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Abstract

Purpose

To find the shortest, acceptable stabilization period before recording resting, supine ultra-

short-term Ln RMSSD and heart rate (HR).

Method

Thirty endurance-trained male athletes (age 24.1 ± 2.3 years, maximal oxygen consumption

(VO2max) 64.1 ± 6.6 ml�kg-1�min-1) and 30 male students (age 23.3 ± 1.8 years, VO2max

52.8 ± 5.1 ml�kg-1�min-1) were recruited. Upon awaking at home, resting, supine RR intervals

were measured continuously for 10 min using a Polar V800 HR monitor. Ultra-short-term Ln

RMSSD and HR values were calculated from 1-min RR interval segments after stabilization

periods from 0 to 4 min in 0.5 min increments and were compared with reference values cal-

culated from 5-min segment after 5-min stabilization. Systematic bias and intraclass correla-

tion coefficients (ICC) including 90% confidence intervals (CI) were calculated and

magnitude based inference was conducted.

Results

The stabilization periods of up to 30 s for athletes and up to 60 s for students showed posi-

tive (possibly to most likely) biases for ultra-short-term Ln RMSSD compared with reference

values. Stabilization periods of 60 s for athletes and 90 s for students showed trivial biases

and ICCs were 0.84; 90% CI 0.72 to 0.91, and 0.88; 0.79 to 0.94, respectively. For HR,

biases were trivial and ICCs were 0.93; 0.88 to 0.96, and 0.93; 0.88 to 0.96, respectively.

Conclusion

The shortest stabilization period required to stabilize Ln RMSSD and HR was set at 60 s for

endurance-trained athletes and 90 s for university students.
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Introduction

Analysis of heart rate variability (HRV) has provided a non-invasive method for evaluating

cardiac autonomic regulation [1,2]. In sports science, important applications of HRV analysis

include monitoring responses to training loads [3–7], detection of overreaching signs [8,9],

and HRV-guided training [10–13]. It is necessary for HRV analysis to record RR intervals for

a sufficient period. A 5-min recording period was recommended as the standard for short-

term HRV analysis [2]. In addition, a resting recording should be started when RR intervals

have stabilized. Therefore, a stabilization period is required before the start of the recording.

However, guidelines [2] did not provide recommendations for choosing the stabilization

period. Various stabilization periods have been used in the literature: 0 min [10,11], 1 min

[6,9], 2 min [7], 3 min [3], 4 min [8], and 5 min [4]. Alternatively, the stabilization period was

automatically selected based on stable heart rate (HR) detection [5]. It is clear that the stabiliza-

tion period is not sufficiently standardized in sports science literature.

Coaches who implement HRV analysis as part of a training strategy may struggle with low

athlete compliance relating to regular measurement, which should be performed on a daily

basis [14,15]. Daily HRV analysis using a 5-min stabilization period and 5-min recording

period takes 70 min per week, which may be considered time-consuming, with athletes gradu-

ally becoming less compliant and not providing regular HRV data. We have often been asked

by athletes to make HRV analysis more time-effective. This challenge can be solved in several

ways: a) reducing the number of HRV measures per week, b) shortening the recording period,

and c) shortening the stabilization period. Previously, Plews et al. [16] showed that three HRV

analyses per week were sufficient for trained athletes but five analyses per week were necessary

for recreational athletes. Another study [6] found that three analyses per week were sufficient

in the supine position, but discrepancies were found in the standing position. Therefore, five

HRV analyses per week were recommended for standing HRV [6].

The root mean square of successive differences between adjacent RR intervals (RMSSD)

has been regarded as an index of vagal activity [1,14] and considered to be a more reliable

marker of an athlete’s training status compared with high-frequency power (HF) [17]. Some

studies [12,13] have used RMSSD directly, others [3–6,8,9] used a derived variable, Ln

RMSSD, which is calculated from RMSSD using natural logarithm. The reason for the loga-

rithmic transformation is the correction of the skewed probability distribution of RMSSD

[9,18]. A primary advantage of Ln RMSSD, compared with HF, is that it can be calculated

from 10 s RR recordings [19]. However, Esco & Flatt [19] recommended a 1-min recording

period as a compromise between sufficient reliability and time demand. Recently, it was

reported that ultra-short-term (1 min) time domain indexes may be useful surrogates of the

short-term (5 min) frequency domain indexes in athletes [20]. In relation to training practice,

ultra-short-term Ln RMSSD showed a sufficient sensitivity to changes induced by training

[21].

