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Abstract

There is lack of a standardized measure of technical proficiency and skill acquisition for

robot-assisted surgery (RAS). Learning surgical skills, in addition to the interaction with the

machine and the new surgical environment adds to the complexity of the learning process.

Moreover, evaluation of surgeon performance in operating room is required to optimize

patient safety. In this study, we investigated the dynamic changes of RAS trainee’s brain

functional states by practice. We also developed brain functional state measurements to

find the relationship between RAS skill acquisition (especially human-machine interaction

skills) and reconfiguration of brain functional states. This relationship may help in providing

trainees with helpful, structured feedback regarding skills requiring improvement and will

help in tailoring training activities.

Introduction

With the widespread adoption of robot-assisted surgery (RAS), it becomes crucial to provide

robots with the capability of collaborating closely with humans in a complex and critical envi-

ronment like the operating room (OR) [1, 2]. Understanding how learning and skill acquisi-

tion occur can open new horizons for surgical teaching, skill assessment, and also set a

platform for active interaction with robots. This shared environment encompasses trainees

acquiring the appropriate knowledge, learning the necessary surgical skills and how to interact

with robots on one side, and robots should be equipped appropriately to learn new collabora-

tive tasks on the other [3, 4].

The main challenge in skill assessment is the dynamic nature of learning, which results

in brain neuroplasticity changes, where the brain’s neural organization changes during the

development of a motor cognition skill through practice [5]. Learning technical surgical

skills matures through 3 stages. First, the “cognitive” stage as one initially learns the skill and–

thoughtfully- performs it. With practice, trainees become less thoughtful about the steps and

reach “the associative stage” and can operate with fewer disruptions. The final stage is the
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“autonomous” stage, where the trainee can perform automatically without putting much

thought, meanwhile paying more attention towards other aspects of surgery [1, 6, 7].

Several key brain functional features have been proposed for evaluating surgical skills profi-

ciency, including kinematics and motor control. Hand movement kinematics has been the

main source of information in various motor skill assessment studies [8–12]. Completion

time, distance by hand, total distance traveled, speed, curvature, and relative phase of two

hands trajectories as well as tool-based metrics of tool out of view, tools collision, tissue dam-

age, camera control, number of critical errors, and clutch usage have been proposed for RAS

skill evaluation [13–15]. However, tool-based metrics evaluate surgical skills based on static

measurements and do not represent any dynamic effect and are not able to assess the associ-

ated change in brain functioning and brain neuroplasticity. Still, there is controversy about the

optimal method for cognitive analysis during acquisition of RAS skills [6, 16–19]. Recording

brain neural oscillations of surgeons while interacting with robots, utilizing electroencephalo-

gram (EEG) neurofeedback, has been proposed to analyze functional dynamics of the brain of

surgeons working in laparoscopy compared to those working in RAS [19]. EEG cognitive met-

rics, such as mental workload and level of engagement, have been used to analyze brain activity

improvement during RAS learning [11, 19, 20]. However, skill-specific structured feedback to

trainees could not be provided. It has been shown that modular training, defined as decon-

struction of a procedure into smaller modules, can transfer technically challenging surgical

skills in a step-wise fashion under appropriate supervision. Also, a structured feedback would

be more constructive, as it allows tailoring of training activities and focusing on individual

steps [21, 22].

High performance level in multifaceted tasks depends upon several factors including the

learner’s ability to develop perceptual, cognitive, and motor skills [5]. The human brain is a

complex system that includes various subsystems which interact with each other and dynami-

cally change over different temporal scales while interacting with changes in the environment.

It has been shown that during motor-cognition skill acquisition, there is a change of functional

connectivity throughout areas of the brain [23, 24].

In this study, we hypothesized that the brain functional states reconfiguration during RAS

skill acquisition can be informative toward monitoring surgeon’s performance progress during

training. We analyzed the features extracted from brain functional network during RAS skill

acquisition. Additionally, changes of brain states were quantified using dynamic network anal-

ysis to develop metrics for evaluation of performance in RAS. The main goal was to investigate

dynamic changes of the brain functional states, and to find whether these changes are associ-

ated with performance improvement and practice time.

EEG has been previously used in different applications including mental workload mea-

surement [25] gesture classification in computer aided design areas [26], and stress evaluation

[18]. Here, EEG data were used to extract the brain functional network of RAS surgeon

involved in different surgical tasks.

Results

Architecture of learning

We first sought to address the question: “Are there sets of RAS surgeon’s brain areas that pref-

erentially interact with one another during RAS tasks practice and learning?” To answer this

question, we examined the behavior of a module allegiance matrix (MAM) throughout learn-

ing (sessions). Values of elements of this matrix (MAMij) indicate the probability that two

areas (channels i and j) be assigned to the same community, in the set of functional brain net-

works constructed from all subjects and recordings. MAM matrices during six sessions and
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different frequency bands were represented in Fig 1 (Data available in S1 File). These architec-

tures display that channels in motor area (Frontal and Central channels [27]) consistently

were assigned to the same community (recruited). The same thing happened to channels in

cognitive (Prefrontal and Parietal channels [27]) and visual areas (Occipital channels [27]).

This may suggest that areas relevant to task execution (motor and visual) and cognitive control

(cognitive) are recruited consistently while other areas might only be transiently recruited.

Dynamic architecture of learning

We then sought to address the question: “Does functional contribution of these consistent

communities or their interactions change with practice during RAS learning process?” To

answer this question, we used Integration and recruitment quantities (see Methods). All sub-

jects started study without any RAS or human-robot interaction experience. During the study,

we considered practice time (seconds) from session to session as practice time or experience of

subject for the next session. It should be noted that practice time may not be the only effective

variable here, as gap between practice sessions may also affect learning.

