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Abstract

Acute Kidney Injury (AKI), a sudden decline in kidney function, is associated with increased

mortality, morbidity, length of stay, and hospital cost. Since AKI is sometimes preventable,

there is great interest in prediction. Most existing studies consider all patients and therefore

restrict to features available in the first hours of hospitalization. Here, the focus is instead on

rehospitalized patients, a cohort in which rich longitudinal features from prior hospitalizations

can be analyzed. Our objective is to provide a risk score directly at hospital re-entry. Gradi-

ent boosting, penalized logistic regression (with and without stability selection), and a recur-

rent neural network are trained on two years of adult inpatient EHR data (3,387 attributes for

34,505 patients who generated 90,013 training samples with 5,618 cases and 84,395 con-

trols). Predictions are internally evaluated with 50 iterations of 5-fold grouped cross-valida-

tion with special emphasis on calibration, an analysis of which is performed at the patient as

well as hospitalization level. Error is assessed with respect to diagnosis, race, age, gender,

AKI identification method, and hospital utilization. In an additional experiment, the regulari-

zation penalty is severely increased to induce parsimony and interpretability. Predictors

identified for rehospitalized patients are also reported with a special analysis of medications

that might be modifiable risk factors. Insights from this study might be used to construct a

predictive tool for AKI in rehospitalized patients. An accurate estimate of AKI risk at hospital

entry might serve as a prior for an admitting provider or another predictive algorithm.

Introduction

Acute kidney injury (AKI) is a sudden decline in kidney function over days, which may be

temporary or permanent [1, 2]. AKI is common in hospitalized patients, with an estimated
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incidence of 13% and, importantly, is associated with greatly increased morbidity (e.g., long-

term dialysis), mortality, length of stay, and hospital cost [3]. Diagnosis of AKI is challenging,

as patients are generally asymptomatic and commonly used biomarkers change over a period

of days following injury [4]. Causes of AKI are generally grouped into decreased renal blood

flow (e.g., hypotension due to sepsis or heart failure), direct renal toxicity (e.g., due to medica-

tions, radiocontrast dye, or bacterial toxins), and urinary outflow obstruction (e.g., bladder

outlet obstruction or kidney stones).

Defining AKI for research purposes, or to assess clinical outcomes, is also challenging. A

variety of definitions exist, primarily based on changes in the concentration of serum creati-

nine (sCr). Creatinine is a protein made by muscle and excreted by the kidneys via glomerular

filtration. Serum Cr is inversely proportional to the glomerular filtration rate (GFR), a true

indicator of renal function that is not easily measured. Doubling of sCr at steady state reflects a

50% decrease in renal function. Consensus definitions for AKI rely heavily on changes in sCr

over time, and include the 2004 RIFLE criteria [1] (modified in 2007 by the Acute Kidney

Injury Network (AKIN) [5]) and the 2012 Kidney Disease: Improving Global Outcomes

(KDIGO) [6, 7] definitions. The KDIGO AKI definition, which we use here, combines the

RIFLE “Risk” definition with the AKIN criterion for absolute increase in sCr.

Developing a broadly applicable and accurate risk index for AKI in rehospitalized patients

could have a major impact on hospital care, particularly if it were practical enough to allow

preventive intervention or more intense monitoring from the time of hospital admission [8].

With early risk identification, a variety of preventive strategies can be implemented [9]. For

example, AKI from radiocontrast dye, chemotherapy, or aminoglycoside antibiotics can be

prevented by altering treatment, administration of fluids, alternate imaging modalities or close

monitoring [10–13]. Given that such interventions can mitigate severity, AKI prediction is an

area of active research, with recent emphasis on Electronic Health Record (EHR) data [8, 14–

16]. Existing studies generally focus on AKI in the context of cardiac procedures [17–20], criti-

cal illness [21–26], the elderly [27], transplants of the liver [28] and lung [29], and extensive

muscle injury (rhabdomyolysis) [30, 31]. Recently, we see predictive systems [15, 16, 27] that

exploit numerous features from the EHR rather than a small number of manually picked vari-

ables. In existing studies, predictions of AKI risk are made for all hospitalized patients, many

of whom do not have previous hospitalizations. They are hence restricted to features from the

current hospitalization, even when a patient has more extensive information in the EHR.

To our knowledge, there are no published studies focused explicitly and exclusively on a

large cohort of rehospitalized patients. Focus on this group allows analysis of longitudinal

information from prior hospitalizations (e.g., the number of previous episodes of AKI, the

number of abnormal urea nitrogen (UN) readings, or the number of loop diuretics adminis-

tered). Although the subset of rehospitalized patients is a specific cohort, such an analysis is

general as it pertains to all rehospitalized patients. Since rehospitalized patients have not been

studied explicitly in the literature, all available features from all available time points were

analyzed.

In this framework, prior hospitalizations might be considered surrogate “renal stress tests,”

reflecting renal resiliency to injurious events. Conversely, prior hospitalizations might be renal

stressors, diminishing renal reserve. Most previous studies on AKI posit data models, although

some more recent work [16, 27] explores predictive algorithms, distinct from data models

[32], as done here. Penalized regression and ensemble methods were employed to mitigate

overfitting. In particular, a decision tree ensemble classifier constructed with gradient boosting

(GBC), which is highly robust to outliers and well suited to high-dimensional, noisy data [33],

was explored along with a recurrent neural network [34] (LSTM) for time series analysis, and

penalized logistic regression (LR1) for high-dimensional data where it is believed that only a
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few features are relevant [35]. In an additional experiment with the latter, the penalty was

increased severely to induce parsimony and interpretability. New AKI predictors specific to

rehospitalized patients were identified; a special analysis of medication-related predictors is

presented as they may be of interest as potentially modifiable risk factors.

Materials and methods

Dataset

The research protocol was approved by the University of Rochester Research Subjects Review

Board (RSRB00056930). Research data were coded such that patients could not be directly

identified in compliance with the Department of Health and Human Services Regulations for

the Protection of Human Subjects (45 CFR 46.101(b)(4)). This dataset is a comprehensive

2-year window into the EHR for informatics and population-health studies. For this work we

excluded all hospitalizations with age at admission < 18 years, all hospitalizations following a

prior hospitalization in which the ICD-9 code for end stage renal disease (ESRD; 585.9) was

assigned. Hospitalizations following a transplant for ESRD were included. Patients who had

undergone dialysis were included, as dialysis is sometimes performed in the setting of transient

AKI, and therefore presence of dialysis does not indicate permanent renal dysfunction. Multi-

ple hospitalizations were available for roughly 32% of patients.

The dataset consisted of tables containing administrative, laboratory, and medication data

that was queried respectively from separate billing (Flowcast, IDX Systems), eRecord (Epic),

and pharmacy databases which could be joined on admit id, which were linked during de-

identification. The administrative dataset included International Classification of Diseases, 9th

Revision (ICD-9) diagnosis and procedure codes, Current Procedural Terminology 4th Edi-

tion (CPT-4) procedure codes, Diagnosis-Related Groupings (DRG) codes, bed locations dur-

ing hospitalization, discharge disposition, discharge and admission days, insurance (primary,

secondary, and other), marital status, gender, age, race, and total length of stay. The laboratory

dataset included direct bilirubin, point-of-care creatinine, bicarbonate, chloride, calcium,

anion gap, phosphate, glomerular filtration rate, sCr, urea nitrogen (UN), albumin, total pro-

tein, aspartate and alanine transaminase, hemoglobin, glucose, and glycated hemoglobin. The

pharmacy dataset included, for each medication, description, pharmacologic class and sub-

class, and therapeutic class. Table 1 contains abbreviations.

Definitions

Hospitalization: hospitalization was defined as an admission (inpatient) or administrative sta-

tus “under observation” (e.g., in the emergency department, but not admitted to inpatient

care). AKI: AKI was defined as the presence of either an administrative diagnosis code or sCr

delta. Administrative ICD9 codes included 584.5 (AKF with lesion of tubular necrosis), 584.6

(AKF with lesion of renal cortical necrosis), 584.7 (AKF with lesion of renal medullary (papil-

lary) necrosis), 584.8 (AKF with other specified pathological lesion in kidney), or 584.9 (AKF,

unspecified). As diagnosis codes are believed to be specific but not sensitive for AKI [36], they

were supplemented with sCr for patients with available laboratory values. Using KDIGO

guidelines [6], diagnosis was made with a 1.5-fold or greater increase in sCr from baseline

within 7 days or 0.3 mg/dL or greater increase in sCr within 48 hours. Baseline sCr for an indi-

vidual hospital stay was defined as the first documented inpatient sCr, as recommended by [7],

and then as a sliding baseline. All such diagnoses were made within a single hospital stay (e.g.,

a case in which the rise in sCr occurred over two rapidly successive hospital stays was ignored).

It is possible that some patients who did have AKI were neither assigned a code nor had their

sCr measured, and would thus be invisible with respect to AKI diagnosis.

Predicting acute kidney injury at hospital re-entry using high-dimensional electronic health record data

PLOS ONE | https://doi.org/10.1371/journal.pone.0204920 November 20, 2018 3 / 38

https://doi.org/10.1371/journal.pone.0204920


Preprocessing

Medication descriptions were stripped of dosage information and treated as categorical vari-

ables. Abnormal lab flags were constructed by combining EHR-generated flags (an automated

indication of, e.g., hyperkalemia) with test name. For features such as diagnoses and proce-

dures, each admission contained a list. The hospitalization with the highest number, D, of

diagnoses was identified. Given any other hospitalization with a list of D0 diagnoses, D − D0

“non-diagnoses,” the number of diagnoses not assigned relative to its peers, were added. This

was done to enhance predictive performance, as missingness patterns were useful for the

related task of phenotyping [37]. Top-level binary representation [38] was used for the hierar-

chical ICD-9, CPT-4, and DRG codes and “code precision” is defined as the level at which the

tree was accessed. For example, for chronic kidney disease (CKD), precision 3 produces a sin-

gle feature, 581, that contains any occurrence of 585.1-6 (CKD, Stages 1-6) or 585.9 (CKD,

Table 1. Abbreviations and Notation.

Abbreviation Description

AKI Acute kidney injury

ALR1 Anscombe LR1

AUC Area under the curve

CKD Chronic kidney disease

CLR Clinical LR

CV Cross validation

Dx Diagnosis

EHR Electronic health record

ESRD End-stage renal disease

GBC Gradient boosting classifier

GFR Glomerular filtration rate

RGBC Recent GBC

RHPLR1 Randomized HPLR1

RLR1 Randomized LR1

HC Current hospitalization

HP Prior hospitalizations

HP Hyperparameter

HPLR1 Highly penalized LR1

LR1 Logistic regression with l1-norm penalty

LSTM Long short-term memory

MGBC Medication GBC

MLR1 Medication LR1

PPV Positive predictive value

PP Predicted probability

PP Mean PP
PO Observed probability

PO Mean PO
PR Precision recall

Px Procedure

ROC Receiver operating characteristic

sCr Serum creatinine

STD Standard deviation

UN Urea nitrogen

https://doi.org/10.1371/journal.pone.0204920.t001
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unspecified), essentially grouping these codes. Alternatively, precision 4 ungroups the sub-

codes, producing 7 different features, one for each administrative classification of CKD. An

exploratory grid search for precision of ICD-9, CPT-4, and DRG codes was performed and

discrimination found to be relatively insensitive, so code precision was fixed at 3, a level at

which different subgroups of AKI and CKD were aggregated.