Plews et al. [22] showed that Ln RMSSD assessment alone may be misleading due to possi-

ble presence of the parasympathetic saturation phenomenon, specifically in athletes with very

high cardiac vagal activity. The saturation phenomenon causes the relationship between the

vagal index and the average RR to be quadratic rather than linear and is likely caused by the

nonlinear dose response of the sinoatrial node to the acetylcholine secreted by vagal nerve end-

ing [23]. The cut point between the linear and the saturation area was individual and ranged

around 50 beats/min [23]. When an athlete experiences this saturation phenomenon, it is not

possible to track changes in the vagal activity simply based on changes in the vagal index [22].

For example, an athlete during different stages of training may have a high cardiac vagal activ-

ity manifested by low resting supine HR (e.g. 40 beats/min) on one day but the Ln RMSSD
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value may be similar or even lower compared to another day in which the athlete may have a

lower vagal activity and higher HR (e.g. 60 beats/min). Therefore, it is recommended that the

evaluation of vagal activity is performed together with HR assessment in athletes.

It was shown that the stabilization period can be shortened from 5 min to 1 min [24,25].

However, based on our opinion these studies had the following limitations: a) During the sta-

bilization period, the ECG electrodes were placed on the participant, which may have dis-

turbed RR intervals and affected the HRV. b) No analysis of HR stabilization was provided,

and therefore the saturation phenomenon could not be evaluated.

Therefore, the aim of this study was to find the shortest, acceptable stabilization period

before capturing ultra-short-term Ln RMSSD and HR in the supine position.

Methods

Participants

The study protocol was approved by the Ethics Committee of the Faculty of Physical Culture,

Palacký University Olomouc (reference number 14/2015) and was done in accordance with

the Declaration of Helsinki. After comprehensive explanation of the study, all participants pro-

vided written informed consent. Inclusion criteria were as follows: male, aged 20 to 29 years,

non-smoker, and taking no medication. Prior to participation in the study, participants under-

went resting 10-lead electrocardiogram (ECG) examination and blood pressure measurement.

The exclusion criteria included a pathological ECG pattern and hypertension (> 140/90

mmHg). This study included two groups. The first group consisted of 30 Czech national level

endurance male athletes (10 skyrunners, 8 road cyclists, and 12 cross-county skiers) and the

second group consisted of 30 male university students. Characteristics of participants are pre-

sented in Table 1.

Procedures

Body mass, body height and maximal oxygen consumption (VO2max) were determined in a

laboratory a week before HRV recording and were used for descriptive purposes only. Body

mass and height were measured using the Soehnle 7307 scale (Leifheit, Nassau, Germany).

VO2max was determined during an incremental running test on the treadmill (Valiant Plus,

Lode, Groningen, Netherlands). The protocol consisted of a 4 min warm-up (2 min at 8 km.h-

1 with 0% elevation and then 2 min at the same speed with 5% elevation) followed by an

Table 1. Statistics of the studied groups.

Variable Athletes Students Chances +/tri/- Inference

Mean ± SD Mean ± SD (%)

Age (years) 24.1 ± 2.3 23.3 ± 1.8 74/24/2 possibly positive

Body mass (kg) 74.5 ± 6.6 79.1 ± 5.3 0/1/99 very likely negative

Body height (cm) 179.9 ± 3.8 183.7 ± 4.1 0/0/100 most likely negative

VO2max (ml�kg-1�min-1) 64.1 ± 6.6 52.8 ± 5.1 100/0/0 most likely positive

Ln RMSSD (ms) 4.43 ± 0.50 4.30 ± 0.45 60/36/4 possibly positive

RMSSD (ms) 95 ± 54 81 ± 35 67/30/3 possibly positive

HR (beats�min-1) 50.8 ± 6.2 56.3 ± 6.4 0/1/99 very likely negative

SD = standard deviation; Chances = chances that the true value of difference (xathletes−xstudents) is substantially positive, trivial, or substantially negative;

VO2max = maximal oxygen consumption; Ln RMSSD = natural logarithm of root mean square of successive differences between adjacent RR intervals; RMSSD = root

mean square of successive differences between adjacent RR intervals; HR = heart rate.

https://doi.org/10.1371/journal.pone.0205115.t001
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increase in speed to 10 km.h-1 with 5% elevation for 1 min. From this point, at each minute,

the speed was increased by 1 km.h-1, keeping elevation the same, up to 16 km.h-1. Then the

speed was maintained and only the elevation increased by 2.5% per minute until exhaustion.