We used correlation analysis to be able to detect significant effects of practice time on inte-

gration and recruitment quantities and also investigate relationship between these quantities

and performance level. Results of this investigation were represented in Table 1 (Data available

in S2 File).

Significant correlation between performance level and motor-cognitive integration during

the β frequency band may indicate at higher performance levels (expertise improvement) ten-

dency of channels in motor and cognitive modules to be integrated together decreases. It may

suggest that autonomy of motor and cognitive modules increases to process information inde-

pendently from each other, during β frequency band, by performance improvement. Beta

waves are characteristics of a strongly engaged mind, able to perform complex mental process-

ing [28]. Hence, improvement of motor and cognitive autonomy at βfrequency band (while

brain is strongly engaged), by performance, may be an informative metric for performance

evaluation.

Significant correlation between practice time and motor-cognitive integration during θ fre-

quency band (unconscious band [28]), and motor-visual integration during γ frequency band

(crucial frequency range for self-awareness and insight, cognition, and coordinating simulta-

neous processing throughout brain areas [28]), and visual-cognitive integration during all fre-

quency bands indicates that autonomy of these modules increases by practice. These features

may also be a good measurement for performance evaluation.

Dynamic architecture after long gap in learning

We also sought to address the question: “Are the change in brain functioning permanent or

does it deteriorate again?” Since our recording sessions were not regular and were limited to 6

sessions and also gap between practices was not equal for all sessions, to answer this question,

we found the correlation between practice gap and integration and recruitment, represented

in Table 2 (Data available in S2 File).

This result showed that a higher practice gap was associated with lower recruitment of

motor (α and β), and visual (β) modules. This results in longer learning process. Although

architecture of RAS learning seems to be permanent (Fig 1), dynamic architecture of the brain

during learning was not permanent and it was affected by gap in practice. However, it should

be noted that more recording sessions both before gap and after gap are needed to be able to

answer this question more accurately, and to quantify the rate of deterioration and recovery.

Dynamic changes of brain functional states during surgical skill acquisition
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Change of RAS trainee’s brain functional network and cognitive features by

task outcome (FSRS metrics) improvement throgh individual subjects and

tasks

After investigating the dynamic architecture of learning, we also sought to address the ques-

tion: “How does cognitive and functional connectivity features change by performance

Fig 1. Architecture of RAS learning during 6 recording sessions, through frequency bands of θ, α, β, and γ channels 1–20

represent the EEG leads numbers. Channels 1–8 (motor area), channels 9–10 (Visual cortex), channels 11–16 (cognitive area), and

channels 17–20 (other areas such as temporal cortex).

https://doi.org/10.1371/journal.pone.0204836.g001

Table 1. Relationship between integration and recruitment through brain areas at different frequency ranges, and average performance level and practice time for

recordings used for extraction of each module allegiance matrix through subjects and sessions. All 524 recordings during 6 sessions were considered to extract integra-

tion and recruitment values. Significant correlations (correlation>0.2 and P-value<0.05) are bolded.

Recruitment (P-value) Integration (P-value) Frequency

Motor Cognitive Visual Motor-Visual Motor-Cognitive Visual-Cognitive

Performance Level 0.56(0.24) 0.32(0.52) -0.48(0.32) 0.61(0.19) -0.58(0.22) -0.66(0.15) θ
-0.17(0.73) -0.36(0.48) -0.31(0.53) 0.28(0.57) -0.47(0.34) -0.66(0.15) α

0.18(0.73) 0.12(0.81) -0.43(0.38) 0.57(0.22) -0.84(0.03) -0.66(0.15) β

0.28(0.59) 0.53(0.27) -0.16(0.76) 0.53(0.27) -0.56(0.24) -0.66(0.15) γ

Practice time (second) -0.17(0.74) -0.20(0.70) -0.72(0.10) -0.79(0.05) -0.90(0.01) -0.89(0.01) θ
-0.72(0.10) -0.22(0.68) -0.41(0.42) 0.79(0.06) -0.77(0.06) -0.89(0.01) α

-0.45 (0.36) -0.55 (0.25) -0.73(0.09) 0.59(0.21) -0.68(0.13) -0.89(0.01) β

-0.30(0.55) 0.34(0.50) -0.46(0.35) 0.85(0.03) -0.81(0.05) -0.89(0.01) γ

https://doi.org/10.1371/journal.pone.0204836.t001
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improvement during RAS skill acquisition?” To answer this question, we calculated the corre-

lations between Fundamental Skills of Robotic Surgery (FSRS)metrics and cognitive and func-

tional connectivity features through all subjects and recordings (Table 3; Data available in S3

File).

Positive correlation between CT and most FSRS metrics is in agreement with results in the

literature [20] because higher FSRS scores are associated with lower performance level and

Table 2. Relationship between integration and recruitment of brain areas and average practice gap for recordings which were used for ‘module allegiance matrix’

extraction. All 524 recordings during 6 sessions were considered to extract integration and recruitment values. Significant correlations (correlation>0.2 and P-

value<0.05) are bolded.