All extremely sparse features (with fewer than 100 non-zero or non-missing elements) were

removed. Hence, for continuous values, features that were unobserved frequently or frequently

zero (continuous lab and demographic values in this dataset should generally be nonzero)

were removed; categorical variables that were rarely observed were removed. Besides reducing

training time, removing rarely-present features, which can be difficult to gather, improves clin-

ical applicability. This step did not need to be incorporated into the pipeline as it was a form of

response-independent dimensionality reduction.

Feature extraction

Over time, all patients have some continuous risk, P(AKI). Using data from all previous hospi-

talizations, HP, we hope to estimate the probability of AKI during the current hospitalization,

HC, at the time of hospital re-entry, PðAKIHC
jHPÞ). An example case illustrating the feature

extraction procedure used throughout this study is diagrammed in Fig 1. It was designed to

compress longitudinal, irregular and misaligned observations into a fixed-length representa-

tion. Summary statistics are used for repeated measures since they are interpretable and shown

by [39] to be effective for some risk prediction problems. Note that a patient with n hospitaliza-

tions generates n − 1 training samples.

EHR data is an irregularly sampled (e.g., sCr is not measured at an hourly frequency), mis-

aligned (e.g., sCr and hemoglobin are not consistently simultaneously sampled) window into a

patient’s renal health. The jth hospitalization can be conceptualized as a matrix Hj where each

row is one of N + 1 features and each column corresponds to some time step� τj + 1, the end

time of hospitalization j. Since observations are irregularly sampled and misaligned, it is con-

venient to transform the time-indexed hospitalization matrix into a collection of N + 1

sequences s(H), where s is a function that converts a time series to a sequence. The sequence s
(hi,j) corresponds to feature j of hospitalization i and has its own number of entries, τi,j+ 1, cor-

responding to the number of times feature i was recorded during hospitalization j. Such

sequences are useful because they can be summarized or transformed via some function F
without explicit imputation, albeit with information loss.

Summary functions can encode relevant characteristics of the generative process; e.g., a

sum provides a sense of the number of tests along with some information about the results of

the tests. A higher number of sCr tests may reflect a heightened concern for, or closer monitor-

ing of, AKI and its metabolic consequences. F takes as input a sequence and outputs the mini-

mum, maximum, mean, variance, and sum for continuous variables and sum for categorical

variables. F(s(Hi)) is now a Mx1 fixed-length representation of the N + 1 sequences in the ith

hospitalization, where we have increased the dimension M> (N + 1) by concatenating any

vector outputs of F.

Let H refer to all hospitalizations before the rehospitalization for which P(AKI) is to be esti-

mated (e.g., the third in Fig 1). As with the sequences of laboratory measurements, F(s(H)) is

represented as a matrix whose entries are indexed by time of admission. However, although

the observations are now aligned, they are still irregularly sampled. F(s(H)) can then again be

converted to a sequence s(F(s(H))). Finally, the sequence of hospitalizations s(F(s(H))) can be

summarized, or aggregated, using G to yield G(s(F(s(H)))), a P-dimensional vector, where any
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vector outputs of G have been concatenated as with the hospitalization representations, so P>
M. The full set of hospitalization-level aggregation functions for G is: Administrative: Max

(age), First (race), Last (marital status, gender, insurance), Sum (DRG, discharge disposition,

length of stay, locations visited, diagnoses, CPT4/ICD9 procedure); Medications: Sum (admin-

istration of medication by description, class, and subclass); Labs: Minimum, Mean, Maximum,

Sum, and Variance (labs and abnormal lab flags). By aggregating over hospitalizations with G,

Fig 1. Feature extraction pipeline for estimating P(AKI) during rehospitalization. We sought to estimate the probability of AKI

during rehospitalization given all of a patient’s previous hospitalizations, PðAKIHC
jHPÞ), shown by the red arrow. An example of

three hospitalizations (H1, H2, H3) is shown. Here H1 and H2 are used to estimate P(AKI) during H3. The EHR captures raw data

(shown in boxes closest to the time series tracings) of which our dataset contains N + 1 features. At each level, data is aggregated via

domain-expertise-informed functions F and G. The pipeline produces a single, fixed-length representation of all previous

hospitalizations to serve as input to a learning algorithm. Measurements from each hospitalization, and series of hospitalizations, are

treated as sequences, denoted with operator s.

https://doi.org/10.1371/journal.pone.0204920.g001
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most (not those that were “first” or “last”) categorical variables are rendered continuous, so

standard rather than minimum-maximum scaling is used where necessary for regression.

There are benefits and drawbacks of this aggregation-based approach for time series data.

Benefits include easy determination of features since F and G (chosen by the analyst) are

known. The sum of sCr from prior hospitalizations is easy to understand; a more complicated

function learned from the data in a time-dependent algorithm might not be so. A mirroring

limitation is that F and G, invented by humans, are probably not optimal for the task at hand

(e.g., the optimal hospital aggregator is probably a function with some weight decay over time,

allowing distant events to be “forgotten”). Another drawback is loss of information on time

between events (e.g., very frequent testing might be informative) or recency of events (e.g., a

very distant nephrotoxic medication might be less important than a very recent one). We

therefore implemented a recurrent neural network as well, but this work would likely benefit

from further exploration of clinical time series methods, an active area of research [37, 40–42].

Training

The algorithms used have hyperparameters (HP) (e.g., the number of estimators in GBC or

scale of the Laplace distribution in LR1) that must be set in addition to the parameters. For

learning algorithms with HP, “nested” cross-validation (CV) is recommended [43, 44] to pro-

vide an un-optimistic performance estimate. Pure nested CV requires that both choosing the

HP search space and conducting the HP search be executed independently and identically

within every fold. This is computationally expensive because it allows for high complexity HP

(e.g., GBC with a large number of estimators or LR1 with a very small penalty) that lead to

overfitting and slow training. HP were therefore fixed at values found in preliminary experi-

ments (manually or with grid or random search [45]) to not overfit the data (as determined by

a validation set distinct from the test set) and to produce reasonable features per domain

expertise. It was also confirmed that performance on the test set of the fold used to determine

HP did not differ substantially from performance on the test sets of the other four folds.

In greater detail, our HP selection method was as follows: create splits for 5-fold CV.

Hence, we have folds 1-5, which consist of Train1, Train2, . . ., Train5, and Test1, Test2, . . .,

Test5. To set HP, take Train1 and split it into a (sub)train set Train1Train and validation set

Train1Val. Fit different HP on Train1Train and see which HP makes performance (per) for

system (sys) per(sysHP(Train1Train)) � per(sysHP(Train1Val)). Note that we do not try a large

number of different HP and select the one with best performance on the validation set; we

select the HP for which training and validation errors are most similar. Also, we examine

importances/coefficients from sysHP(Train1Train) to ensure that they are reasonably related to

renal function. If not, increase regularization. With this process, choose HP, which were found

by analyzing Train1, so call them HPTrain1. Fix HPTrain1. Evaluate sysHPTrain1(Train1) on

Test1, where Train1Train+Train1Val = Train1. This is a pure estimate of generalization

performance. Now, keeping HPTrain1 fixed, evaluate sysHPTrain1(Train2) on Test2, evaluate

sysHPTrain1(Train3) on Test3, and so on. Note that there is necessarily overlap between Train1

and Test2, . . ., Test5. Hence, there is potential leakage from HPTrain1 into the performance

estimates of Test2, . . ., Test5 (but again not into Test1). During training, we therefore checked

that performance on Test1 was roughly similar to performance on Test2, . . ., Test5.

We name this process “pseudo”-nested CV because HP selection was not performed inde-

pendently in each fold as is required for pure nested CV. In pure nested CV, we would have

specified a search region for HP and allowed HP to be selected in every fold, selecting

HPTrain1 to be tested on Test1, HPTrain2 to be tested on Test2, and so on. Knowing that

choosing our HP manually using the data put us in danger of overfitting, we purposely tried to
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choose HPTrain1 that would yield systems with lower capacity. Also, note that manual choice

of HP precludes comparison of algorithms because HP choice is a confounder; our compari-

son is therefore over trained systems, not training algorithms.

Fixed HP for GBC included maximum depth = 2, minimum samples per split = 150, and

minimum samples per leaf = 100 and for LR1 C = 2 x 10−3. To produce a parsimonious, highly

penalized LR1 (HPLR1), C was decreased to 2 x 10−4 (aiming for� 12 features). For LR1, clas-

ses were weighted according to prevalence. Between GBC and LR1, choice of learning algo-

rithm was also an HP, but was wrapped into the inner folds of the nested CV as a grid search.

In preliminary experiments, LR1, Ridge [46], random forest [47], multilayer perceptron [48],

and GBC were explored manually. Ultimately, LR1 and GBC were chosen as candidates for the

search since LR1 was close enough to ridge (the problem was expected to be sparse) and GBC

close enough to random forest. As recommended in [49], log loss, rather than a binary metric,

was optimized in the searches.

Although a search was performed over learning algorithms, there was no intention of com-

paring them outright (there are many confounders, e.g., HP choice). Rather, they were

intended for use in concert since both have benefits and drawbacks. A major difference is that

LR1 is linear in its parameters and therefore quite interpretable while GBC is nonlinear and

sometimes gives better off-the-shelf predictions (LR1 could be enhanced with basis functions

to rival, but this was not done here). Besides manual setting of HP, all other steps were per-

formed in a pipeline within each fold. Pipelines were constructed to successively impute (using

the most frequent value), scale (using standard scaling; only for LR1), fit, and calibrate (using

Platt’s scaling [50]). Training data were split such that, in each fold, 75% of the observations

were used to fit and select classifiers, and the remaining 25% were held out and used to cali-

brate the estimator with the lowest log loss. For HPLR1, there was no search over GBC.

In an additional experiment, we implemented a variance stabilizing Anscombe transform

for LR1 (ALR1) for the count and categorical variables. GBC seemed to be unaffected by this

transform because it is a tree-based system invariant to monotone transformations of the

input. Since l1-norm penalty is known to select one and discard x − 1 of x highly correlated

features, for the purposes of reporting features, Both LR1 and HPLR1 were rerun with stability

selection [51] (these were named RLR1 and RHPLR1, respectively), which is less likely to dis-

card the remaining x − 1 features. In this case, the penalty weight, C2, on the final classifier was

roughly nonexistent (vanilla logistic regression) because the feature selection step with penalty

weight C1 regularized. RLR1 randomized selection had C1 = 0.5 and C2 = 1; RHPLR1 had C1 =

0.2 and C2 = 1. For both RLR1 and RHPLR1, the stability selection sampling fraction was 0.75

with 50 resamples.