Ventilation and gas exchange were recorded breath by breath and averaged to 30 s by Blue

Cherry system (Geratherm Respiratory, Bad Kissinger, Germany). The criteria for attaining

VO2max was defined as reaching one of the following criteria: a) respiratory exchange ratio of

>1.11, b) VO2 plateau defined as no increase in VO2 in response to an increase in work rate.

VO2max was considered the highest VO2 value in the final 30 s of the test.

HRV measurement

Participants were asked to refrain from the consumption of caffeine or alcohol and to avoid

strenuous exercise for 24 h prior to HRV measurement. Each participant measured his RR

intervals at home using a Polar V800 HR monitor (Polar, Kempele, Finland) which was

showed as valid RR interval measurement tool [26]. Participants were instructed to leave the

HR monitor by their bedside in the evening. In the morning after awakening and emptying

their bladder, they were instructed to put on the monitor and ECG chest strap, prepare the

monitor for recording and adopt a supine position on the bed. Immediately upon lying down,

they started RR recording. The participants remained supine for at least 10 min, after which

they were asked to stop and save their RR recordings. In the present study, participants were

allowed to breathe spontaneously during the RR recording. We did not use paced breathing as

a standardization procedure because it was shown that voluntary control of breathing reduced

spectral power in the respiratory frequency region [27]. In this context, it was showed that

RMSSD was more resistant to changes in breathing rate compared with HF [28].

RR recordings were transferred to a computer using the Polar Flow cloud service and were

further analyzed using a custom program written in MATLAB language (MathWorks, Natick,

MA). Artifacts (ectopic beats, missing beats, etc.) were identified by visual inspection of RR

intervals and simply deleted because the deletion method provided the best overall perfor-

mance [29].

Ultra-short-term values of Ln RMSSD, RMSSD, and average values of HR were calculated

from 1-min segments using various stabilization periods. Stabilization periods varied from 0

to 4 min with step interval increase of 0.5 min which yielded 9 periods in total. The first seg-

ment used no stabilization period (0 min) and included RR intervals between 0 and 1 min

after the start of RR recording. The second segment used a stabilization period of 0.5 min and

included RR intervals between 0.5 and 1.5 min. This procedure continued stepwise and finally

the 9th segment used a stabilization period of 4 min and included RR intervals between 4 and

5 min. Reference values of Ln RMSSD, RMSSD, and HR were calculated from the second half

of the 10-min RR recording, resulting in a 5-min segment of RR intervals from 5 to 10 min.

Statistical analysis

Data are presented as arithmetic mean ± standard deviation (SD). Anthropological and physi-

ological variables (Table 1) of endurance athletes were compared with the values of university

students using a two-sample t-test. As an index of vagal activity we prefer to use Ln RMSSD

rather than RMSSD. However, literature is not consistent whether or not a logarithmic trans-

formation should be used. Therefore, we performed a statistical analysis for both Ln RMSSD

and RMSSD. Systematic bias of Ln RMSSD, RMSSD, and HR measurement was calculated as

the ultra-short-term value minus reference value. Systematic bias was compared to zero using

an one-sample t-test. Typical error (TE) was calculated using the formula TE ¼ SDdiff=
ffiffiffi
2
p

,

where SDdiff is standard deviation calculated from differences between ultra-short-term and
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reference values [30]. Agreement between the ultra-short-term and reference values was evalu-

ated using an intraclass correlation coefficient (ICC). The appropriate formula for calculating

ICC was chosen using a decision tree [31] and the formula labeled as ICC(A, 1) was chosen.

Because null-hypothesis significance testing (NHST) is not able to distinguish between a

trivial effect and an insufficient sample size, we used magnitude-based inference (MBI) [32].

