesions

No network trait for posterior or total lesions at 24hr-PM significantly improved upon the par-

tial model. At 24hr-PM fighting eigenvector centralisation (see Fig 3) was significantly nega-

tively associated with lesions in the anterior region of the body (F1, 58 = 11.24, p = 0.001). Pens

showing high eigenvector centralisation tended to display highly localised aggression, with few

aggressive individuals that engaged in many fights and also fought amongst themselves but

with low connectivity amongst the remaining animals. Pens with high combined degree cen-

tralisation (See Fig 4) had significantly more lesions in the central (F1, 58 = 4.52, p = 0.038) area

Table 2. Descriptive statistics for a) network properties and b) pen level skin lesions.

a) Descriptive statistics of network properties

Network Trait Network type Median Minimum Maximum

Degree centralisation Fight 0.30 0.17 0.54

Bully 0.33 0.12 0.61

Fight & Bully 0.35 0.14 0.64

Betweenness centralisation Fight 0.15 0.06 0.41

Bully 0.21 0.08 0.62

Fight & Bully 0.14 0.01 0.53

Eigenvector centralisation Fight 0.51 0.32 0.74

Bully 0.52 0.29 0.76

Fight & Bully 0.4 0.16 0.60

Largest clique size Fight 4 3 7

Bully 4 3 7

Fight & Bully 5 4 8

b) Descriptive statistics of pen level skin lesions

Time (24hr-PM/3wk-PM) Body region Median Minimum Maximum

24hr-PM Anterior 18.33 3.67 45.27

Central 9.33 1.93 26.13

Posterior 4.07 -19.13a 11.80

Total 31.53 8.43 82.47

3wk-PM Anterior 10.27 5.33 15.93

Central 10.07 4.67 18.67

Posterior 4.40 0.80 7.87

Total 24.73 11.13 42.13

a Negative lesion values resulted from some animals having lower lesions in certain body regions after mixing than before.

https://doi.org/10.1371/journal.pone.0205122.t002
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of the body. Both eigenvector and combined degree centralisation improved upon the partial

model (RMSE, AIC, and R2) (see Table 3).

At 24hr-PM, dyadic traits offered a better model fit for lesions than network properties in

all body regions, apart from the central-region where no dyadic trait was found to improve

upon the partial model.

Anterior lesions were positively associated with the average duration of fighting and bully-

ing (F1, 58 = 14.45, p<0.001), whereas posterior lesions were negatively associated with the pro-

portion of fights that occurred in the pen that were classified as highly injurious (F1, 58 = 5.38,

p = 0.024). Total body lesions were positively associated with the average duration of all fight-

ing and bullying behaviour (F1, 58 = 5.97, p = 0.018).

In stable groups (3wk-PM), no dyadic traits offered any significant improvements upon the

partial model in predicting lesions. The size of the largest fighting clique (see Fig 5) was found

to provide the best single network trait model, revealing a strong negative association with

lesions in three out of the four body regions at 3wk-PM (anterior: F1,58 = 5.02, p = 0.029, cen-

tral: F1,58 = 10.77, p = 0.002, total: F1,58 = 7.47, p = 0.008). This indicates that pens that con-

tained larger cliques during the 24hr period after introduction had lower rates of aggression

related injuries at 3wk-PM.

Fighting betweenness centralisation (see Fig 6) had a positive association with posterior

lesions 3wk-PM, indicating that pens that contained disjointed sub-groups connected by only

a small number of animals when the group was formed, experience more lesions at the later

Fig 3. Example of a pig fighting network with high eigenvector centralisation. Individual with highest

eigencentrality highlighted in red.

https://doi.org/10.1371/journal.pone.0205122.g003
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time point. Fighting betweenness provided the best model for posterior lesions 3wk-PM (F1,58

= 4.74, p<0.034).

Correlation between network and dyadic traits

The correlation coefficients between network properties and dyadic traits ranged from rs

-0.46–0.54 (a complete correlation matrix is available in supplementary material S4).

The only model where a network property and a dyadic trait were both found to be signifi-

cant predictors was for anterior lesions at 24hr-PM (see Table 3). The significant predictors,

eigenvector centralisation and average duration of fighting, were inversely associated, although

this relationship was not significant (rs = -0.21, p = 0.07).

For lesions at 3wk-PM, the network properties fighting clique size and betweenness centra-

lisation were found to be significant predictors of lesions, and were significantly inversely

related (rs = -0.35, p<0.01).