Recruitment (P-value) Integration (P-value) Frequency

Motor Cognitive Visual Motor-Visual Motor-Cognitive Visual-Cognitive

Practice Gap -0.53(0.28) -0.16 (0.78) -0.43(0.39) 0.59(0.20) -0.76(0.07) -0.72(0.10) θ
-0.81(0.04) 0.39 (0.43) -0.07(0.89) 0.75(0.08) -0.65(0.15) -0.72(0.10) α

-0.87 (0.02) -0.65 (0.15) -0.85(0.02) 0.2(0.70) -0.39(0.44) -0.72(0.10) β

-0.78(0.06) 0.03(0.94) -0.06(0.90) 0.76(0.07) -0.44(0.38) -0.72(0.10) γ

https://doi.org/10.1371/journal.pone.0204836.t002

Table 3. Relationship between FSRS metrics, CT, and extracted EEG features (cognition and network) at different frequency bands. Twenty-seven subjects per-

formed 5 tasks on robot simulator during six sessions, number of total recording was 524. However, Robotic Surgery Simulator (Ross) scores were not reported for some

recordings. Total number of recordings considered in this correlation analysis was 260. Significant correlations (correlation>0.2 and P-value<0.05) are bolded.

Clutch

Usage

(P-value)

Left Tool

Grasp

(P-value)

Left-Tool out of

view

(P-value)

# of-Errors (P-

value)

Right-Tool Grasp (P-

value)

Right-Tool Out-

of-View

(P-value)

Tissue

Damage

(P-value)

Tool-Tool

Collision

(P-value)

CT 0.54

(3.35x10-21)

0.41

(5.03x10-12)

0.32

(1.76x10-7)

0.39

(2.7x10-11)

0.47

(7.79x10-16)

0.47

(9.8x10-16)

0.41

(3.72x10-12)

0.06

(0.03)

Distraction 0.16

(0.01)

-0.02

(0.79)

0.07

(0.28)

0.01

(0.91)

-0.03

(0.65)

0.04

(0.48)

0.07

(0.27)

0.03

(0.65)

LE 0.11

(0.07)

0.11

(0.07)

0.13

(0.04)

0.02

(0.73)

0.15

(0.01)

0.11

(0.06)

0.08

(0.22)

-0.02

(0.76)

HE -0.10

(0.11)

-0.10

(0.13)

-0.12

(0.05)

-0.03

(0.66)

-0.12

(0.04)

-0.08

(0.20)

-0.08

(0.17)

0.02

(0.74)

MW -0.15

(0.01)

0.003

(0.95)

-0.09

(0.17)

-0.10

(0.12)

-0.14

(0.02)

-0.07

(0.28)

-0.10

(0.13)

-0.08

(0.21)

APA -0.13

(0.03)

-0.10

(0.1)

-0.07

(0.26)

-0.03

(0.64)

-0.17

(0.007)

-0.11

(0.07)

-0.02

(0.80)

0.02

(0.78)

AI -0.01

(0.92)

-0.01

(0.92)

0.01

(0.82)

-0.20

(0.00)

-0.04

(0.49)

0.05

(0.38)

-0.05

(0.38)

-0.01

(0.84)

Strength θ -0.18

(0.003)

-0.08

(0.21)

-0.11

(0.09)

-0.04

(0.51)

-0.18

(0.003)

-0.13

(0.03)

-0.11

(0.07)

0.00

(0.97)

Strength α -0.19

(0.001)

-0.11

(0.08)

-0.13

(0.03)

-0.07

(0.26)

-0.22

(4x10-4)

-0.14

(0.02)

-0.13

(0.03)

-0.02

(0.75)

Strength β -0.29

(2.5x10-6)

-0.15

(0.01)

-0.18

(0.004)

-0.15

(0.02)

-0.25

(4.9x10-5)

-0.23

(0.002)

-0.14

(0.02)

-0.03

(0.60)

Strength γ -0.33

(3.6x10-8)

-0.14

(0.02)

-0.17

(0.007)

-0.15

(0.01)

-0.24

(1x10-4)

-0.22

(3x10-4)

-0.11

(0.07)

-0.04

(0.55)

Communication

θ
-0.18

(0.003)

-0.10

(0.10)

-0.10

(0.10)

-0.02

(0.71)

-0.18

(4x10-3)

-0.13

(0.03)

-0.10

(0.1)

0.03

(0.59)

Communication

α
-0.18

(0.003)

-0.11

(0.07)

-0.11

(0.08)

-0.04

(0.51)

-0.19

(1x10-3)

-0.13

(0.04)

-0.10

(0.09)

0.03

(0.60)

Communication

β
-0.24

(8.2x10-5)

-0.14

(0.02)

-0.13

(0.04)

-0.12

(0.05)

-0.22

(3x10-4)

-0.18

(0.003)

-0.11

(0.09)

0.00

(0.94)

Communication

γ
-0.29

(2.7x10-6)

-0.14

(0.02)

-0.12

(0.05)

-0.16

(0.01)

-0.24

(1x10-4)

-0.18

(0.003)

-0.11

(0.08)

-0.01

(0.88)

https://doi.org/10.1371/journal.pone.0204836.t003
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higher CT indicates lower expertise level and performance, too. Also, we detected significant

negative correlations between network features (strength and communication) and FSRS met-

rics, which may suggest strength and communication as informative features for performance

evaluation during RAS learning.

Relationship between difficulty level, complexity level, practice time, and

cognitive and brain network features and FSRS metrics

Although all designed tasks were considered for RAS learning, the complexity level (evaluated

by expert surgeons through FSRS curriculum) of tasks were different. Also, difficulty level

(evaluated by subjects not necessarily expert) calculated by using NASA-TLX scores showed

that subjects evaluate tasks very differently. This likely stems from their ability (e.g. intelli-

gence) as subjects are different. We then sought to address the question: “Do difficulty level

and complexity level affect the outcome of subjects while performing tasks?” To answer this

question, we calculated the correlation between these quantities and FSRS metrics (Table 4;

Data available in S3 File). Results showed that performance level decreased (FSRS metrics

increased) by increase of difficulty level. Our previous studies showed that NASA-TLX scores

given by trainee are not reliable for expertise level assessment as we could not find any signifi-

cant correlation between individual NASA-TLX metrics and expertise level (assessed by expert

RAS surgeons) [20, 29], maybe because trainee doesn’t have enough proficiency to consider all

necessary factors in evaluation [6, 20, 29].