MBI was based on calculating a 90% confidence interval (CI) that defines a range representing

the uncertainty in the true value. A three-level scale: substantially positive, trivial, and substan-

tially negative, was defined by the smallest worthwhile change (SWC). Chances that the true

value was substantially positive, trivial, and substantially negative, were calculated by compar-

ing the CI to the three-level scale. If the chance of substantially positive or substantially nega-

tive was simultaneously >5%, the true value was deemed as unclear. Otherwise the chances

were labeled quantitatively as follows: 25–75%, possibly; 75–95%, likely; 95–99.5%, very likely;

and>99.5%, most likely [33]. We used a spreadsheet [34] to convert a p-value into CI and

chances. The SWC for comparing anthropological and physiological variables was set to 0.2 of

the pooled standard deviation calculated from between-individual standard deviations of both

groups. The SWC for systematic bias was set to 0.2 of the standard deviation calculated from

reference values of Ln RMSSD, RMSSD, or HR. Only very large (.70–.89) [33] and extremely

large (�.90) [33] ICCs were considered meaningful, so the SWC for ICC was set to 0.70.

Requirements for accepting a stabilization period as sufficient were as follows: a) the system-

atic bias is trivial; b) lower limit of 90% CI for ICC is >.70, within MBI concept this require-

ment is equivalent to ICC is at least very likely positive. Conventional statistical analysis using

NHST and 95% CI is presented in the S1–S4 Tables.

Results

Athletes, compared with the students, demonstrated most likely higher VO2max, possibly

higher both Ln RMSSD and RMSSD, and very likely lower HR (Table 1). For athletes, the

shortest stabilization period that met our requirements described in the method section was

1.0 min for both Ln RMSSD (Table 2) and RMSSD (Table 3) and 0.5 min for HR (Table 4).

Therefore, for the simultaneous measurement of Ln RMSSD and HR, the shortest stabilization

period was 1.0 min. Stabilization periods from 1.5 to 4.0 min also met the requirements. For

students, the shortest stabilization period was 1.5 min for both Ln RMSSD (Table 2) and

RMSSD (Table 3) and 1.0 min for HR (Table 4). For the simultaneous measurement of Ln

RMSSD and HR, the shortest stabilization period was 1.5 min. Stabilization periods ranging

from 2.0 to 4.0 min also met the requirements.

Discussion

The primary finding of this study was that a shortened RR interval measurement, consisting of

a 1-min stabilization period and 1-min recording period, is an acceptable substitution for the

traditional procedure that uses a 5-min stabilization period and 5-min recording period in

endurance athletes. The shortened measurement protocol saves up to 80% of the time and it is

proposed that the reduced time commitment will improve the attractiveness of HRV analysis

for athletes, who require guided training load based on HRV analysis on daily basis [14,15] or

at least three times a week [6,16].

To date, two studies [24,25] have also reported on the use of a shortened stabilization

period. Both studies recommended a 1-min stabilization period prior recording ultra-short-

term Ln RMSSD. This is in line with our finding but there are two methodological differences

between these studies and the present study.
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Firstly, both studies [24,25] did not define the stabilization period sufficiently. There were

trivial effect sizes of 0.07 [24] and 0.03 [25] between the Ln RMSSD calculated from the first

minute of the 10 min recording and Ln RMSSD calculated from the 5 min criterion segment.

In addition, ICC was extremely large (.92) [24] or very large (.89) [25]. Based on the above out-

comes, no stabilization period seemed to be necessary. However, before the start of RR interval

recording, there was 1-min pause that served for ECG electrodes placement on the partici-

pant’s chest in the supine position [24] or for the checking of the ECG chest strap in the seated

position [25]. It is debatable whether this 1 min pause could be considered as part of the stabili-

zation period because the fastening of the ECG electrodes may disturb the participant relaxa-

tion, and consequently, may affect the HRV. Therefore, in the present study, the participants

were required to place the Polar HR watch on the hand and fasten the ECG chest strap whilst

standing. Following this, participants were instructed to lie down and to start with the RR

recording. Based on this protocol, the beginning of the stabilization period corresponded with

the end of the clinostatic maneuver. Our results showed that no stabilization period as well as a

stabilization period of 30 s were insufficient, because the ultra-short-term Ln RMSSD values

were likely and possibly, respectively, biased compared to the reference Ln RMSSD.