Permutations

The permutations support the findings of the GLMM, and demonstrate that the network prop-

erties identified by the stepwise regression account for a significant proportion of the remain-

ing variation present in pen level lesion scores (see Fig 7).

Fig 4. Example of a pig fighting network with high combined degree centralisation. An individual engaging in

disproportionately more aggression (high degree) than the remaining pen mates is highlighted in red. Thicker edges

represent frequency of interactions.

https://doi.org/10.1371/journal.pone.0205122.g004

Social network properties predict chronic aggression in commercial pig systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0205122 October 4, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0205122.g004
https://doi.org/10.1371/journal.pone.0205122


Discussion

Network analysis is fast becoming a common approach to investigate the relationships

between individual behaviour and population level functioning [16,17,21,23]. In this study we

quantified the social network properties of multiple groups of pigs, with the objective of inves-

tigating whether group-level network properties can be used to predict subsequent amounts of

pen levels injury at two time points resulting from aggressive interactions, and provide novel

insights not captured by dyadic interactions.

Whilst network properties did not offer a model fit improvement compared to dyadic traits

for predicting the injury caused by initial aggression associated with the establishment of dom-

inance relationships (24hr-PM), network properties (betweenness centralisation and clique

size) did provide predictive value of long term injury (3wk-PM), while dyadic traits did not.

Prior research has suggested that low levels of aggression upon introduction can lead to

uncertain dominance relationships and chronic aggression [12]. However, our findings sug-

gest that rather than the number of fights, it is the number of animals that are part of a fully

connected subgroup (clique) that is a more important determinant of low chronic aggression.

By controlling for the number of aggressive interactions per pen we were able to distinguish

between the effect of number of fights and the different network properties that result from

these aggressive interactions (see Fig 5). Our findings suggest that fights that form large cliques

at 24hr-PM are more effective at decreasing chronic aggression than the same number of fights

that do not form large cliques. As all animals in a clique have fought each other, clique mem-

bers may form better established dominance relationships than non-clique members. This

would explain the low level of aggression at 3wk-PM. Furthermore, as clique sizes did not

exceed 47% of pen members, this suggests that a central group with established dominance

Table 3. Model fit statistics.

Trait Estimate (SE) RMSE R2 AIC

Lesion

location

SNA Dyadic SNA Dyadic Partial SNA Dyadic Partial SNA Dyadic Partial SNA Dyadic

24hr-PM

Anterior Fighting eigenvector Average fight

duration

-33.87

(10.10)��
12.97

(3.41)���
5.49 5.03 4.92 0.33 0.44 0.46 432.0 415.1 414.6

Central Combined degree

centrality

- 4.84 (2.27)� - 4.23 4.07 - 0.39 0.43 - 400.9 393.0 -

Posterior Injurious fighting - -23.65

(10.19)�
2.27 - 2.16 0.49 - 0.54 302.0 - 290.3

Total - Average fight

duration

- 15.90 (6.51)� 9.85 - 9.38 0.44 - 0.49 500.8 - 489.5

3wk-PM

Anterior Size of largest fighting

clique

- -0.67 (0.30)� 1.59 1.52 - 0.50 0.54 - 285.4 281.1 -

Central Size of largest fighting

clique

- -1.18 (0.36)�� 2.00 1.84 - 0.41 0.51 - 312.9 303.0 -

Posterior Fighting betweenness - 3.89 (1.79)� 1.00 0.96 - 0.61 0.64 - 231.4 223.8 -

Total Size of largest fighting

clique

- -2.08 (0.76)�� 4.41 3.89 - 0.50 0.55 - 398.5 390.1 -

Network properties and dyadic traits that were found to significantly improve model fit (p<0.05) are presented under ‘SNA’ and ‘Dyadic’. Model fit for fixed effects only

are presented under ‘Partial’. In all trait models the number of aggressive interactions per pen was included. Blank cells indicate that no dyadic or network trait was

found to significantly improve upon the partial model fit. Asterisks under estimate (SE) indicate level of significance.

p<0.05 � p<0.01�� p<0.001���

https://doi.org/10.1371/journal.pone.0205122.t003
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Fig 5. A) Example of a pig fighting network with a high number of aggressive interactions with a six animal

clique. B) Example of a network with a lower number of aggressive interactions with a six animal clique. Cliques

are highlighted in red for emphasis. Regardless of the difference in the number of interactions in each network, the

presence of a clique is a strong predictor of the injuries the pen will have at a later date (3wk-PM).