The results in Table 4 may suggest that although scores given to individual NASA-TLX are

not reliable for expertise level assessment [6, 20, 29], difficulty level feature (calculated by using

some of these metrics) can be an informative feature toward performance evaluation during

RAS skill acquisition.

Discussion

In this study we addressed the hypothesis that continuous practice during human-robot inter-

action (RAS skill acquisition) results in reconfiguration of brain functional states. We recorded

EEG data from 27 subjects when performing four RAS surgical tasks, selected from FSRS

curriculum focusing on human-machine interface skills and one advanced RAS task, on a sim-

ulator over one year. We used network analysis algorithms to extract functional states and

investigate the change of RAS trainees’ brain network dynamics at different frequency ranges.

We found that motor, cognitive, and visual areas formed three separate, functionally cohesive

Table 4. Correlations between task difficulty level, complexity level, and FSRS features at different frequency

bands. Twenty-seven subjects performed 5 tasks on RoSS simulator during six sessions, number of total recording was

524. However, Ross scores are not reported for some recordings. Total number of recordings considered in this corre-

lation analysis was 260. Significant correlations (correlation>0.2 and P-value<0.05) were bolded.

Difficulty level

(P-value)

Complexity level

(P-value)

Clutch usage 0.20 (1x10-3) 0.003 (0.96)

Left Tool Grasp 0.34 (1.03x10-8) -0.005 (0.93)

Left-Tool out of view 0.19 (2x10-3) 0.02 (0.74)

# of Errors 0.38 (1.31x10-10) 0.43 (4.47x10-13)

Right-Tool Grasp 0.33 (5.74x10-8) 0.09 (0.14)

Right-Tool Out-of-View 0.27 (6.74x10-6) 0.05 (0.41)

Tissue Damage 0.22 (3x10-4) 0.14 (0.02)

Tool-Tool Collision 0.04 (0.49) -0.08 (0.17)

https://doi.org/10.1371/journal.pone.0204836.t004
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modules whose recruitment did not change by practice but whose integration changed at dif-

ferent frequency bands as performance became more automatic.

Since learning RAS skills is very complicated and improvement of performance and rate of

learning depends on several factors including subject intelligence (we didn’t include this factor

in our study), higher practice time may not be necessarily associated with higher performance

level. Therefore, we investigated change of integration between motor, cognitive, and visual

modules by performance improvement and practice time, separately. We observed that

motor-cognitive intergration at βband decreased by performance improvement, while motor-

visual and also cognitive-visual modules did not display significant changes by performance

improvement. This result may introduce the motor-cognitive integration level at βfrequency

band as informative feature to objectify RAS performance evaluation and also to determine

the rate of learning RAS skills for individual subjects (trainees).

However, integration between all three modules showed significant changes, at different

frequency bands, by practice. These results may present autonomy improvement of motor

task executive centers (motor and visual) and cognitive control center (cognitive module) by

practice, to process information more independently and more efficiently. Also, integration

between motor-cognitive (θ), motor-visual (γ), and cognitive-visual (all frequencies) can be

proposed as informative features to estimate practice time each individual trainee needs to

learn RAS skills.

We also investigated whether long gap in practice would affect brain network dynamic

architecture. Results showed that dynamic architecture of brain functioning may not be per-

manent and be affected by factors such as practice gap. Decrease of motor module recruitment

(at α and β) and visual module recruitment (at β) with practice gap may point out that for a

shorter RAS learning curve, trainees need to practice regularly and continuously. Hence, the

deterioration of brain functioning changes as well as individual recovery rate should be consid-

ered in RAS learning curve. Since recordings in this study were limited to 6 sessions, we were

not able to investigate the deterioration and recovery rate for individual subjects and also the

effective factors on these variables. However, it seems change of integration and recruitment of

motor and visual modules can provide useful information in this regard.

In addition to RAS learning architecture and its dynamic, we also explored change of brain

functional network and cognitive features by outcome improvements, and the relationship

between difficulty level, task complexity level, practice time, and cognitive and brain network

features as well as FSRS metrics. Although we didn’t observe any significant relationship

between cognitive features and FSRS metrics, detected significant correlation between strength

and communication features and several FSRS metrics may suggest strength and communica-

tion as informative features to evaluate RAS outcome performance level. Results also showed

that higher task complexity level is associated with higher number of erros, indicating lower

performance level. Also, we found difficulty level was positively correlated with clutch usage,

left tool grasp, number of errors, right tool grasp, right tool out of view, and tissue damage.

This result indicates that higher difficulty level is associated with lower performance level.

Results retrieved from correlation analysis showed that both task complexity level and diffi-

culty level are effective variables on surgical outcome and performance level.

Our results highlighted several important opportunities to study RAS skill acquisition, cog-

nitive neuroscience of learning, rehabilitation, and human-robot interaction challenges. Exist-

ing methods of objective RAS skill evaluation, in brain functioning analysis framework, are

limited to cognitive features, extracted by using power spectral density analyses, which are

unable to accurately depict detailed dynamic changes of brain functioning during learning.

Use of brain functional network provides access to neurophysiological processes that open

new insights into understanding learning and skill acquisition.