Secondly, Flatt & Esco [24] performed the RR recordings in a laboratory with controlled

settings (quiet, dimly lit, controlled temperature and humidity) which are prerequisites for

Table 2. Comparison of the Ln RMSSD values that were calculated from a 1-min segment after various stabilization periods (SP) with reference Ln RMSSD values

that were calculated from 5-min segments after a 5-min stabilization period.

SP Mean ± SD Bias;

±90% CL

Chances +/tri/- Inference TE ICC (90% CI) Chances +/tri/- Inference

(min) (ms) (ms) (%) (ms) (%)

Athletes (n = 30)

0.0 4.58 ± 0.52 0.15; ±0.09 82/18/0 likely positive 0.21 0.79 (0.61 to 0.89) 87/13/0 likely positive

0.5 4.55 ± 0.50 0.12; ±0.10 65/35/0 possibly positive 0.22 0.78 (0.62 to 0.88) 84/16/0 likely positive

1.0 4.45 ± 0.59 0.02; ±0.10 9/89/2 likely trivial 0.22 0.84 (0.72 to 0.91) 97/3/0 very likely positive

1.5 4.42 ± 0.60 -0.01; ±0.08 1/97/2 very likely trivial 0.17 0.90 (0.83 to 0.95) 100/0/0 most likely positive

2.0 4.42 ± 0.62 -0.01; ±0.09 3/92/5 likely trivial 0.21 0.86 (0.76 to 0.92) 99/1/0 very likely positive

2.5 4.46 ± 0.62 0.03; ±0.08 9/90/1 likely trivial 0.19 0.89 (0.80 to 0.94) 100/0/0 most likely positive

3.0 4.43 ± 0.58 0.00; ±0.07 1/98/1 very likely trivial 0.16 0.92 (0.85 to 0.96) 100/0/0 most likely positive

3.5 4.37 ± 0.57 -0.06; ±0.08 0/82/18 likely trivial 0.19 0.88 (0.78 to 0.93) 99/1/0 very likely positive

4.0 4.36 ± 0.60 -0.07; ±0.07 0/75/25 possibly trivial 0.17 0.90 (0.83 to 0.95) 100/0/0 most likely positive

Ref 4.43 ± 0.50

Students (n = 30)

0.0 4.59 ± 0.46 0.29; ±0.10 100/0/0 most likely positive 0.23 0.62 (0.19 to 0.81) 22/78/0 likely trivial

0.5 4.54 ± 0.50 0.24; ±0.10 99/1/0 very likely positive 0.22 0.71 (0.35 to 0.86) 53/47/0 possibly positive

1.0 4.45 ± 0.51 0.15; ±0.08 88/12/0 likely positive 0.18 0.82 (0.63 to 0.91) 93/7/0 likely positive

1.5 4.36 ± 0.47 0.06; ±0.07 26/74/0 possibly trivial 0.15 0.88 (0.79 to 0.94) 100/0/0 most likely positive

2.0 4.33 ± 0.48 0.03; ±0.07 7/93/0 likely trivial 0.16 0.89 (0.80 to 0.94) 100/0/0 most likely positive

2.5 4.33 ± 0.52 0.03; ±0.08 9/90/1 likely trivial 0.18 0.87 (0.78 to 0.93) 99/1/0 very likely positive

3.0 4.30 ± 0.53 0.00; ±0.07 2/96/2 very likely trivial 0.16 0.90 (0.82 to 0.94) 100/0/0 most likely positive

3.5 4.29 ± 0.53 -0.01; ±0.07 1/96/3 very likely trivial 0.15 0.91 (0.83 to 0.95) 100/0/0 most likely positive

4.0 4.26 ± 0.52 -0.04; ±0.07 0/90/10 likely trivial 0.15 0.90 (0.82 to 0.95) 100/0/0 most likely positive

Ref 4.30 ± 0.45

SD = standard deviation; Bias = mean difference between the 1-min segment value and reference value; CL = confidence limit; Chances = chances that the true value of

bias or ICC is substantially positive, trivial, or substantially negative; TE = typical error; ICC = intraclass correlation coefficient; CI = confidence interval.

https://doi.org/10.1371/journal.pone.0205115.t002
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obtaining a valid HRV analysis [35]. However, regular HRV analysis in athletes is often per-

formed at home for logistical reasons and we followed the RR recording procedure used in

other recent studies [5,6,8,13]. Based on the current authors’ experience, RR recordings per-

formed at home may not be as well standardized as those performed in laboratory environ-

ment. However, home HRV analysis is not influenced by a white-coat effect [36] and obtains

ecologically valid information on cardiac autonomic regulation. For the reasons mentioned

above, it is proposed that the present results are better applicable for HRV analysis performed

at home. Pereira et al. [25] performed the RR recordings in a gym, where the environmental

conditions were not specified.