To explore alternative strategies for repeated measures, the first-described experiment was

redone exactly, but repeated samples were weighted such that each patient received equal total

representation (e.g., a patient with 3 samples was weighted by 1/3; a patient with 2 by 1/2), pro-

ducing weighted GBC (WGBC), weighted LR1 (WLR1), and weighted HPLR1 (WHPLR1);

alternatively, one sample per patient was randomly selected to produce independent data, pro-

ducing sampled GBC (SGBC), sampled LR1 (SLR1), and sampled HPLR1 (SHPLR1). Also, for

repeated measures, we implemented a recurrent neural network with long short-term memory

(LSTM) cells [34] that processed the two most recent hospitalizations in sequence. This recur-

rent system obviated the need for the hospital aggregator G. We set the number of hidden lay-

ers and units a priori and searched over levels of dropout. Thus in contrast to GBC and LR, we

did not set HP for LSTM by using features in one fold of cross validation, and therefore the

LSTM was trained with pure nested cross validation. For insertion of LSTM into a pipeline,

the Scikit-learn scaler and imputer were decorated to process tensors.
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To explore the effect of previous hospitalizations, the first-described experiment was redone

exactly, but using only the most recent hospitalization as input (results are reported for

“recent” GBC: RGBC). The original decision to include data from all previous hospitalizations

was based on the premise that it is better to provide more rather than less information to a

learning algorithm (although this requires an extra step of aggregation over hospitalizations).

As medications are potentially modifiable risk factors, GBC and LR1 were also refit exactly as

in the first-described experiment, but with only medications as features (MGBC and MLR1).

We also implemented a system, CGBC, with only a handful of clinically known risk factors

from [52]: age, underlying renal insufficiency (prior AKI or CKD), diabetes, and heart failure.

Logistic regression was used by setting C = 1000 with ridge regression (in order to remain in

the scikit-learn ecosystem where all logistic regressions are penalized). We also randomly per-

muted the response variable and refit exactly as in the first-described experiment to produce

noise GBC (NGBC).

Assumptions

It is assumed that the majority of patients in the dataset who have an episode of AKI are, by

medical history, high risk for AKI. Conversely, we assume that the majority of patients without

AKI have past medical histories that are low risk for AKI. This is paradoxically a strong

assumption. To see why, consider a patient with high risk for AKI. We hope to associate this

patient’s prior hospitalizations with high risk. Upon rehospitalization, however, suppose that

an admitting provider, evaluating the risk as high, decides to administer extra fluids. Ulti-

mately, and fortunately for the patient, this effort may prevent AKI. However, the training set

now contains a high risk history coupled to a hospitalization in which AKI did not occur.
Hence, this patient’s high-risk history will incorrectly be associated with a flipped label of non-

AKI. Conversely, a patient with low AKI risk might receive a medication with the potential for

causing AKI, resulting in a similar mismatch. It is therefore assumed that the modifications

of disease course just described contribute negligible bias to our predictions, but recognized

that this bias is not detectable via internal or external validation. If this assumption is false, it

would invalidate our approach, and future work will focus on developing methods to test this

assumption. Notably, this assumption has been shown to fail in a previous study on pneumo-

nia where patients with risk-increasing asthma were given systematic, preferential treatment,

effectively flipping their labels [53]. Bias resulting from interventions could be removed by

incorporating events that occur during rehospitalization as predictors. However, this is pre-

cluded because an intervention could occur all the way up to AKI (e.g., a provider might dis-

continue intravenous fluids and increase the risk of AKI). Many of our labels are diagnosis

codes assigned at the end of the hospitalization, so we do not know when AKI occurred. With

the interpretable HPLR1, it is at least possible to confirm that the features are reasonable and

appear not to be subject to this bias.

It is also assumed that a time-based (2-year) sample approximates an ideal patient-based

sample. Repeating training on a patient-based sample would be a useful complement to this

study, and if implemented in the EHR should be formulated as such, since a patient may

have a previous hospitalization or rehospitalization outside of the sample. Similarly, it is

assumed that our dataset sampled from only one hospital network is representative enough

for learning local patterns. We strongly recommend retraining if the model is to be used

outside of the population that generated the training data. Finally, it is assumed that unde-

tected AKI from lack of sCr measuremenst or no assignment of a diagnosis code is a rare

event.
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Evaluation

For evaluation, 50 iterations of nested (except HP determination, as described above) 5-fold

CV were performed. Since any two hospitalizations from the same patient were correlated, CV

sampling was “grouped” at the patient level. Micro (over all 250 outer folds) and macro (over

50 iterations) mean and standard deviation of all metrics are reported. As recommended in

[49], a probability estimate rather than binary output is provided so the final decision can be

made with maximal information at the point of care (e.g., if one patient has 0.499 risk and

another has 0.501, these should not be converted to 0 and 1 by an algorithm, but by a provider

in clinical context). Although calibration is primarily assessed, discrimination is also described,

as is standard practice, with receiver operating characteristic (ROC) and precision-recall (PR)

curves and corresponding areas. For calibration, curves are shown with Brier score. Every cali-

bration curve shown contains 10 bins. In addition to hospitalization-level performance of

GBC, patient-level performance is also analyzed. This is conveyed via scatter plots of the aver-

age risk per patient (e.g., a patient with two hospitalizations, one of which had AKI and the

other of which did not has 0.5 observed risk) by the average predicted risk. Calibration curves

are superimposed for the cases that had 0 or 1 observed risk (all of the hospitalizations and a

subset of the patients).

Since algorithms have potential to harm certain subgroups, algorithmic fairness is an active

area of research [54, 55]. Here, an error analysis is performed with special focus on the black

box GBC, to detect subgroups for which this might be the case. After stratifying by outcome,

the same iterated, semi-nested CV procedure described above was used to fit an l1-penalized

linear regression with either diagnosis, race, gender, or age alone as features and the absolute

magnitude of the error as the response (minimum 0, maximum 1). To analyze error by utiliza-

tion, patients were binned based on the number of hospitalizations that they generated and

average error was plotted for each bin. The relationship between number of hospitalizations

from a patient and that patient’s impact on coefficients was assessed by removing all hospitali-

zations from each patient and fitting HPLR1 and then comparing to the coefficients of HPLR1

fit on the full dataset. The comparison was made using l1 norm because the coefficient vectors

were low dimensional for HPLR1. Error was also assessed as it related to method of diagnosis

(code or sCr) and variance of predicted risk.

Computing environment

All computational work was performed in Python 2.7.14. Libraries in scikit-learn [56–60],

keras [61], and the SciPy ecosystem [62–67] were used throughout. Code was run on a linux-

based cluster. Each experiment was run via an sbatch script requesting roughly 1 node and 100

to 200 GB of random-access memory. All iterations were distributed using job arrays. Code

will be made available upon publication at https://github.com/samuelweisenthal/reh_aki.

Results

AKI cohort selection

A cohort selection schema and results are shown in Fig 2 along with a histogram of the number

of hospitalizations per patient. During the two-year window, 146,800 patients generated

261,319 hospitalizations; after excluding hospitalizations with age at admission < 18, 107,036

patients generated 199,545 hospitalizations. Excluding hospitalizations preceded by diagnosis

of ESRD, but not preceded by a renal transplant, yielded 197,046 hospitalizations for 107,033

patients. Of these patients, 34,505 (32.2%) were rehospitalized at least once during the two-

year period, accounting for 123,828 (62.8%) of total hospitalizations. Within hospitalizations
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generated by these patients, 90,013 were rehospitalizations (i.e., not the first hospitalization

from that patient in our dataset). There were 5,618 (6.2%) cases of AKI. The hospitalization:

patient ratio was 1.4 for the cases, and 2.5 for controls. Hence the cases showed more patient-

level diversity than the controls, which were generated by patients who returned more often.

AKI diagnosis

AKI was identified by both diagnosis code and sCr, shown in Table 2. Of all 197,046 hospitali-

zations in our cohort (not by a patient with previous diagnosed ESRD), 11,166 (5.7%) involved

AKI; 4,135 were diagnosed by sCr but not code, 2,747 by sCr and code, and 4,284 by code but

not sCr.

Cohort demographics for all 124,518 adult hospitalizations (after exclusion of cases follow-

ing a diagnosis of ESRD) generated by patients who were rehospitalized at some time are

shown in Table 3. This corresponds to the fourth cohort shown in Fig 2. These summary

Fig 2. Cohort selection. On the top left, the selection procedure used to obtain the rehospitalization cohort is shown. On the top right, the distribution

of the 197,046 hospitalizations not preceded by a diagnosis of ESRD is shown. On the bottom, a schematic of predictor/target generation is shown for

an example patient with n hospitalizations from which n − 1 training cases were derived. For each target rehospitalization, y, data from all prior

hospitalizations, X, are used as predictors. Multiple prior hospitalizations were aggregated using G as described above.

https://doi.org/10.1371/journal.pone.0204920.g002

Table 2. AKI diagnosis distribution.

Lab Diagnosis Total

+ -

Coding Diagnosis + 2,747 4,284 7,031

- 4,135 185,880 190,015

Total 6,882 190,164 197,046

https://doi.org/10.1371/journal.pone.0204920.t002
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statistics are by hospitalization, and not patient, and therefore some patients are represented

multiple times. Note that ESRD is present since a hospitalization can contain a diagnosis of

ESRD (i.e., permanent kidney failure) even though it does not follow a hospitalization with

diagnosis of ESRD. General cohort demographics corresponded to known findings. As

expected, hospitalizations in which AKI occurred had higher age on admission [25] and longer

duration [3]. A higher proportion of AKI+ subjects were male and white. Also more prevalent

in the AKI+ hospitalizations were previously identified risk factors [4, 14, 68] including prior

CKD diagnosis [69], prior dialysis procedures without ESRD [69], congestive heart failure [68,

70], diabetes [68], shock [52], and liver failure [71, 72].

Evaluation

The final dataset had 5,308 features at a code precision of 3 digits. After removing features that

were observed in fewer than 100 of the samples, 3,387 (63.8%) remained. HP are detailed in

Supplement S1 File. All performance metrics are reported in Table 4; since the distributions of

these individual metrics were approximately normal (Supplement S1 Fig), standard deviation

is reported. Also because of approximate normality, the Bayesian correlated t-test [73] was

used to compare systems (Table 5). We specified a priori the regions of practical equivalence

(ROPE) for ROC AUC, Brier Score, and PR AUC as, respectively, (0.01, 0.001, 0.01). For

metric m with ROPE r and systems in row i and column j, tuples in the table correspond to

(P(m(i) −m(j)) > 0.5r, P(m(i) −m(j)) 2 r, P(m(i) −m(j)) < −0.5r or, informally, (P(i higher

score than j), P(i and j practically equivalent), P(j higher score than i)). Note that ROC and PR

are both ideal if 1 and Brier score is ideal if 0, so the Brier table is opposite the other two. We

again emphasize that this is a comparison of trained systems, not of the training algorithms,

Table 3. Cohort demographics. Statistics are computed per hospitalization. There are a total of 124,518 hospitalizations from 34,505 patients, each with more than one

hospitalization. These are therefore all hospitalizations generated by patients in the final cohort (including the first hospitalization from each patient, for which AKI is not

predicted).