Dynamic changes of brain functional states during surgical skill acquisition
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Methods

Experimental set up and data recording

We designed an experimental set up, where Electroencephalography (EEG) data from 27 sub-

jects was recorded during six sessions throughout one year of practice, performing five RAS

tasks (Fig 2). The study was conducted in accordance with relevant guidelines and regulations,

and were approved by Roswell Park Cancer Institute Institutional Review Board (IRB: I-

241913). Each subject provided written informed consent before participating.

Subjects. Twenty-seven medical students without any experience in robotic surgery and

human-robot interaction. Participant characteristics were summarized in Table 5.

Surgical tasks. Simulation based robotic curriculum—fundamental skills of robotic sur-

gery (FSRS)—is a virtual reality-based curriculum that contains 4 modules (orientation, motor

skills, basic surgical skills, and intermediate surgical skills) and 16 tasks [30]. Five surgical

Fig 2. Illustration of experimental set up and schematic of RAS tasks included in this study to acquire skills related to human-

machine interface. A 20-channel EEG headset was used to record trainee’s brain activity while performing tasks. Four surgical tasks

were designed using Fundamental Skills of Robotic Surgery (FSRS) curriculum: (A) Instrument control task, (B) Placement Task,

(C) Spatial control II task, (D) Fourth arm tissue dissection. (E) Hands-on surgical task performed by subjects on Robotic Surgery

Simulator (RoSS).

https://doi.org/10.1371/journal.pone.0204836.g002

Table 5. Demographics.

Participant characteristics Characteristics options Number of participants

Age, years <30 12

30–45 15

Dominant Hand Right 25

Left 2

Gender Male 17

Female 10

Simulator Experience (and gaming) No experience 27

https://doi.org/10.1371/journal.pone.0204836.t005
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tasks, selected from FSRS curriculum focusing on human-machine interface skills, were

included in this study:

1. Instrument Control Task (Fig 2A). This is task one of module one of FSRS and is designed

for subject knowledge improvement. During this task subjects learn how to move the arms,

which helps orient the user to the feel of the Robotic Surgery Simulator (RoSS) console [31].

2. Ball Placement Task (Fig 2B). This task involves subtasks 5 and 6 of module 2 of FSRS cur-

riculum and is designed to teach psychomotor skills. The trainee is presented with five balls

and five columns. Subjects pick up the balls from the tray using the robot simulator tools

and place them on top of the columns. The task is completed when a ball is placed on top of

every column [31]. Competence of the subjects for this task is evaluated using measures like

the time taken to complete the task (Completion Time—CT), the number of times tool-tool

collision occurs, and the number of times the camera is used and the clutch pedal is pressed

[31].

3. Spatial Control II Task (threading string through a series of hoops) (Fig 2C). This task

includes subtasks 7 and 8 of module 2 of FSRS curriculum and is designed to teach psycho-

motor skills. The subject passes a thread through a series of rings to hone his/her spatial

awareness, instrument control and fine motor skills.

4. Fourth Arm Tissue Retraction (Fig 2D). This task is third task of module one of FSRS cur-

riculum and is in the level of intermediate surgical skills [31]. This task combines the train-

ee’s previously acquired skills and requires coordinated control of the 4th arm to retract

tissue [31].

5. Hands-on Surgical Training (HoST) Anastomosis (Fig 2E). This task is designed to teach

advanced RAS skills, and is completely different from the other four tasks. In HoST, a simu-

lator has been developed using the hand movements of a master surgeon, and the trainee’s

hands follow the master’s hand motion. It feels like a master surgeon holds the hands of the

trainee and accompanies him/her throughout the performance. When the trainee’s hand

movement is not correct, the program pushes his/her hands to the correct path.

FSRS scores were not available for cases that trainee could not finish task during maximum

allowed time. In these cases, RoSS system automatically closed the task without reporting the

FSRS scores (260 recordings out of 524). Number of recordings for each task and session were

reported in Table 6.

Data

Twenty-seven subjects started learning robot-assisted surgery from the pre-novice level, and

during one year of practice they learnt required skills to do the basic tasks of RAS on the

Table 6. Number of total recordings and number of recordings with FSRS scores, while 27 RAS trainees performed 5 tasks during 6 sessions with various number

of repeatitions.

Task Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

Total cases With FSRS Total cases With FSRS Total cases With FSRS Total cases With FSRS Total cases With FSRS Total cases With FSRS

1 21 15 22 13 22 14 17 16 13 10 7 7

2 24 17 22 12 22 12 17 14 13 10 7 7

3 32 8 27 11 23 9 17 11 12 7 7 3

4 22 17 20 11 15 13 17 13 13 9 7 5

5 122 0 118 0 94 0 85 0 61 0 35 0

https://doi.org/10.1371/journal.pone.0204836.t006
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simulator. EEG data recording was carried out at the initial session and followed up after one

week, one month, three months, six months, and one year.

EEG data was recorded by placing the channels sensors of a 20-channel EEG headset on the

Frontal (F; cognition and action; F3, Fz, F4, F7, F8 electrode channels), Prefrontal (PF; cogni-

tion; Fp1, Fp2 electrode channels), Central (C; action; C3, Cz, C4 electrode channels), Tempo-

ral (T; perception; T3, T4, T5, T6 electrode channels), Parietal (Pa; cognition; P3, Pz, P4, Poz

electrode channels), and Occipital (O; perception; O1, O2 electrode channels) cortices (Fig 2).

All surgical tasks were done on RoSS system.