In this study, ICCs for Ln RMSSD after stabilization periods from 1 min to 4 min ranged

from 0.84 to 0.92. Pereira et al. [25] reported ICCs in the range of 0.86 to 0.94 and we consider

this range to be similar to the present findings. Flatt & Esco [24] reported ICCs in the range of

0.92 to 0.97 and this range is somewhat higher than the present study. These results can be

explained by the fact that a lab environment can be standardized more consistently than at

home or in a gym. Our study involved 30 male endurance athletes (10 skyrunners, 8 road

cyclists, and 12 cross-county skiers), Flatt & Esco [24] involved 10 male and 10 female cross-

country athletes, and Pereira et al [25] included 35 futsal players. Inclusion of athletes from dif-

ferent sports disciplines may have led to differences in results between the studies. It is also

Table 3. Comparison of the RMSSD values that were calculated from a 1-min segment after various stabilization periods (SP) with reference RMSSD values that

were calculated from 5-min segments after a 5-min stabilization period.

SP Mean ± SD Bias;

±90% CL

Chances +/tri/- Inference TE ICC (90% CI) Chances +/tri/- Inference

(min) (ms) (ms) (%) (ms) (%)

Athletes (n = 30)

0.0 112 ± 63 16; ±10 81/19/0 likely positive 23 0.81 (0.65 to 0.90) 92/8/0 likely positive

0.5 107 ± 58 12; ±10 57/43/0 possibly positive 24 0.81 (0.67 to 0.89) 91/9/0 likely positive

1.0 102 ± 66 7; ±9 21/79/0 likely trivial 20 0.89 (0.80 to 0.94) 100/0/0 most likely positive

1.5 100 ± 67 4; ±7 6/94/0 likely trivial 15 0.94 (0.88 to 0.96) 100/0/0 most likely positive

2.0 101 ± 70 5; ±9 15/85/0 likely trivial 20 0.90 (0.82 to 0.94) 100/0/0 most likely positive

2.5 105 ± 71 9; ±9 38/62/0 possibly trivial 20 0.89 (0.81 to 0.94) 100/0/0 most likely positive

3.0 99 ± 61 3; ±7 3/97/0 very likely trivial 15 0.93 (0.88 to 0.96) 100/0/0 most likely positive

3.5 93 ± 58 -2; ±8 0/95/5 likely trivial 19 0.89 (0.81 to 0.94) 100/0/0 most likely positive

4.0 93 ± 61 -2; ±6 0/99/1 very likely trivial 13 0.95 (0.91 to 0.97) 100/0/0 most likely positive

Ref 95 ± 54

Students (n = 30)

0.0 108 ± 45 27; ±11 100/0/0 most likely positive 24 0.52 (0.15 to 0.74) 6/94/0 likely trivial

0.5 105 ± 47 24; ±9 100/0/0 most likely positive 21 0.64 (0.27 to 0.82) 30/70/0 possibly trivial

1.0 96 ± 48 15; ±8 95/5/0 very likely positive 19 0.74 (0.51 to 0.86) 68/32/0 possibly positive

1.5 87 ± 37 6; ±6 34/66/0 possibly trivial 13 0.87 (0.77 to 0.93) 99/1/0 very likely positive

2.0 84 ± 38 3; ±5 12/88/0 likely trivial 12 0.89 (0.80 to 0.94) 100/0/0 most likely positive

2.5 86 ± 43 5; ±7 31/69/0 possibly trivial 16 0.84 (0.72 to 0.91) 96/4/0 very likely positive

3.0 84 ± 42 3; ±6 12/87/1 likely trivial 14 0.86 (0.76 to 0.92) 99/1/0 very likely positive

3.5 83 ± 41 2; ±6 7/92/1 likely trivial 13 0.89 (0.80 to 0.94) 100/0/0 most likely positive

4.0 81 ± 42 0; ±6 2/95/3 likely trivial 14 0.88 (0.78 to 0.93) 99/1/0 very likely positive

Ref 81 ± 35

SD = standard deviation; Bias = mean difference between the 1-min segment value and reference value; CL = confidence limit; Chances = chances that the true value of

bias or ICC is substantially positive, trivial, or substantially negative; TE = typical error; ICC = intraclass correlation coefficient; CI = confidence interval.

https://doi.org/10.1371/journal.pone.0205115.t003
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important to note that both studies [24,25] did not specify a formula for the calculation of

ICC. There are at least six formulas for calculating an ICC, all yielding different values [31]

and this may also explain the differences between the studies.