Variable AKI+ (n = 7,762) AKI- (n = 116,756)

Mean ± STD Median Mean ± STD Median

Age 62.06 ± 17.23 63.00 44.01 ± 18.86 42.00

Length of Stay 14.22 ± 22.59 7.89 1.89 ± 4.89 0.33

Count % Count %

Female 3,497 44.0 67,811 56.0

American Indian 5 0.0 205 0.0

Asian 61 1.0 1,364 1.0

Black 1,822 23.0 39,038 28.0

White 5,557 73.0 68,003 64.0

Other 322 4.0 8351 7.0

Chronic Kidney Disease (CKD) 2,574 37.0 2,349 2.0

ESRD 246 10.0 213 1.0

Dialysis 538 15.0 217 1.0

Renal Transplant 22 0.0 29 0.0

Unspecified Renal Failure 238 3.0 72 0.0

Congestive Heart Failure 2,227 29.0 3,218 2.0

Diabetes 2,651 34.0 9,031 7.0

Shock 997 14.0 2,700 2.0

Liver Failure 720 9.0 1,076 1.0

Rhabdomyolysis 189 2.0 225 0.0

https://doi.org/10.1371/journal.pone.0204920.t003
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because HP is a confounder. GBC curves are displayed in Fig 3. In the low range, GBC has

transposed-sigmoidal tendency suggesting overconfidence (predicting low probabilities as too

low and high probabilities as too high). This may be due to dependencies or perhaps a rela-

tively small ratio of cases to features. In contrast to high ROC AUC, precision suffers greatly

when the threshold is lowered. PPV is dependent on the prevalence of AKI; even a small false

positive rate (FPR) might lead to a high false positive (FP) count if the controls outnumber the

cases, as is the case with AKI. Thus even with a low FPR, it can be expected that detecting a TP

would cost many FP. FP in AKI, relative to other diseases, are most often fairly innocuous.

Table 4. Predictive performance. ROC = Receiver Operating Characteristic, PR = Precision Recall, ALR1 = Anscombe LR1, GBC = Gradient Boosting Classifier, LR1 =

l1-Penalized Logistic Regression, LSTM = Long Short-term Memory, HP = Highly Penalized, W = Weighted, S = Sampled, R = Recent (for GBC) or Randomized (for LR1,

HPLR1), M = Medication, N = Noise.

ROC AUC Brier Score PR

GBC Micro: 0.86737 ± 0.00566 0.04901 ± 0.00179 0.32568 ± 0.01502

Macro: 0.86737 ± 0.00045 0.04901 ± 8e-05 0.32568 ± 0.0026

LR1 Micro: 0.86012 ± 0.00602 0.05038 ± 0.00187 0.30068 ± 0.01533

Macro: 0.86012 ± 0.00041 0.05038 ± 0.00011 0.30068 ± 0.00182

ALR1 Micro: 0.86188 ± 0.00606 0.05019 ± 0.00187 0.30445 ± 0.01571

Macro: 0.86188 ± 0.00113 0.05019 ± 0.00025 0.30445 ± 0.00411

RLR1 Micro: 0.85312 ± 0.00621 0.05068 ± 0.0019 0.30227 ± 0.01453

Macro: 0.85312 ± 0.00055 0.05068 ± 9e-05 0.30227 ± 0.00159

HPLR1 Micro: 0.84545 ± 0.0064 0.05158 ± 0.00191 0.29002 ± 0.01361

Macro: 0.84545 ± 0.00037 0.05158 ± 5e-05 0.29002 ± 0.00091

RHPLR1 Micro: 0.848 ± 0.00651 0.05102 ± 0.00192 0.29869 ± 0.0142

Macro: 0.848 ± 0.05102 0.05102 ± 8e-05 0.29869 ± 0.00122

WGBC Micro: 0.86328 ± 0.00568 0.04932 ± 0.00178 0.31572 ± 0.01541

Macro: 0.86328 ± 0.00059 0.04932 ± 0.0001 0.31572 ± 0.00261

WLR1 Micro: 0.84965 ± 0.00606 0.0507 ± 0.00188 0.29564 ± 0.01425

Macro: 0.84965 ± 0.00046 0.0507 ± 6e-05 0.29564 ± 0.00091

WHPLR1 Micro: 0.77923 ± 0.01208 0.05387 ± 0.00209 0.25742 ± 0.01609

Macro: 0.77923 ± 0.00308 0.05387 ± 0.00013 0.25742 ± 0.00385

SGBC Micro: 0.85962 ± 0.00744 0.05326 ± 0.00195 0.33161 ± 0.02153

Macro: 0.85962 ± 0.00226 0.05326 ± 0.00045 0.33161 ± 0.00631

SLR1 Micro: 0.84752 ± 0.00792 0.05486 ± 0.00206 0.30596 ± 0.02022

Macro: 0.84752 ± 0.00214 0.05486 ± 0.00049 0.30596 ± 0.00548

SHPLR1 Micro: 0.7706 ± 0.01157 0.05754 ± 0.00229 0.28547 ± 0.01992

Macro: 0.7706 ± 0.00366 0.05754 ± 0.0005 0.28547 ± 0.0054

RGBC Micro: 0.86306 ± 0.00572 0.04927 ± 0.00178 0.32198 ± 0.01526

Macro: 0.86306 ± 0.00039 0.04927 ± 6e-05 0.32198 ± 0.00185

MGBC Micro: 0.82635 ± 0.00693 0.05161 ± 0.00189 0.27079 ± 0.01484

Macro: 0.82635 ± 0.00075 0.05161 ± 8e-05 0.27079 ± 0.00172

MLR1 Micro: 0.80671 ± 0.00764 0.0564 ± 0.0022 0.22051 ± 0.01397

Macro: 0.80671 ± 0.00137 0.0564 ± 0.00019 0.22051 ± 0.00212

LSTM Micro: 0.85744 ± 0.00592 0.05027 ± 0.0018 0.28209 ± 0.01547

Macro: 0.85744 ± 0.0008 0.05027 ± 0.00012 0.28209 ± 0.00526

CLR Micro: 0.80149 ± 0.00785 0.05356 ± 0.00204 0.22926 ± 0.01467

Macro: 0.80149 ± 0.00034 0.05356 ± 6e-05 0.22926 ± 0.0009

NGBC Micro: 0.49938 ± 0.00837 0.05853 ± 0.0015 0.06251 ± 0.00242

Macro: 0.49938 ± 0.00399 0.05853 ± 2e-05 0.06251 ± 0.00094

https://doi.org/10.1371/journal.pone.0204920.t004
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Preventative measures consist mainly of hydration and medication review. In some cases,

however, a FP might result in withholding necessary treatment (e.g., imaging or medication)

or unnecessary Nephrology consults [74]. This shortcoming is therefore notable. Ultimately,

however, we recommend that a decision based on some threshold never be provided to a user

in place of a probability estimate [49].

The distributions of errors by method of diagnosis (i.e., by code or sCr) are shown in Sup-

plement S2 Fig. Without rigorous analysis, it appears that, expectedly, cases detected by both

methods have lower mean error than cases detected by one or the other. Notably, cases

detected by sCr but not administrative code appear to have higher errors than cases detected

by both or cases detected by code but not sCr; this is also to be expected since many cases

detected by sCr but not code were likely subtle AKI episodes, or perhaps even correspond to

variation in sCr for reasons impossible to discern from the data, but not due to AKI. Gross

visual differences between the distributions are not noted, but the slight differences could be

an interesting future investigation.

Performance curves for LR1, ALR1, and RLR1 are shown in Supplement S3 Fig, Supple-

ment S4 Fig, and Supplement S5 Fig. Performance curves for HPLR1 and RHPLR1 are shown

in Supplement S6 Fig and Supplement S7 Fig. Stability selection included more variables, per-

haps since it was less influenced by colinearity. The performance difference between full LR1

and reduced HPLR1 suggests that adjusting for more variables improves, but also increase the

variance, of the calibration curves. Performance curves for weighted WGBC are shown in Sup-

plement S8 Fig. When weighting, averaged calibration curves appear to be slightly closer to

identity (Supplement S9 Fig). When weighting, performance by utilization, shown in Supple-

ment S10 Fig, appears unchanged. Performance curves for WLR1 and WHPLR1 are shown in

Supplement S11 Fig and Supplement S12 Fig, respectively. Performance curves for sampled

SGBC, SLR1, and SHPLR1 are shown in Supplement S13 Fig, Supplement S14 Fig, and Supple-

ment S15 Fig. Sampling leads to reduced sample size, and therefore performance appears to

generally be worse, but the change is not drastic. Notably, however, PR AUC increases. Perfor-

mance curves for RGBC, which takes into account only the most recent hospitalization, are

shown in Supplement S16 Fig. It is evident that most predictive power is contained in the most

recent hospitalization, but a small gain is achieved by including more distant hospitalizations

(GBC appears slightly better than RGBC, but the difference is in the region of practical equiva-

lence). Notably, in GBC there are virtually no sums over hospitalizations, only means; when

Fig 3. GBC evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV (250 lines shown; each of 50 iterations has 5 lines corresponding

to the 5 outer folds of CV). The black diagonal line represents chance for the ROC curve and ideal for the calibration curve. Results are reported per

hospitalization, not patient. Alpha level = 0.5, line weight = 0.5.

https://doi.org/10.1371/journal.pone.0204920.g003
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G aggregates sequences of hospitalizations of variable length, sums have much higher variance

(perhaps why GBC vastly favors labs, which can be converted to less volatile means, while diag-

noses are mostly counts). However perhaps when G is the identity, such as with RGBC (fea-

tures not shown), counts are just as well as means. The medication-based performance curves

for MGBC and MLR1 are shown respectively in Supplement S17 Fig and Supplement S18 Fig.

Performance of CLR is shown in Supplement S19 Fig. This system depends mostly on codes

rather than continuous values, probably explaining its reduced performance. Performance of

LSTM is shown in Supplement S20 Fig. This system was not exhaustively optimized, so perfor-

mance is not as strong, but it has the obvious benefit of requiring less feature engineering.

Results for NGBC performance, a utilization analysis, and the STD with respect to error are

shown in, respectively, Supplement S21 Fig, Supplement S22 Fig, and Supplement S23 Fig.

NGBC just predicted 0.06 for every sample.

Fig 4 shows the distributions of the probability estimates per hospitalization alongside the

same per patient, where the risk is averaged over hospitalizations. Although GBC was not opti-

mized for patient-level prediction, aggregate calibration (averaged over CV folds and trials)

appears to be good at the patient level. The calibration curve consisting of averaged predictions

is much better than the individual calibration curves per fold. This may be related to the diffi-

culty in sampling each fold at the patient level when there is such a wide variety of hospitaliza-

tions per patient. More could be done on characterizing the distributions of the calibration

curves. It is apparent from these plots that it is more difficult to predict cases than controls; the

distributions of predictions for cases are quite broad and appear almost bimodal.

Uncertainty of predictions appears to increase with increasing predicted risk, even when

stratifying by outcome, as shown in Fig 5. Although the range is fairly small (0-0.10), the distri-

butions in Fig 4 show that many of the high risk cases have low predicted risk, so the uncer-

tainty is meaningful. We highlight the necessity of (at least empirical) prediction intervals for

GBC, if ever considered for deployment.