EEG data preprocessing. The EEG data from the channels was filtered with a band-pass

filter (0.5–128 Hz). Eye blinks, muscle activity, and environmental effects were considered as

artifacts. Environmental artifacts were removed by applying a 60 Hz notch filter to EEG data

[32, 33]. Muscle activity and eye movement were detected using wavelet transform and dis-

criminant function analyses (DFA) as proposed by Berka et. al [33]. Linear discriminant func-

tion analysis was applied to raw data to decontaminate it from eye blinks. Wavelet coefficients

from FzPOz and CzPOz channels were used to classify each signal data points into eye-blink

or non-eye-blink categories [32]. The eye-blink data points were removed from signal.

Brain functional network and community detection

A continuous wavelet transform with the ‘morlet’ wavelet method was used to extract the

spontaneous phase of each channel signal for all recordings. The calculated phases of pair sig-

nals were used to find phase synchronized time points. These points were used to extract

phase synchronization index for pairs of signals [34]. Calculating the phase difference

(Δφxy(t)) between two signals x(t) and y(t) by the following equation, the phase synchronized

point was defined as time point (t) in which
dðDφðtÞÞ
dt ¼ 0 [35].

DφxyðtÞ ¼ jφxðtÞ � φyðtÞj

Transferring the range of phase into boundary of φx 2 [−π, π], the phase difference for all

pairs of channels was normalized by using the range of phase difference (Dφmaxxy ¼ 2p and

Dφminxy ¼ 0) [35]. The synchronization index Γxy(FB) was calculated through frequency band

(FB) using [35, 36]

GxyðFBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½
X

t

cosðDφFBx;yðtÞÞ�
2
þ ½
X

t

sinðDφFBx;yðtÞÞ�
2

r

Ps

where, Ps is the number of data-points in the time series. The calculated synchronization index

for all pairs of channels forms the symmetric weighted adjacency matrix (Γ) [35]. The single-

layer community detection algorithm was used to extract functional communities of record-

ings for all subjects through learning sessions. Communities were extracted through (4–60 Hz)

with frequency bands of θ(4-8Hz), α(8-12Hz), β(12-35Hz), and γ(35-60Hz).

Single-layer community detection algorithm was used to detect communities of each adja-

cency matrix, which we defined these communities as functional states.

Single- layer community detection. We partitioned each adjacency matrix into commu-

nities (functional states) using modularity maximization criteria [37]. Modularity index (Q),

as a quality function, was defined as [37].

Q ¼
X

ij

½Gij � gMij�dðgi; gjÞ; dðgi; gjÞ ¼
1 gi ¼ gj
0 gi 6¼ gj

(
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where, channel ‘i’ is assigned to cluster gi, channel ‘j’ is assigned to cluster gj, and Mij is the

expected weight of the link connecting channels i and j. The coefficient γ>0 is the resolution

parameter in the multiscale modularity-maximization algorithm. Maximization of Q is equiva-

lent to partitioning the matrix into communities such that the total link weight inside the

modules is as large as possible. The generalized Louvain like “greedy” algorithm and ‘Newman-

Girvan (NG)’ null network were used for modularity maximization and community detection

[37, 38]. Elements of matrix M are defined as
kikj
2m for vertices i and j, where m is defined as

m ¼
1

2

X

i
ki and

kikj
2m

is the degree of the vertices. Expression
X

ij
ðGij �

kikj
2m
Þ is called the

modularity matrix.

To find the optimum consistent modularity and resolution parameter for each adjacency

matrix Γ, a range of γ was considered and ‘Q’ was calculated at each γ (using generalized Lou-

vain algorithm).

Finally, the resolution limit that resulted in maximum modularity and acceptable number

of communities (� 6 in this study) was selected as the optimum resolution limit for each

matrix (Fig 3). We selected the number of communities� 6 because the network in this study

was small with 20 nodes and we considered 6 brain predefined cognitive systems. Considering

more than 6 communities resulted in several singular communities, which do not convey

meaningful information toward our purpose.

Module-allegiance matrix, brain functional network measurements

Using the functional community each channel was assigned to, the Module Allegiance Matrix

(MAM) was derived. Element (i,j) in the MAM represents the probability that nodes ‘i’ and ‘j’

belong to the same community (Fig 4).

Comparison between module allegiance matrix and predefined brain structural system was

used to extract brain state reconfiguration measurements. Considering the structural connec-

tivity of considered channels (represented in Fig 5), the integration and recruitment coeffi-

cients were calculated.

Features. Different categories of features were measured (NASA-TLX metrics and FSRS

metrics) and calculated (cognitive and functional network features) to find the relationship

between subjective assessment metrics (NASA-TLX), real outcome measures (FSRS metrics

Fig 3. Illustration of selecting optimum modularity value.

https://doi.org/10.1371/journal.pone.0204836.g003
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Fig 4. Schematic of module allegiance matrix extraction process. Functional connectivity values were used in adjacency matrix,

which were then used in multilayer community detection algorithm. Extracted functional communities for all recordings were used

to extract MAM.

https://doi.org/10.1371/journal.pone.0204836.g004

Fig 5. Comparison between the structural community of the channels and the MAM was used to extract the integration

coefficient, and recruitment coefficient.

https://doi.org/10.1371/journal.pone.0204836.g005
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and completion time (CT)) and analytical features retrieved from brain activity (measured by

EEG).

Subjective metrics. The trainee evaluated each procedure by giving scores to NASA-TLX

indices, with a scale of 1 to 20. This subjective skill evaluation survey has six indices: Mental

Demand, Physical Demand, Temporal Demand, Performance, Effort, and Frustration [39, 40].