Previously, it was shown that Ln RMSSD assessment alone may be misleading due to possi-

ble presence of the saturation phenomenon, specifically in athletes with very high cardiac vagal

activity [22]. In this context, Flatt & Esco [24] unfortunately, did not analyze the stability of

either HR or another suitable HRV index. Pereira et al. [25] analyzed the stability of the Ln

RMSSD/RR index that could be also used for detecting the saturation phenomenon [22]. How-

ever, the evaluation of the Ln RMSSD/RR change is not straightforward, as it can be caused by

both the change of numerator (Ln RMSSD) and denominator (RR). Therefore, the current

study performed a separate assessment of Ln RMSSD and HR.

The results of this study showed that HR stabilizes earlier than Ln RMSSD and that a 30 s

period was sufficient for HR stabilization in endurance trained athletes. The 1 min period

required to stabilize the Ln RMSSD was also suitable for HR stabilization. However, the 30 s

required to stabilize the HR was not sufficient to stabilize the Ln RMSSD. For example, the ith-

lete mobile HRV application uses an algorithm to start recording Ln RMSSD based on detect-

ing a stable HR [5]. It is questionable whether this is an accurate approach, because the present

study showed that HR stabilizes earlier than Ln RMSSD.

Table 4. Comparison of heart rate (HR) values that were calculated from a 1-min segment after various stabilization periods (SP) with reference HR values that

were calculated from 5-min segments after a 5-min stabilization period.

SP Mean ± SD Bias;

±90% CL

Chances +/tri/- Inference TE ICC (90% CI) Chances +/tri/- Inference

(min) (ms) (ms) (%) (ms) (%)

Athletes (n = 30)

0.0 53.3 ± 7.5 2.6; ±1.2 97/3/0 very likely positive 2.7 0.79 (0.54 to 0.90) 86/14/0 likely positive

0.5 50.6 ± 7.1 -0.2; ±1.0 1/95/4 likely trivial 2.2 0.89 (0.81 to 0.94) 100/0/0 most likely positive

1.0 50.2 ± 6.9 -0.6; ±0.7 0/94/6 likely trivial 1.7 0.93 (0.88 to 0.96) 100/0/0 most likely positive

1.5 50.0 ± 6.9 -0.8; ±0.7 0/88/12 likely trivial 1.5 0.94 (0.89 to 0.97) 100/0/0 most likely positive

2.0 50.0 ± 7.0 -0.8; ±0.7 0/83/17 likely trivial 1.6 0.93 (0.88 to 0.97) 100/0/0 most likely positive

2.5 50.1 ± 6.6 -0.6; ±0.6 0/95/5 very likely trivial 1.3 0.95 (0.91 to 0.97) 100/0/0 most likely positive

3.0 50.3 ± 6.3 -0.5; ±0.7 0/96/4 very likely trivial 1.6 0.93 (0.87 to 0.96) 100/0/0 most likely positive

3.5 50.7 ± 6.7 -0.1; ±0.8 0/99/1 very likely trivial 1.8 0.93 (0.87 to 0.96) 100/0/0 most likely positive

4.0 50.9 ± 7.1 0.1; ±0.9 2/97/1 very likely trivial 2.0 0.91 (0.84 to 0.95) 100/0/0 most likely positive

Ref 50.8 ± 6.2

Students (n = 30)

0.0 58.5 ± 6.3 2.2; ±1.7 82/18/0 likely positive 3.9 0.60 (0.36 to 0.76) 17/83/0 likely trivial

0.5 56.5 ± 6.5 0.2; ±1.5 12/82/6 unclear 3.4 0.72 (0.54 to 0.84) 59/41/0 possibly positive