Error analysis of GBC

We sought to identify specific subgroups which are easily recognized by a provider and for

which the best performing GBC might make errors. To show that the linear regressions used

for this purpose were well fit, train, validation, and test MSE from the fold used to set HP is

provided in Supplement S1 Table. HP are provided as well, chosen manually as in the main

study by making the train-validation difference in a single fold small, although usually a pen-

alty was not necessary. The mean and standard deviations of nonzero coefficients are shown in

Table 6. The diagnoses associated with increased error in the cases (failure to predict AKI

when it occurred) are assigned to patients who were hospitalized for reasons not directly

related to the kidney (substance abuse). Conversely, the diagnoses associated with small errors

are obviously associated with AKI (e.g., we see especially accurate predictions of high AKI

risk in hospitalizations preceded by frequent AKI or CKD). The diagnoses associated with

increased error in the controls (failure to rule out AKI when it did not occur) were, expectedly,

AKI, CKD, and anemia. This is not as revelatory as the cases; GBC has learned that prior kid-

ney disease is associated with future kidney disease, which is a well known phenomenon.

These may correspond to cases in which interventions occurred for high risk patients (the

label flipping mentioned in Assumption (1)).

There were no detected relationships to the error (all coefficients were 0) for different races

(American Indian, Asian, Black, Black/American Indian, Declined, Other, Unknown, and

White). This is very comforting, although it is difficult to make a general conclusion for the

rare races (see Fig 3 for frequencies). Gender also, favorably, showed no relationship to error.
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As shown in Table 6, increasing age leads to lower error in the cases and higher error in the

controls. Hence errors occur because predicted risk is sometimes too high in older patients

when they are healthy and too low in younger patients when they are not. Age is a particularly

well-recorded variable; it is unclear what variable could be adjusted for to remove this bias, but

it is likely that explicit stratification might be in order. In this large sample, the healthy young

simply overwhelm the high risk young and opposite for the older patients. A plot of error by

age is shown in Supplement S24 Fig to complement the findings in Table 6. It is likely that, at

Fig 4. GBC hospitalization- and patient-specific risk distributions. Observed hospitalization-level risk is plotted against predicted risk (top row) and

patient-level mean observed risk against mean predicted risk (bottom row). Distributions of predictions PP are shown at the hospitalization and patient

level. At patient level, distributions that are difficult to discern from the scatter plot are shown. In the scatter plots, alpha level is 0.05 and the red

calibration curve corresponds to all hospitalizations or to patients who had either mean risk over hospitalizations of 1 or 0. The calibration curves are

computed according to the macro-averaged predicted output per hospitalization or patient over the 50 iterations of 5 fold CV (over 250 total folds).

Ideal calibration is the dotted black diagonal. Histograms have 1000 bins to give necessary resolution. PO = observed risk per hospitalization, PP =

predicted risk per hospitalization, PO = mean observed risk over hospitalizations, PP = mean predicted risk over hospitalizations.

https://doi.org/10.1371/journal.pone.0204920.g004
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least in part, the correlation of the errors with features indicates slight underfitting; had higher

capacity HP been permitted, these patterns might have been detected (at the risk of overfitting

in other ways). As described above, bias was prioritized above variance in order to avoid over-

fitting, but now this error analysis gives some insight into who might suffer from poor predic-

tions as a result.

Error and STD of predicted probability against utilization is shown in Fig 6. The average

error for controls decreases with the utilization. For cases, the pattern is not clear, but it also

appears to decrease. Hence predictions are better for patients with many hospitalizations. STD

however appears to increase with utilization for cases, unlike for controls. Since this dataset is

a time-window sample, high utilizers are overrepresented (recall that a patient with multiple

Fig 5. GBC prediction variance. The mean and standard deviation of predicted probabilities are plotted over iterations (per hospitalization).

Alpha = 0.01 for all plots.

https://doi.org/10.1371/journal.pone.0204920.g005

Table 6. Coefficients of features associated with error. For diagnoses, features correspond to the count assigned in

prior hospitalizations. Note that age and diagnosis were fit in separate regressions despite being displayed in the same

table.

Cases (AKI +) Diagnosis Mean (95% CI)

Lasso (+) “Non-present” Dx 0.0071 (0.0069, 0.0073)

Non-dependent abuse of drugs 0.0030 (0.0028, 0.0032)

Lasso (-) AKI -0.0476 (-0.0479, -0.0473)

CKD -0.0301 (-0.0304, -0.0297)

Other and unspecified anemias -0.0066 (-0.0068, -0.0063)

Convalescence and palliative care -0.0039 (-0.0042, -0.0036)

Hypertensive chronic kidney disease -0.0006 (-0.0008, -0.0004)

Heart failure -0.0003 (-0.0003, -0.0002)

Cardiac dysrhythmias -0.0001 (-0.0002, -0.0001)

Age -0.0271 (-0.0272, -0.0269)

Controls (AKI -) Diagnosis Mean (95% CI)

Lasso (+) AKI 0.0166 (0.0164, 0.0167)

CKD 0.0112 (0.0111, 0.0113)

Other and unspecified anemias 0.0014 (0.0014, 0.0015)

Age 0.0236 (0.0235, 0.0236)

https://doi.org/10.1371/journal.pone.0204920.t006
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hospitalizations appears multiple times in the dataset). This is common in medical prediction

problems (e.g., [16] had a final analysis cohort with roughly 1.6 million admissions generated

by roughly 600,000 patients; a readmission study [75] had roughly 3.3 million admissions gen-

erated by 1.3 million patients). We hypothesize that high utilizers have strong influence over

parameters. Consider two patients without AKI; one is hospitalized 10 times and each time

merely visits the emergency department and another is hospitalized twice for heart failure

exacerbation. The patient with 10 hospitalizations generates 9 training examples while the one

with heart failure exacerbation generates only one. The former will have much stronger influ-

ence over coefficients.

The impact of each patient on the coefficient vector of HPLR1 is shown in Supplement S25

Fig. There are patients who are relatively high and relatively low utilizers who have substantial

impact on the coefficients. Since there are many low utilizers, perhaps there is greater probabil-

ity that there is a very different patient that might influence coefficients more. However,

extreme influencers seem to be relatively high utilizers. Although this optimizes hospitaliza-

tion-level performance (a prediction error for the patient who generates 10 hospitalizations

may lead to 10 errors, while an error for the patient who generates 1 will only result in one, all

Fig 6. GBC error by utilization. The mean and STD absolute error is shown as a function of the number of hospitalizations. Patients were binned

based on the number of hospitalizations in the dataset and then, over bins, the mean error and STD of the predictions were computed. Stratification by

outcome is performed since it was earlier established that the hospitalization:patient ratio is higher in cases than in controls.

https://doi.org/10.1371/journal.pone.0204920.g006
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else being equal) this might not be fair. In WGBC, we have downweighted hospitalizations

from high utilizers such that the 9 training examples have a net effect on the coefficients equal

to the 1 training example. Making patient influence over coefficients more equal optimizes

performance on the level of patients rather than hospitalizations, but we do not see a clear

change in the utilization analysis. Another option for future work might be mixed effects

approaches.

Features

Predictors specific to rehospitalized patients are described. Note that these should be consid-

ered predictors, not risk factors, since causality is never established. Further, many of the fea-

tures are correlated, so it is important to note variance. It is possible that some features in the

ensuing tables might have correlated counterparts that could just as well have been selected

in their places. We still maintain that these tables are useful (1) to demonstrate that the sys-

tems depend on reasonable predictors and (2) to report potential predictors for specification

of a more parsimonious system that could be validated on a different dataset. Both of these

objectives can be met despite the correlated nature of the features. Also, note that the rela-

tionships between these features and AKI are associative, not necessarily causal. The distri-

bution of feature importances/coefficients was very skewed and we believe the interesting

ones are adequately contained in the top 40, but this cutoff is still arbitrary. With these cave-

ats in mind, we discuss some interesting findings. We reported 95% bootstrap [76] confi-

dence intervals (10,000 iterations using [77]) instead of standard deviation as we had with

the metrics because it was difficult to check each coefficient’s distribution for symmetry.

Importance scores were computed via scikit-learn according to the Gini importance defini-

tion in [78].

GBC and LR1. The 40 features with the highest micro-averaged GBC importance scores

and largest absolute LR1 coefficients are shown in Table 7 and RLR1 coefficients are shown in

Supplement S2 Table. Some features were comprised of sub-features (e.g., diagnosis codes con-

tained many sub-diagnoses). For display in tables, these were succinctly renamed via a repre-

sentative term (e.g., diuretics or CKD), most frequent sub-features, or general group names

from [79].

For GBC, many features correspond to known indicators of acute or chronic kidney dys-

function (e.g. diagnosis of AKI, sCr, UN, GFR). As our features are gleaned from prior hospi-

talizations, they suggest that prior acute or chronic kidney disease increases the probability of

AKI. Age is associated with declining kidney function in general, as well as a higher incidence

of CKD and other conditions strongly associated with renal disease. Thus it is not surprising

that age is the strongest predictor of AKI in both GBC and LR1. Another constellation of

highly ranked features carries strong secondary association with underlying kidney disease.

These include medications used to treat consequences of decreased kidney function such as

allopurinol, used to treat elevated uric acid levels, and loop diuretics, used to reduce fluid

retention, edema, and hypertension. Highly ranked features associated with the presence of

liver disease (bilirubin) and associated treatment for both liver and heart disease (spironolac-

tone) were also identified. Moderate to advanced liver and heart disease are associated with

hepatorenal and cardiorenal syndromes, respectively, with resulting AKI (we even see hepato-

biliary diagnostic procedures associated with increased risk in LR1). Hemoglobin is also iden-

tified, likely as an indicator of anemia resulting from renal pathology. Interestingly, UN is

often slightly preferred to sCr here, perhaps reflecting loss of muscle mass due to catabolism

during illness, with an associated lower creatinine production blunting rise in sCr. UN is gen-

erally correlated with sCr, probably explaining the high STD in the importances of both.
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Table 7. Feature importances/coefficients for GBC and LR1. For laboratory results, the first function is G, aggrega-

tion over hospitalizations, and the second is F, aggregation within a hospitalization; e.g., “mean max sCr” is the mean

over hospitalizations of the maximum sCr of each hospitalization.