• Mental Demand (MD): Evaluates the level of mental/perceptual activity demanded to com-

plete the task.

• Physical Demand(PD): Level of physical activity required to complete the task.

• Temporal Demand(TD): Level of time pressure the subject feels during completing the task.

• Performance Score (PS): Quality level of outcome and the level of satisfaction of doing the

task (1 means highest quality and 20 means lowest quality).

• Effort (E): Evaluates how hard (mentally and physically) should the subject work to complete

the task.

• Frustration: Level of negative (compared to positive) psychological emotions the subject

feels while completing the task.

Task difficulty: We used scores given to these metrics to extract task difficulty (D) level as

D ¼ MDþ PDþ TDþ E

We did not use performance scores given by trainee because trainee does not have enough

expertise to be able to evaluate outcome of performed task.

Task complexity: FSRS curriculum modules were used to determine the complexity level

of tasks in Table 7, with 1 being simplest and 5 most complicated task.

FSRS metrics. RoSS scores given by da Vinci simulator technology were used in this

study for outcome evaluation. These metrics include: clutch usage, left tool out of view, num-

ber of errors, right tool out of view, tissue damage, and tool-tool collision. These metrics were

used in correlation analysis, to investigate the relationship between brain state measurements

and RoSS scores. These scores were also used to estimate performance level of doing each task

by subjects. Performance level was calculated as the average of scores given to all 8 FSRS met-

rics as

Performance ¼ 100 �
1

8

X8

i¼1

FSRSðiÞ

Completion time. By synchronizing the recorded EEG and the associated video of the

task, completion time was defined as the total time a trainee was performing a task. The

Table 7. Description of tasks designed in this study, and the reason for the associated skill necessity in RAS.

Task name Instument control Ball placement Spatial control II Fourth arm tissue dissection Hands-on surgical

training

Task ID (1) (2) (3) (4) (5)

Complexity

level

2 4 5 3 1

Skill orientation and control of

position

Hand-eye-tool coordination &

depth perception & foot control

Hand-eye-tool coordination &

depth perception & foot control

orientation and control of

position

Motor skills

Reason Lack of tactile feedback in

RAS requires development of

this skill

Remoteness and lack of tactile

feedback requires development

of this skill

Remoteness and lack of tactile

feedback requires development

of this skill

Lack of tactile feedback in

RAS requires development of

this skill

Learn how to have

fine hand

movements

https://doi.org/10.1371/journal.pone.0204836.t007
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completion time can be defined using the number of total data points in signal (N) and the

data recording sampling frequency (fs) as

CT ¼
N
fs

Cognitive features- power spectral density. Aiming period activity: Brain activity dur-

ing short and long term decision making affects the performance while operating a procedure

[41]. The whole of hand movement is planned and figured out during long-term decision

making, which happens during the Aiming Period (AP). This period has revealed important

effects on performance and expertise level in different tasks [41–43]. The brain activity

during this period is Aiming Period Activity (APA), which is the power reduction in spatially

enhanced α(8–12 Hz) and β(13–30 Hz) bands during movement [43]. It has been shown that

the APA depends on the expertise level of the subject [41].

Mental Workload: Mental workload (MW) is related to the engaged memory capacity while

performing a procedure of interest [44]. The main assumption in MW interpretation is that

each person has a relatively fixed cognitive capacity [32]. Commonly, MW refers to the portion

of a person’s total mental capacity which is loaded [45]. Mental workload was estimated using

the PSD of signals at the C3-C4, Cz-POz, F3-Cz, F3-C4, Fz-C3, and Fz-POz channels [32].

To calculate MW, we used the framework developed by the B-Alert EEG series from

Advanced Brain Monitoring (ABM) company, which has been frequently validated in different

studies [32, 33, 46]. Briefly, this framework calculates a baseline value of the absolute and rela-

tive power spectral variables from the C3-C4, Cz-PO, F3-Cz, Fz-C3, and Fz-PO channels dur-

ing mental arithmetic, grid location, and digit-span baseline tasks. These baselines have been

recorded from 80 healthy subjects, and are available from ABM software. A two-class quadratic

logistic discriminant function analysis (DFA) [32] was used to extract the probability of pre-

senting a high mental workload. The quadratic logistic DFA was established once for one men-

tor based on baseline data collected before surgeries.

Engagement. Engagement reflects the spatial recruitment of the brain regions in process-

ing tasks associated with decision making. These tasks include, but are not limited to, informa-

tion gathering, visual scanning, audio processing, and attention concentration on one aspect

of the environment while ignoring other distractions [32, 33]. As with the calculation of MW,

we used the framework developed by the B-Alert EEG series from Advanced Brain Monitoring

(ABM) company. However, in this case, the baselines were drawn from 5 minutes of three dif-

ferent tasks (3-choice vigilance task, eyes open, and eyes closed).These baselines were recorded

from one mentor at the beginning of the whole research study. Here, the absolute and relative

PSD values of the Fz-POz and Cz-POz channels were used in a four-class quadratic logistic dis-

criminant function analysis (DFA) which returned an estimation of the engagement level [32,

33]. The range of this estimation for 1 second epoch is between 0–1 with 0.1 (sleep onset), 0.3

(distraction), 0.6 (low engagement; LE), and 0.9 (high engagement; HE).