1.0 55.2 ± 6.1 -1.1; ±0.9 0/65/35 possibly trivial 2.1 0.87 (0.77 to 0.93) 99/1/0 very likely positive

1.5 55.6 ± 6.1 -0.7; ±0.7 0/92/8 likely trivial 1.6 0.93 (0.88 to 0.96) 100/0/0 most likely positive

2.0 56.0 ± 5.9 -0.3; ±0.7 0/99/1 very likely trivial 1.5 0.94 (0.89 to 0.97) 100/0/0 most likely positive

2.5 56.0 ± 6.1 -0.2; ±0.6 0/100/0 most likely trivial 1.5 0.95 (0.90 to 0.97) 100/0/0 most likely positive

3.0 55.8 ± 6.2 -0.5; ±0.5 0/99/1 very likely trivial 1.2 0.96 (0.93 to 0.98) 100/0/0 most likely positive

3.5 55.7 ± 6.0 -0.5; ±0.5 0/99/1 very likely trivial 1.1 0.96 (0.93 to 0.98) 100/0/0 most likely positive

4.0 55.8 ± 6.2 -0.5; ±0.6 0/99/1 very likely trivial 1.3 0.96 (0.92 to 0.98) 100/0/0 most likely positive

Ref 56.3 ± 6.4

SD = standard deviation; Bias = mean difference between the 1-min segment value and reference value; CL = confidence limit; Chances = chances that the true value of

bias or ICC is substantially positive, trivial, or substantially negative; TE = typical error; ICC = intraclass correlation coefficient; CI = confidence interval.

https://doi.org/10.1371/journal.pone.0205115.t004
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This study also found that the time-effective Ln RMSSD evaluation (1-min stabilization and

1-min recording periods), whilst suitable for athletes, was not valid for university students,

because at least 1.5 min was required to stabilize Ln RMSSD in students. It is well known, that

endurance athletes exhibit higher autonomic nervous system (ANS) activity presented by

greater resting cardiac vagal activity together with a lower resting HR compared with the nor-

mal population [1,37]. Therefore, one would suggest that a higher cardiac vagal control in

endurance athletes enables faster HR and HRV adjustment to stimuli such as the clinostatic

maneuver compared with subjects who exhibit low cardiac vagal activity. This finding raises

the question as to how generic the time-effective procedure is. This issue is important for sub-

jects with poor HRV activity, e. g. the elderly, because it is feasible that the stabilization period

may be longer than 1.5 min. The use of HRV analysis for monitoring responses to physical

activity in the elderly is becoming more important [38]. Practitioners who plan to use HRV

analysis for other population groups, with specific ANS activity levels should establish and

report their own validation studies to determine the necessary stabilization period.

We prefer using Ln RMSSD rather than RMSSD because the logarithmic transformation ena-

bles to correct the skewed probability distribution of RMSSD shifting the probability distribution

of Ln RMSSD closer to normal [9,18]. Parametric statistical methods that assume normal distribu-

tion can then be used. However, non-transformed RMSSD values have been used in the literature

[12,13]. Therefore, we also analyzed the stabilization period for RMSSD. In terms of the shortest

stabilization periods, no differences were found between Ln RMSSD and RMSSD in this study.

For statistical analyses we prefer using MBI to NHST based on arguments presented by

Buchheit [39]. Nevertheless, the discussion of the advantages and disadvantages of MBI con-

tinues. Welsh & Knight [40] showed that MBI is less conservative than NHST and recom-

mended that MBI should not be used. We provided S1–S4 Tables with conventional statistical

analysis as an alternative for readers who prefer NHST. Conventional statistical analysis

revealed the same findings as MBI for the shortest stabilization periods, with one exception.

The lower limit of 95% CI for ICC for RMSSD in athletes after 1-min stabilization period was

0.69. This is below our limit of 0.70 and therefore 1-min stabilization period could not be con-

sidered long enough by conventional statistical analysis. In our opinion, 0.69 is still as good as

0.70, and therefore accept that MBI and conventional statistical analyses revealed almost the

same results in terms of the shortest stabilization periods.

Conclusions

When ultra-short-term (60 s) recordings are used to calculate Ln RMSSD and HR in the

supine position, the minimal stabilization period required to stabilize both indexes was 60 s for

endurance athletes but 90 s for university students.
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