https://doi.org/10.1371/journal.pone.0205122.g005
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Fig 6. Example of a pig fighting network with high betweenness centralisation. Highly central individuals

highlighted in red for emphasis.

https://doi.org/10.1371/journal.pone.0205122.g006

Fig 7. Coefficient frequency distributions from lesion models containing permuted network properties and the coefficient from the observed network models

(in red). The red line represents the coefficient from the observed network properties. The observed value is considered to be significant if fewer than 2.5% of

permuted values are greater than the observed value, or 97.5% of the permuted values are greater than the observed [44].

https://doi.org/10.1371/journal.pone.0205122.g007
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relationships is sufficient to significantly reduce lesions at a pen level, without all group mem-

bers needing to be involved directly.

Additionally, cliques suggest that in certain pens aggressive animals fight amongst them-

selves, whereas less aggressive animals are able to avoid engaging entirely. While it is expected

that animals that do not engage in aggression at 24hr-PM may engage at a later date [12], the

fact that a large clique size significantly reduced lesions to the anterior region suggests that the

remainder of the pen did not engaging in fighting at 3wk-PM. However, analysing the individ-

ual lesion scores would be required in order to verify this.

Pens exhibiting high betweenness centralisation at 24hr-PM were at greater risk of high lev-

els of posterior lesions at 3wk-PM than pens with lower centralisation. Posterior lesions are

predominantly associated with receipt of bullying behaviour, as a fleeing animal turns away

and the attacking animal inflicts injuries to the posterior portion of the body [12]. Therefore it

is interesting that a fighting network property (that excluded all bullying behaviour) provided

a strong model fit for lesions associated with receipt of bullying 3wk-PM. Once dominance

relationships have been established, the maintenance of these relationships is usually achieved

by the delivery of bullying to subordinate animals. It is possible that pens presenting high

betweenness centralisation contain highly aggressive individuals that engage in excessive bouts

of bullying to maintain their position, and cause elevated levels of posterior injuries to the

remaining pen mates. Alternatively, the division present in pens with high betweenness centra-

lisation indicates that there is a lack of direct contact between certain groups of animals. If

insufficient interaction occurs in order to develop lasting dominance relationships throughout

the pen, continued aggression may persist due to uncertain social positions within the group.

Whilst network analysis has revealed network properties that predict chronic aggression and

injury rates in newly mixed pigs, it has not quantified the costs and benefits to the individuals

that have central roles in such networks. It is possible that the majority of the pen displays a

form of aggression ‘avoidance’ [13] and are the ones responsible for the poor connectivity

between groups, and the high betweenness individuals act as the connectors that improve the

cohesiveness of a group that would otherwise be even more poorly connected [34]. Likewise,

pens with a large clique may represent a highly aggressive subsection of a pen, and non-clique

members are simply representative of animals able to avoid both acute and chronic aggression.

Temporal analysis examining the process of network formation could help to understand how

these central individuals assume this position. Comparing the injuries of central individuals at

24hr-PM and 3wk-PM to their pen-members may also reveal the long and short terms costs

and benefits of occupying a position of high centrality.

The results have revealed that fighting and bullying networks significantly differ in their

contribution to chronic aggression. This raises the question of whether the remaining variance

in lesions could be further explained by the inclusion of other social behaviours aside from

aggression. For example, in rhesus macaque groups individuals that were responsible for the

maintenance of social network stability in aggression networks were also key players in groom-

ing behaviour networks [45], suggesting a variety of social behaviours relate to conflict man-

agement. Pigs have a complex range of negative and pro-social interactions and behaviours,

which could play a role in resolution of conflict [46]. Future research should consider the

inclusion of additional social behaviour, as this may provide a more complete understanding

of an animal’s social standing and could improve the predictive value of network properties.

Conclusion

Our findings provide further support that network properties have the potential to outperform

dyadic traits in predicting long term social outcomes [20]. Our results suggest that division in
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newly mixed groups of pigs is likely to lead to prolonged chronic aggression and elevated

injury rates, whereas pens with large cliques (~47% of the pen members) are likely to have sig-

nificantly fewer injuries in stable groups. We suggest that these network properties indicate

that divided networks represent poorly established dominance relationships at a pen level, and

large cliques indicate that a sufficient proportion of the group has established their social posi-

tion and thus reduces the need for prolonged aggression.
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