GBC Mean (95% CI)

Age 0.0409 (0.0404, 0.0414)

Mean count abnormally high urea nitrogen 0.0351 (0.0338, 0.0365)

Count “non-present” DRGs 0.0295 (0.0289, 0.0301)

Count Dx: AKI 0.0168 (0.0161, 0.0175)

Mean count abnormally low hemoglobin 0.0160 (0.0152, 0.0168)

Mean sum urea nitrogen 0.0153 (0.0144, 0.0162)

Mean sum sCr 0.0143 (0.0135, 0.0151)

Mean min direct bilirubin 0.0139 (0.013, 0.0149)

Mean max albumin 0.0128 (0.0117, 0.0139)

Count immunosuppressant medications 0.0124 (0.0116, 0.0132)

Max mean urea nitrogen 0.0118 (0.0109, 0.0127)

Mean count abnormally high sCr 0.0113 (0.0106, 0.012)

Count pharm subclass: Loop diuretics 0.0104 (0.0098, 0.011)

Count pharm subclass: K-sparing diuretics 0.0099 (0.0089, 0.0108)

Min min direct bilirubin 0.0098 (0.0088, 0.0107)

Mean count abnormal glomerular filtration rate-caucasian 0.0088 (0.0082, 0.0094)

Count “non-present” Dx 0.0084 (0.0078, 0.009)

Min mean chloride 0.0080 (0.0074, 0.0087)

Count “non-present” CPT4 Px 0.0078 (0.0072, 0.0084)

Max max sCr 0.0078 (0.0071, 0.0084)

Mean max urea nitrogen 0.0073 (0.0065, 0.008)

Mean mean hemoglobin 0.0071 (0.0065, 0.0077)

Count Px: injection of glucagon, haloperidol, heparin, enoxaparin 0.0070 (0.0065, 0.0076)

Spironolactone 0.0067 (0.0058, 0.0076)

Count discharges to Hospice/Medical Facility 0.0066 (0.0062, 0.0071)

Count Dx: artificial opening status (e.g., tracheostomy) 0.0065 (0.0058, 0.0072)

Min max albumin 0.0065 (0.0058, 0.0071)

Var count abnormally high urea nitrogen 0.0057 (0.0049, 0.0065)

Count allopurinol 0.0056 (0.0049, 0.0062)

Min min Glomerular filtration rate-Black 0.0055 (0.0049, 0.0061)

Count carbapenems 0.0055 (0.0048, 0.0062)

Spinal procedures w/o CC/MCC 0.0053 (0.0044, 0.0061)

Sum max glomerular filtration rate-Black 0.0052 (0.0047, 0.0057)

Max min sCr 0.0052 (0.0047, 0.0058)

Count Dx: Disorders of fluid electrolyte and acid-base balance 0.0052 (0.0047, 0.0057)

Mean sum glomerular filtration rate-Black 0.0052 (0.0045, 0.0059)

Count Dx: Diabetes Mellitus 0.0051 (0.0046, 0.0056)

Max max urea nitrogen 0.0051 (0.0045, 0.0058)

Max max hemoglobin 0.0049 (0.0043, 0.0055)

Sum max hemoglobin 0.0048 (0.0042, 0.0054)

LR1 (+) Mean (95% CI)

Age 0.5846 (0.5825, 0.5867)

Mean mean urea nitrogen 0.1127 (0.108, 0.1175)

Count Dx: AKI 0.0974 (0.0956, 0.0993)

Mean max glucose 0.0905 (0.0882, 0.0927)

Mean mean sCr 0.0587 (0.0532, 0.0641)

(Continued)
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The LR1 coefficients reveal the sign of predictors. A number of features were associated

with lower probability of AKI by LR1, especially those generally associated with populations

having a lower incidence of kidney disease, including locations (labor and delivery, emergency

department), and diagnoses (injuries from trauma and athletics). Interestingly, although with

small coefficients, timing of discharge and admission was identified as predictive. For example,

prior Sunday discharge was associated with a lower probability of AKI. This may be due to the

common practice in nursing homes and rehabilitation facilities to not accept weekend trans-

fers, giving complicated patients with a higher likelihood of AKI lower probability of Sunday

discharge. In contrast, weekend hospital admissions (Saturday admission) have a higher num-

ber of traumatic injuries [80] and thus a lower number of conditions associated with AKI (we

Table 7. (Continued)

Gender: Male 0.0505 (0.0455, 0.0554)

Mean var glomerular filtration rate-Caucasian 0.0442 (0.0424, 0.046)

Max mean sCr 0.0386 (0.0337, 0.0433)

Count discharges with home health organization care services 0.0290 (0.0271, 0.0309)

Max mean urea nitrogen 0.0251 (0.0215, 0.0286)

Count Dx: Chronic pulmonary heart disease 0.0241 (0.0228, 0.0254)

Min min direct bilirubin 0.0241 (0.0221, 0.0261)

Mean min direct bilirubin 0.0227 (0.0208, 0.0245)

Count DRG: Hepatobiliary diagnostic procedures with MCC 0.0213 (0.0196, 0.0229)

Count Px: Pathology consult 0.0195 (0.0181, 0.021)

Count Px: Assay of blood lipoprotein or of magnesium 0.0186 (0.0161, 0.021)

Mean max urea nitrogen 0.0182 (0.015, 0.0213)

Count Px: Assay of urine sodium 0.0179 (0.0163, 0.0194)

Min min sCr 0.0173 (0.0144, 0.0201)

Last primary insurance: other 0.0171 (0.0158, 0.0185)

LR1 (-) Mean (95% CI)

Count “non-present” DRGs -0.2126 (-0.2294, -0.1964)

Mean min albumin -0.2122 (-0.2171, -0.2076)

Mean min albumin -0.0623 (-0.0671, -0.0575)

Gender: Female -0.0610 (-0.0659, -0.0561)

Count Location: High risk labor and delivery unit -0.0585 (-0.0613, -0.0558)

Count location: Emergency Department -0.0526 (-0.0606, -0.0443)

Min min glomerular filtration rate-Caucasian -0.0409 (-0.0446, -0.0373)

Mean min chloride -0.0393 (-0.0418, -0.0369)

Count Dx: Traumatic injuries -0.0331 (-0.036, -0.0301)

Mean mean albumin -0.0307 (-0.0347, -0.0263)

Count Admission on Tuesday -0.0288 (-0.033, -0.0246)

Count Admission on Saturday -0.0265 (-0.0307, -0.0221)

Count Dx: Injury from athletics -0.0252 (-0.0284, -0.0219)

Count discharges on Sunday -0.0202 (-0.0237, -0.0166)

Mean min glomerular filtration rate-Caucasian -0.0195 (-0.0229, -0.016)

Max min hemoglobin -0.0166 (-0.0202, -0.0128)

Min min albumin -0.0158 (-0.0187, -0.0129)

Max min bicarbonate -0.0109 (-0.0126, -0.0091)

Mean max albumin -0.0108 (-0.0128, -0.0088)

Mean min bicarbonate -0.0105 (-0.0122, -0.0087)

https://doi.org/10.1371/journal.pone.0204920.t007
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see that diagnosis of traumatic injury is also present as a negative predictor). In both GBC and

LR1, “non-present” diagnoses and procedures were highly ranked since history of few diagno-

ses and procedures reflect robust health.

Although UN and sCr would likely have been chosen to predict AKI, many of the features

studied here are novel representations. For example, rather than just a recent UN, we include

the number of abnormal lab flags for UN; rather than just an at-admission sCr, we include the

mean over hospitalizations of the sum of sCr per hospitalization; rather than just presence of a

loop diuretic on a medication list, we include the actual number of administrations. Features

of this form would probably not have been collected a priori for AKI prediction, and their

components are generally hidden to providers. Many highly ranked features further depend

on the behavior of providers. This might suggest that to optimize EHR data it is important to

capture features that showcase provider behavior–such as testing or prescribing frequency.

Commonly used features such as “does this patient have comorbidity X” might be better refor-

mulated as “how many times in this patient’s history has a provider assigned a code for comor-

bidity X”. The features are further enhanced by EHR-based analyses (abnormal lab flagging).

Interestingly, features associated with AKI in prior studies that analyzed only data available

at admission were not necessarily detected as the best predictors here in rehospitalized patients.

For example, laboratory values dominated diagnosis codes, with the exception of diagnoses

related to CKD or AKI. We hypothesize that this may be due to our focus on longitudinal mea-

surements, inclusion of more candidate features, the sparsity of ICD-9 codes, or perhaps corre-

lation of diagnoses with laboratory predictors (the latter provide more predictive information,

being continuous-valued and reliably collected variables). Laboratory features may also have

been boosted by the basis functions F, while the codes were generally just counted.

HPLR1. All features with nonzero coefficients for HPLR1 are shown in Table 8 and the

same for RHPLR1 is shown in Supplement S3 Table. HPLR1 is especially interpretable. UN

has a large positive coefficient (note that there are two that are likely correlated and hence have

high STD). High glucose (endocrine or metabolic disorders) and potassium (renal dysfunc-

tion) are also predictive along with discharge with assisted care (Home Health Org.). Negative

coefficients are on mean minimum hemoglobin, albumin, and calcium (all resounding labora-

tory indicators of strong health and robust kidney function). Note that every positive labora-

tory coefficient contains a maximum and every negative a minimum.

Comparison with features from Cronin et al. [16]

We can compare our features to those in Cronin et al. [16], where a random forest was used to

predict AKI stage 1+ (KDIGO stages 1, 2, or 3). In Cronin et al, we see strong dependence on

Table 8. Coefficients of HPLR1.

HPLR1 Status Coefficient Mean (95% CI)

HPLR1 (+) Age 0.2304 (0.229, 0.2318)

Max max urea nitrogen 0.1752 (0.1695, 0.1811)

Mean max urea nitrogen 0.1297 (0.1242, 0.1352)

Count Dx: AKI 0.0248 (0.0236, 0.026)

Mean max glucose 0.0001 (-0.0, 0.0002)

Mean max potassium 0.0001 (-0.0, 0.0002)

HPLR1 (-) Mean min hemoglobin -0.0931 (-0.0949, -0.0912)

Mean min albumin -0.0557 (-0.0573, -0.0541)

Mean min calcium -0.0001 (-0.0002, 0.0)

https://doi.org/10.1371/journal.pone.0204920.t008
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renal indicators (e.g., GFR, UN), labs indirectly associated with renal function (Hemoglobin),

heart failure, diuretics (loop, thiazides), and anti-hypertensives such as angiotensin-converting

enzyme inhibitors (ACEi), which is also reflected in our findings. Although it is difficult to test

rigorously, our study might suggest an opportunity to more extensively incorporate laboratory

values from the past as predictors; Cronin et al. only used diagnoses and body mass index fur-

ther than 365 days back and medications and temperature further than 90 days back.

We can also compare our LR1 with lasso results from Cronin et al. High odds ratios in Cro-

nin et al. were present in patients on antihypertensives (ACEi, angiotensin II receptor blockers,

thiazides, β-blockers), diagnoses associated with AKI (diabetes, anemia, hyper and hypoten-

sion, peripheral vascular disease, HIV, cancer, and rheumatoid arthritis), labs associated with

renal function or injury (calcium, hemoglobin, GFR, troponin, bilirubin), and antiobiotics

(Sulfa). Again, we see many features associated with renal function, renal medications, sepsis,

or cardiovascular dysfunction, which is also reflected in our findings. In our features, but not

in Cronin et al., we see discharge to home with outpatient care provided by a home health care

organization (e.g. visiting nurse, home physical therapy, home health aide), lab values involv-

ing glucose, presence in the high risk labor and delivery unit or in the emergency department,

injury from athletics, assay of urine sodium, discharge with organization care services, and

marital status (possibly a proxy for age).