Asymmetry index. Negative feelings such as surprise, frustration, fear, and concern have

opposing effects on the activity of the right and left lobes of the frontal cortex [47]. For each

recording, Asymmetry Index (AI) was defined as the difference between the power spectral den-

sity decrease in the left and right frontal lobes in the alpha frequency band, normalized as [47, 48]

AI ¼
L � R
Lþ R

L ¼ PSDF3

maxðaÞ � PSD
F3

minðaÞ þ PSD
F7

maxðaÞ � PSD
F7

minðaÞ

R ¼ PSDF4

maxðaÞ � PSD
F4

minðaÞ þ PSD
F8

maxðaÞ � PSD
F8

minðaÞ
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The AI was calculated as the average value over the following pairs of electrodes: (F3 and F4), and

(F7 and F8). During negative feelings, the right frontal lobe shows more intense activity (associ-

ated with lowerα power [48]) compared to the left lobe [48] (α power is inversely related to acti-

vation [47]).

Brain functional network features. Strength. The strength of a cognitive system was

defined as the average functional connectivity of electrodes within the system. Adjacency

matrices were used to calculate this feature.

Communication. Communication, C, between two cognitive systems k1 and k2 can be

defined as the average functional connectivity in electrode pairs where one electrode lies

within the first system and the second electrode lies within the second system [49]. Adjacency

Table 8. Summary of all features used in this study. Four feature categories were considered: Subjective assessment metric, tool-based metrics, cognition, and brain

functional network features.

Feature Description Category Main extraction method

Difficulty level (D) Extracted by using NASA-TLX features, evaluated by the trainee

D = MD + PD + TD + E

Subjective

assessment

Subjective assessment

Complexity level Indicates the complexity of task based on assessment of expert surgeons considered in

FSRS curriculum. This feature is independent from trainee performance and outcome

and is based on the properties of the task.

FSRS curriculum FSRS curriculum

Practice time All subjects started learning without any experience of work with simulator, gaming, and

robotic surgery experience. However, during learning they practice on simulator and

their experience increases from session to session. We measured practice time of each

subject from recording to next recording and considered that (seconds of practice) as

practice time.

Direct measurement Direct measurement

Practice gap Gap between practice sessions Direct measurement Direct measurement

Clutch usage Indicates effectiveness and the level of skill in which the task is performed (economy of

motion) [50]

Tool besed metric

(FSRS)

Real measurement by

RoSS

Left tool out of view Indicates awareness of operative environment in which tasks are Performed [50] Tool besed metric

(FSRS)

Real measurement by

RoSS

Right tool out of view Indicates awareness of operative environment in which tasks are performed [50] Tool besed metric

(FSRS)

Real measurement by

RoSS

Number of errors Indicates effectiveness and the level of skill in which the task is performed (economy of

motion) [50]

Tool besed metric

(FSRS)

Real measurement by

RoSS

Tissue damage Collisions causing damage to the underlying tissue [31].

Indicates awareness of operative environment in which tasks are performed [50]

Tool besed metric

(FSRS)

Real measurement by

RoSS

Tool-Tool collision Indicates awareness of operative environment in which tasks are performed [50] Tool besed metric

(FSRS)

Real measurement by

RoSS

Performance Level Performance level was calculated as:

100 � 1

8

X8

i¼1

FSRSðiÞ

Tool besed metric

(FSRS)

Real measurement by

RoSS

Completion time (CT) Indicates total time task is performed Direct measurement

Aiming period activity

(APA)

Indicates brain activity level during aiming period Cognition Power Spectral Density

(PSD) analysis

Mental Workload

(MW)

Indicates the level of engaged memory capacity while performing task Cognition Power Spectral Density

(PSD) analysis

Engagement (E) Reflects the spatial cooperation of the brain regions in processing tasks Cognition Power Spectral Density

(PSD) analysis

Strength Indicates the level of total functional connectivity within channels in a specific cognitive

system

Brain functional

network

Pairwise phase

synchronization

Communication Indicates the level of total functional connectivity between channels from different

cognitive systems

Brain functional

network

Pairwise phase

synchronization

Integration Average probability that a brain area is in the same network community as areas from

other cognitive systems

Dynamic

architecture feature

Network community

detection

Recruitment Average probability that a brain area is in the same network community as other areas

from its own cognitive system

Dynamic

architecture feature

Network community

detection

https://doi.org/10.1371/journal.pone.0204836.t008

Dynamic changes of brain functional states during surgical skill acquisition

PLOS ONE | https://doi.org/10.1371/journal.pone.0204836 October 31, 2018 15 / 19

https://doi.org/10.1371/journal.pone.0204836.t008
https://doi.org/10.1371/journal.pone.0204836


matrices (Γ) were used to calculate this feature as

Ck1 ;k2
¼

X

i2k1 j2k2

Gij

ðjSk1
jjSk2
jÞ

where, |Sk| is the number of nodes in the cognitive system k, k = 1. . .6, and k1 6¼ k2. Note that

the strength of each cognitive system can be calculated by letting k1 = k2.

Integration coefficient. Integration of each area measures the average probability that this

area is in the same network community as areas from other systems. Module Allegiance Matri-

ces were used to calculate integration feature.

Recruitment coefficient. The recruitment coefficient for each area of the network corre-

sponds to the average probability that this area is in the same network community as other areas

from its own system. Module Allegiance Matrices were used to calculate recruitment feature.

All features used in this study were summarized in Table 8.

Conclusion

Current analysis frameworks are unable to describe necessary dynamic changes of brain areas

to make performance of motor cognitive skills autonomous, because of statistical and mathe-

matical limitations. In this study we used dynamic network neuroscience methods to investi-

gate dynamic reconfiguration of brain modules during RAS skill learning, effective factors on

dynamic architecture of learning, and address several questions related to RAS skill acquisi-

tion. Results also suggest integration, recruitment, strength, and communication features to be

used for objective performance evaluation.
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