MGBC & MLR1. A substantial percentage of AKI is due to, or exacerbated by, medica-

tions. We were thus interested in examining the medications in prior hospitalizations that

might be associated with AKI in subsequent hospitalizations. There were 927 medications ana-

lyzed. The most important medication predictors are shown in Table 9. Here again, the combi-

nation of GBC and LR1 results is useful to put the identified features in context. Medications

used to treat chronic obstructive pulmonary disease, such as albuterol and betamethasone, psy-

chiatric conditions (respiridone, trazadone, aripiprazole), or obstetric therapies (magnesium,

pre-natal vitamins) had a negative association with AKI. Our aim was to detect potentially

modifiable risk factors, but it is very difficult to disentangle confounders (e.g., Heparin might

be associated with thrombotic event prophylaxis, dextrose with diabetic ketoacidosis and mal-

nutrition). Most medications associated with high risk were actually given to protect the kid-

ney and most medications associated with low risk were given in the context of robust kidney

health. This analysis might be enhanced by somehow incorporating predictors from the cur-

rent hospitalization. We re-emphasize that no causal inference can be performed in this study,

but interesting findings include tacrolimus (known nephrotoxicity [81]), midazolam (this

association has been shown relative to propofol [82]), and oxycodone (opioid nephrotoxicity

is currently researched [83]). It is worth highlighting the counter-intuitive finding that ibupro-

fen administration in prior hospitalizations is a negative predictor for AKI. Probably this is

because non-steroidal anti-inflammatory medications (i.e. ibuprofen, ketorolac) are contrain-

dicated in patients with elevated AKI risk, and thus administration during a prior hospitaliza-

tion is a clinical indicator for low AKI risk. However, patients with extensive histories of

ibuprofen use, given its potentially deleterious effect on the kidney, should be monitored more
closely for AKI. Here however we analyze administrations, which, unlike use, reflect provider

behavior.

Discussion

In this study, we investigated the feasibility of using prior hospitalizations to estimate AKI risk

at hospital re-entry. The general objective was to extract and compress high-dimensional EHR

information into a probability estimate specifically for rehospitalized patients. Performance

was assessed at the patient as well as hospitalization level. Errors were also carefully analyzed
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Table 9. Feature importances/coefficients for MGBC and MLR1. Each feature corresponds to the count of adminis-

trations of the medication over prior hospitalizations.

MGBC Mean (95% CI)

Furosemide 0.0718 (0.0706, 0.0731)

Ibuprofen 0.0356 (0.035, 0.0361)

Sodium Chloride 0.0306 (0.0299, 0.0313)

Allopurinol 0.0245 (0.0239, 0.025)

Amlodipine Besylate 0.0237 (0.0232, 0.0242)

Oxycodone-Acetaminophen 0.0237 (0.023, 0.0243)

Spironolactone 0.0232 (0.0224, 0.024)

Heparin Sodium 0.0229 (0.0223, 0.0235)

Tacrolimus 0.0217 (0.0212, 0.0223)

Enoxaparin Sodium 0.0210 (0.0203, 0.0217)

Torsemide 0.0189 (0.0183, 0.0195)

Aspirin 0.0187 (0.0179, 0.0195)

Fentanyl Citrate 0.0183 (0.0171, 0.0194)

Dextrose 0.0180 (0.0175, 0.0186)

Levothyroxine Sodium 0.0154 (0.0148, 0.0161)

Piperacillin-Tazobactam In D 0.0145 (0.014, 0.0151)

Epoetin Alfa 0.0144 (0.0139, 0.0149)

Carvedilol 0.0133 (0.0125, 0.0141)

Hydralazine HCL 0.0128 (0.0121, 0.0135)

Sevelamer Carbonate 0.0119 (0.0111, 0.0126)

Metoprolol Tartrate 0.0113 (0.0107, 0.0118)

Docusate Sodium 0.0111 (0.0103, 0.0119)

Ceftriaxone Sodium In Dextrose 0.0104 (0.0097, 0.0111)

Pantoprazole Sodium 0.0103 (0.0095, 0.0111)

Metformin Hcl 0.0102 (0.0096, 0.0109)

Albuterol Sulfate Hfa 0.0099 (0.0092, 0.0105)

Vancomycin Hcl In Dextrose 0.0099 (0.0092, 0.0105)

Nephro-Vite 0.0090 (0.0084, 0.0096)

Magnesium Sulfate 0.0083 (0.0077, 0.0088)

Midazolam (Versed) 0.0083 (0.0076, 0.0091)

Glycopyrrolate 0.0081 (0.0072, 0.0088)

Paricalcitol 0.0071 (0.0062, 0.0081)

Cyclosporine Modified 0.0070 (0.0061, 0.0079)

Acetaminophen 0.0070 (0.0063, 0.0077)

Benazepril HCL 0.0068 (0.006, 0.0076)

Diltiazem HCL Er Beads 0.0067 (0.0057, 0.0076)

Labetalol HCL 0.0067 (0.006, 0.0073)

Losartan Potassium 0.0064 (0.0058, 0.0071)

Warfarin Sodium 0.0064 (0.0058, 0.007)

Albumin Human 0.0063 (0.0056, 0.0071)

MLR1 (+) Mean (95% CI)

Furosemide 0.1643 (0.161, 0.1677)

Heparin Sodium 0.1349 (0.1325, 0.1372)

Allopurinol 0.0947 (0.0912, 0.0982)

Enoxaparin Sodium 0.0883 (0.0857, 0.0911)

Piperacillin-Tazobactam In D 0.0809 (0.079, 0.0828)

(Continued)
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to uncover gaps in predictive performance, with comprehensive analysis of diagnosis, race,

gender, age, utilization, and method of AKI diagnosis. Increasing the l1 penalty produced a

parsimonious and interpretable HPLR1 whose features correspond to a striking physiological

fingerprint for AKI risk. Stability selection was performed to reinforce the results given the

colinearity of features. Other interesting predictors for AKI in rehospitalized patients were

found, including medications, which may enhance specification of statistical AKI models and

new investigations into modifiable risk factors. While such predictive systems require exten-

sive validation before clinical deployment, this work is a step toward creating automated AKI

predictions, specifically for rehospitalized patients.

Table 9. (Continued)

Dextrose 0.0785 (0.0725, 0.0844)

Tacrolimus 0.0727 (0.0707, 0.0746)

Metoprolol Tartrate 0.0706 (0.0683, 0.0729)

Hydralazine HCL 0.0668 (0.0647, 0.0689)

Torsemide 0.0609 (0.0583, 0.0637)

Glucagon HCL (Rdna) 0.0545 (0.0483, 0.0606)

Ceftriaxone Sodium In Dextrose 0.0536 (0.0512, 0.056)

Epoetin Alfa 0.0531 (0.051, 0.0553)

Spironolactone 0.0530 (0.0501, 0.056)

Metoprolol Succinate 0.0500 (0.0483, 0.0517)

Sodium Chloride 0.0436 (0.0398, 0.0474)

Moxifloxacin HCL 0.0358 (0.0341, 0.0375)

Ciprofloxacin HCL 0.0347 (0.0326, 0.0368)

Fish Oil 0.0284 (0.0269, 0.0299)

Oxycodone HCL 0.0281 (0.026, 0.0303)

MLR1 (-) Mean (95% CI)

Ibuprofen -0.2765 (-0.2807, -0.2722)

Oxycodone-Acetaminophen -0.1575 (-0.1607, -0.1544)

Promethazine HCL -0.0914 (-0.0949, -0.0879)

Ondansetron -0.0791 (-0.082, -0.0761)

Hydroxyzine Pamoate -0.0707 (-0.0733, -0.0681)

Albuterol Sulfate Hfa -0.0576 (-0.0609, -0.0543)

Nicotine Polacrilex -0.0468 (-0.0501, -0.0434)

Tetanus-Diphth-Acell Pert -0.0393 (-0.0415, -0.0372)

Cyclobenzaprine HCL -0.0313 (-0.0335, -0.0292)

Classic Prenatal Vitamin -0.0312 (-0.0334, -0.0289)

Trazodone HCL -0.0300 (-0.0331, -0.0268)

Oxytocin -0.0288 (-0.0309, -0.0267)

Risperidone Microspheres -0.0264 (-0.0289, -0.024)

Risperidone -0.0231 (-0.0255, -0.0207)

Lorazepam (Ativan) -0.0207 (-0.0227, -0.0186)

Ketorolac Tromethamine -0.0207 (-0.0229, -0.0183)

Betamethasone Acetate & Sodium Phosphate -0.0119 (-0.0134, -0.0103)

Prenavite Protein Coated -0.0091 (-0.0116, -0.0064)

Aripiprazole -0.0067 (-0.008, -0.0053)

Etomidate -0.0065 (-0.0077, -0.0053)

https://doi.org/10.1371/journal.pone.0204920.t009
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With respect to generalizeability, we stress that we do not present a “model” for AKI, but

instead a mapping from input features to AKI probabilities. We reference a distinction made

in Schmueli, et al. [84] between explaining and predicting. Here, we do the latter. We also refer-

ence a distinction made in Breiman, et al. [32] between models and algorithms. Here, we use

the latter. An explanatory model would require different methods, especially with regard to

model specification and dependencies in the data. We also recommend that parameters be

retuned on different data for use elsewhere (“train locally”) as is commonly advised [16, 75,

85]. Thus, the systems presented here are only valid in the population from which the training

data were sampled, and even there would require out-of-sample validation.

Comparison to other AKI and EHR prediction studies

The state of the art in AKI prediction is the work of Cronin, et al. [16]. Direct comparison of

performance with their models is challenging for several reasons. First, they provide predic-

tions at a different time. We provide an at-entry risk score while Cronin et al. provides a risk

score 48 hours post-admission. We therefore use only features from prior hospitalizations

while Cronin et al. uses features from the current hospitalization (from the 48 hours between

admission and prediction time) as well as prior history. Specifically, Cronin et al. used pread-

mission body mass index and preadmission diagnoses from -365 days to -24 hours and pread-

mission medications and temperatures from -90 days to -24 hours. We did not have access to

body mass index or temperature, and the feature engineering required to extract other vari-

ables such as medications was labor intensive, so even a comparison of our system with their

pre-admission system was not possible. Second, Cronin et al. focused specifically on hospital-

acquired AKI while we focused on hospital and community acquired AKI. Third, we analyzed

different cohorts. In Cronin et al., since prediction was made at 48 hours, all hospitalizations

with duration less than 48 hours were excluded (roughly 1.9 million hospitalizations). In con-

trast, our study, in which a prediction is made at hospital re-entry, applies to any patient

regardless of length of stay. We, however also excluded patients without prior hospitalizations

(although we could give a prediction for these patients with no information by simply using

the baseline prevalence of AKI). Therefore, in the space of all patients still present after 48

hours, the system in Cronin et al. is more general; in the space of all rehospitalized patients,

our system is more general. Also, in Cronin et al., data was from Veterans Affairs hospitals and

included outpatient data; we only used inpatient data from a single hospital network, not just

veterans. Another similar study Kate et al. [27], analyzed strictly patients 65 years of age and

older, also making comparison difficult.

Outside of AKI, the state of the art in EHR prediction has generally been achieved with

RNN [86–88] or variations [89]. Here, we implemented an LSTM for sake of comparison. The

LSTM implemented here was not well optimized compared to those in other studies, so it did

not outperform the other systems. Nevertheless, LSTM has the clear advantage of reducing

dependence on feature engineering.

Interpretability

We do not recommend GBC, LR1, or LSTM for deployment because they are opaque. These

systems make the best predictions. However, GBC, LSTM, and LR1 analyze thousands of fea-

tures. In principle, a user must understand and check each of these features in order to truly

explain a prediction. Otherwise, GBC or LR1 could infer that ibuprofen lowers AKI risk in an

older patient with arthritis. Or, given so many candidate predictors, GBC or LR1 might rely

heavily on a feature whose relationship to the response is borne of pure chance throughout the
dataset and undetectable by internal validation [90]. Some studies [8] have recommended that
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tools like GBC or LR1 only be used for feature discovery, and rather that a tool similar to

HPLR1 be deployed, even with some reduction in predictive performance. The user, on whom

the onus falls to separate prediction from action [91], can more easily interpret HPLR1. Using

fewer features especially facilitates tracing an aberrant prediction back to, for example, a data

entry error. A parsimonious statistical model might even enable much needed closed-form

expressions for prediction intervals (e.g., since prediction variance increases with risk). Thus,

insights from this study can be used for specification of such a model.

We note, however, that only taking into account a few features potentially results in a sys-

tem that does not adjust for variables when it should. Further, a human provider cannot ana-

lyze 1,500 features. Many of the features we analyze here are hidden from the EHR user. A

learning algorithm that analyzes a large amount of—sometimes hidden—EHR data might thus

be a useful complement. However, we cannot ignore the benefits of parsimony, so recommend

that both GBC (or LR1) and HPLR1 be used in concert to give two separate risk scores.

Limitations & future directions

The major limitation of this study is difficulty in validating the assumptions outlined in the

methods, especially the first assumption regarding interventions that flip labels. Dependence

on this assumption could be reduced by predicting sCr directly; since an intervening provider

is responding to sCr, the algorithm could stay one step ahead, or by modifying the cost func-

tion to account for uncertainty in AKI status [92]. The last assumption is also difficult to vali-

date and might lead to a system that favors high utilizers [93]. These difficulties arise from the

fact that EHR data is not collected explicitly for predictive modeling. We also list some meth-

odological limitations and future directions: the HP search space and the HP themselves were

not conceived of independently in each fold of nested CV, but instead set manually. Bias was

preferred to variance in choice of HP (and it was required that the test performance of the fold

used to select HP not be optimistic relative to the other folds, a constraint much more easily

fulfilled with higher bias HP). By doing so, however, the data were slightly underfit, as evi-

denced by the error analysis, which essentially revealed undetected patterns. This is especially

apparent with respect to age. We strongly suspect that had an ideal parameter search been

achieved, or had HP that allowed higher variance been permitted, the GBC could have

detected most of these patterns, and the error analysis would not have revealed such biases.

This, however, might have increased risk of overfitting. At least bias is possible to detect (as we

have done) whereas overfitting can be elusive. Given the high number of predictors (especially

relative to the cases), GBC and LR1 are likely overfit (not in the traditional sense, which can be

detected via internal validation) but to peculiarities of the entire dataset, impossible to deter-

mine with internal validation alone. We however, via domain-expertise-guided evaluation of

features, consider this study to still contain insights of value to this prediction problem and

cohort.

Administrative codes are problematic predictors. Although codes may be embedded or oth-

erwise optimized as features [38, 94], such approaches are not straightforward to implement in

a pipeline. Also, past AKI is a good predictor of future AKI. Numerous reports suggest that

codes have low sensitivity for AKI. Therefore, using code-based AKI as a predictor is not ideal.

AKI as a target was supplemented with sCr; AKI as a predictor was not supplemented with

sCr, however, as this would necessitate extensive preprocessing of sCr trajectories in real time

if deployed (time series models could take care of this for free, however). For missing data

imputation, more careful classification of missingness and more sophisticated methods such

as matrix completion should be explored in the future. For laboratory values, Gaussian pro-

cesses have also shown good performance [88].
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Codes are also problematic as targets. Although sCr-based diagnoses were used to supple-

ment codes, we noted high discrepancy between the two. Visual inspection suggests that sCr

for hospitalizations diagnosed by code but not sCr usually began above normal and then

decreased during the hospital stay, suggesting that an outpatient reading, or even a high initial

measurement, prompted code assignment. Without these cases, our findings align with previ-

ous reports that codes are specific but not sensitive for AKI. It was also apparent that errors

were slightly higher in the cases diagnosed by sCr but not by code. Another difficulty with

diagnosis codes as labels is that they are often assigned at the end of the hospitalization and

therefore not time stamped. It is impossible therefore to know when the AKI occurred during

the hospitalization (i.e., we do not distinguish between hospital- and community-acquired

AKI). On a similar note, because the majority of AKI codes were of “unspecified” severity, it

was not possible to distinguish severities of AKI. This issue could be alleviated by predicting

sCr directly in future work. Also relevant but not assessed is the performance of the systems as

a function of time as analyzed in [15]. For example, certain medications might wane in popu-

larity or diseases might be seasonal. We hope to asssess this in the future and analyze the effect

of online training.

Conclusion

This study gives insight into the EHR-based AKI prediction problem in rehospitalized

patients. Our objective was to investigate the feasibility of predicting AKI in this cohort as well

as to analyze some interesting predictors. We trained several learning algorithms and perform

an in-depth error analysis, looking for specific patient groups for which predictions might be

poor. We also revealed novel predictors that could be used for specification of a statistical

model. We further focused on pharmaceutical predictors that may be worth further explora-

tion as modifiable risk factors. We consider this work a step towards an automated, locally-

trained tool that leverages sometimes hidden, longitudinal EHR data to estimate AKI risk in

rehospitalized patients without manual ordering of tests, data collection, or data entry. Such

an estimate could provide a prior probability at the time of hospital re-entry to be used by an

admitting provider or another predictive algorithm.

Supporting information

S1 File. Algorithm specifications.

(PDF)

S1 Fig. Metric distributions. Metric distributions over the 250 inner folds are shown.

(TIF)

S2 Fig. Error distributions by diagnosis method. We show the distributions of error, jŷ � yj
where y is a binary label and ŷ is the probability estimate, by diagnosis method. “_” corre-

sponds to cases where diagnosis was made either by code or sCr; “^” corresponds to cases in

which diagnosis was made by both code and sCr; “-” indicates a set difference. Histograms

have 1000 bins.

(TIF)

S3 Fig. LR1 evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

LR1.

(TIF)
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S4 Fig. ALR1 evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

the Anscombe LR1.

(TIF)

S5 Fig. RLR1 evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

the randomized LR1.

(TIF)

S6 Fig. HPLR1 evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

the highly penalized LR1.

(TIF)

S7 Fig. RHPLR1 evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV

for the randomized highly penalized LR1.

(TIF)

S8 Fig. WGBC evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

weighted GBC.

(TIF)

S9 Fig. WGBC calibration. Observed hospitalization-level risk is plotted against predicted

risk (top) and patient-level mean observed risk against mean predicted risk (bottom). In the

scatter plots, alpha level is 0.05 and the red calibration curve corresponds to all hospitaliza-

tions or to patients who had either mean risk over hospitalizations of 1 or 0. The calibration

curves are computed according to the macro-averaged predicted output per hospitalization

or patient over the 50 iterations of 5 fold CV (over 250 total folds). Ideal calibration is the

dotted black diagonal. PO = observed risk per hospitalization, PP = predicted risk per hospi-

talization, PO = mean observed risk over hospitalizations, PP = mean predicted risk over hos-

pitalizations.

(TIF)

S10 Fig. WGBC utilization. The mean and STD absolute error is shown as a function of the

number of hospitalizations. Patients were binned based on the number of hospitalizations in

the dataset and then, over bins, the mean error and STD of the predictions were computed.

Stratification by outcome is performed since it was earlier established that the hospitalization:

patient ratio is higher in cases than in controls.

(TIF)

S11 Fig. WLR1 evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

weighted LR1.

(TIF)

S12 Fig. WHPLR1 evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV

for weighted HPLR1.

(TIF)

S13 Fig. SGBC evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

sampled GBC.

(TIF)

S14 Fig. SLR1 evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

sampled LR1.

(TIF)
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S15 Fig. SHPLR1 evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV

for sampled HPLR1.

(TIF)

S16 Fig. RGBC evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

the RGBC using features from only the most recent hospitalization rather than all available

prior hospitalizations.

(TIF)

S17 Fig. MGBC evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV

for the MGBC trained only on medications.

(TIF)

S18 Fig. MLR1 evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

the MLR1 trained only on medications.

(TIF)

S19 Fig. CLR evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

clinical LR.

(TIF)

S20 Fig. LSTM evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV for

LSTM.

(TIF)

S21 Fig. NGBC evaluation. ROC, Calibration, and PR curves for 50 iterations of 5-fold CV

for GBC trained on permuted response. The identity for the calibration curve was hidden and

the alpha value set to 1 for better visualization.

(TIF)

S22 Fig. NGBC utilization. The mean and STD absolute error is shown as a function of the

number of hospitalizations. Patients were binned based on the number of hospitalizations in

the dataset and then, over bins, the mean error and STD of the predictions were computed.

Stratification by outcome is performed since it was earlier established that the hospitalization:

patient ratio is higher in cases than in controls.

(TIF)

S23 Fig. NGBC prediction variance. The mean and standard deviation of predicted probabili-

ties are plotted over iterations (per hospitalization). Alpha = 0.01 for all plots.

(TIF)

S24 Fig. GBC error by age. Alpha = 0.01. The top (in red, lighter) are the cases and the bottom

(in blue, darker) are the controls.

(TIF)

S25 Fig. HPLR1 coefficient perturbation by utilization. Influence over coefficients of

HPLR1 vs. utilization is shown for each patient with two or more hospitalizations. Distance

between coefficient vectors was computed using the l1 norm.

(TIF)

S1 Table. Regression results for error analysis. Shown is the choice of HP Alpha and the

train, validation, and test mean squared error (MSE) of the regression from the fold in which

Alpha was chosen.

(PDF)

Predicting acute kidney injury at hospital re-entry using high-dimensional electronic health record data

PLOS ONE | https://doi.org/10.1371/journal.pone.0204920 November 20, 2018 32 / 38

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s021
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s022
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s023
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s024
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s025
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s026
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204920.s027
https://doi.org/10.1371/journal.pone.0204920


S2 Table. Feature importances/coefficients for RLR1. For laboratory results, the first func-

tion is G, aggregation over hospitalizations, and the second is F, aggregation within a hospitali-

zation; e.g., “mean max sCr” is the mean over hospitalizations of the maximum sCr of each

hospitalization.

(PDF)

S3 Table. Coefficients of RHPLR1. For laboratory results, the first function is G, aggregation

over hospitalizations, and the second is F, aggregation within a hospitalization; e.g., “mean

max sCr” is the mean over hospitalizations of the maximum sCr of each hospitalization.

(PDF)
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