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Abstract

Objective

To establish the validity of sensor-based measures of work processes for predicting per-

ceived mental and physical exertion of critical care nurses.

Materials and methods

Repeated measures mixed-methods study in a surgical intensive care unit. Wearable and

environmental sensors captured work process data. Nurses rated their mental (ME) and

physical exertion (PE) for each four-hour block, and recorded patient and staffing-level

workload factors. Shift was the grouping variable in multilevel modeling where sensor-

based measures were used to predict nursing perceptions of exertion.

Results

There were 356 work hours from 89 four-hour shift segments across 35 bedside nursing

shifts. In final models, sensor-based data accounted for 73% of between-shift, and 5% of

within-shift variance in ME; and 55% of between-shift, and 55% of within-shift variance in

PE. Significant predictors of ME were patient room noise (ß = 0.30, p < .01), the interaction

between time spent and activity levels outside main work areas (ß = 2.24, p < .01), and the

interaction between the number of patients on an insulin drip and the burstiness of speaking

(ß = 0.19, p < .05). Significant predictors of PE were environmental service area noise (ß =
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0.18, p < .05), and interactions between: entropy and burstiness of physical transitions (ß =

0.22, p < .01), time speaking outside main work areas and time at nursing stations (ß = 0.37,

p < .001), service area noise and time walking in patient rooms (ß = -0.19, p < .05), and aver-

age patient load and nursing station speaking volume (ß = 0.30, p < .05).

Discussion

Analysis yielded highly predictive models of critical care nursing workload that generated

insights into workflow and work design. Future work should focus on tighter connections to

psychometric test development methods and expansion to a broader variety of settings and

professional roles.

Conclusions

Sensor-based measures are predictive of perceived exertion, and are viable complements

to traditional task demand measures of workload.

Introduction

The increasing workload under which physicians and nurses operate in today’s health care sys-

tem adversely impacts patient outcomes (i.e., patient experience,[1] healthcare-acquired infec-

tions,[2] delays in treatment,[3] postoperative complications, [4] unplanned extubations, [5]

and mortality[6,7]), workforce outcomes (i.e., burnout and job-dissatisfaction, [8] as well as

turnover and disengagement from or exiting the professions[9–11]), and organizational effi-

ciency and productivity. [12,13] Workload is the level of effort required to complete a task in

relation to the resources available to expend on that task. [14,15] When demands exceed avail-

able resources, an individual’s performance deteriorates. Despite the importance of workload,

there remains a gap in strategies to measure it for health care professionals. Most methods rely

on some form of staffing ratio[16,17] that inadequately represents workload. [18] Other work-

load measurement methods are observation[19] or self-report, [20] which are expensive and

burdensome for respondents, respectively. To better understand and manage workload, more

dynamic measurement is needed.

Recent advances in low cost, wearable and environmental sensors offer the potential for

large scale, unobtrusive measurement of work processes and related constructs. [21–23] Com-

pelling feasibility studies demonstrate the potential utility of sensor data for understanding

workforce issues [24,25] and patient data [26,27] but few examples provide rigorous evidence

that wearable and environmental sensors can validly measure work processes in vivo. [28]

The objectives of the study were to evaluate whether, after accounting for variance associ-

ated with traditional measures of workload, sensor-based measures of work processes could

predict significant variance in nurses’ perceived mental and physical exertion while perform-

ing demanding tasks in a surgical ICU.

Materials and methods

Study design, setting, participants

This prospective repeated measures mixed-methods study was conducted in one surgical ICU

at a large urban academic hospital in the Mid-Atlantic United States; study period was July
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and August, 2014. Eight critical care nurses from the unit were recruited through email and

flyer notifications. The study was approved by the Johns Hopkins University School of Medi-

cine Institutional Review Board.

Sensor-based measurement system

The sensor-based measurement system included wearable and stationary sensor badges

equipped with a radiofrequency identification (RFID) 2.4 GHz band (Sociometric Solutions,

Inc., Boston, MA)[29] and an infrared sensor (TFDU4300Vishay, Malvern, PA) that captured

physical proximity and location. Also, two omnidirectional micro-electrical-mechanical system

(MEMS) microphones (SPM0103-NE3, Knowles Electronics, LLC, Itasca, IL) captured features

of speech and environmental noise, and a three-axis MEMS accelerometer (ADXL330, Analog

Devices, Inc., Norwood, MA) captured body movement and activity. Audio signals were filtered

on-board the sensor badge to extract speech features without saving the full signal.

Nurse participants wore a sensor badge and their location was detected through a network

of 41 stationary sensor badges placed in 16 of 20 patient rooms, both nursing stations, and

three service areas (medication, supply, and nutrition rooms; see Fig 1). A feature engineering

process mapped sensor capabilities to nursing work processes using four separate one hour

focus group sessions with eight RNs, four hours of observing nurses at work by an experienced

human factors researcher, and review of an existing nursing task taxonomy for ICUs.[19] This

process resulted in 72 features organized into seven high level categories: location-based (time

in location, movement through physical space), accelerometer-based (body movement and

activity in location), environmental noise (volume), speaking (time speaking, pitch, volume,

burstiness [distribution of activity over time]), posture, walking (time and burstiness of walk-

ing), and temperature. All sensor-based measures and definitions are in Supplementary Meth-

ods A in S1 File.

Focus groups and survey instrument

We used nursing focus groups to identify patient and shift level drivers of workload most mean-

ingful in our study unit. Human Factors professionals moderated a total of four sessions, each

one hour in duration, with the eight RNs participating in this study. Nursing task demands

identified by focus group participants and included in this study cover staffing factors (number

of patients, number of patients assigned a sitter, and whether nurse had an assistant), and

patient factors (e.g., number of assigned patients requiring specific care interventions; 8 vari-

ables). Composite measures of task demand are also reported in Supplementary Methods B in

S1 File including descriptions of all variables and measurement definitions.

A brief survey instrument was developed to collect data on staffing and patient task

demands, to elicit perceptions of physical exertion (PE) and mental exertion (ME), and to link

the sensor data to the completed survey. Perceptions of exertion were measured using the

15-grade Borg Scale for rating PE (scale range, 6 = very, very light to 20 = very, very hard) [30]

and a version modified to rate ME. The modified ME scale changed the referent of the survey

item from ‘physical’ to ‘mental’ exertion, and the response scale was unchanged. We chose this

approach because evidence has established the validity of concurrently measuring mental and

physical exertion as related yet distinct sub-dimensions of an overall exertion construct. [31]

Data collection

At the beginning of each shift, a participating nurse retrieved a sensor badge stored on the unit

and recorded the badge number on part one of the brief survey. During the shift, the sensors

recorded features of their activity. Nurses rated their perceptions of PE and ME every four
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hours on the survey and recorded patient and staffing task demands at the end of the shift.

Four-hour blocks within a shift were chosen because it corresponded to natural breaks in nurs-

ing workflow.

Data analysis

Data analysis proceeded in two phases: 1) feature selection, and 2) multi-level modeling

(MLM). Feature selection was conducted to determine whether any of the 72 sensor-based

measures were predictive of nurses’ perceived ME or PE. Elastic net methods, which combine

the least absolute shrinkage and selection operator (LASSO) and ridge regression penalties

[32,33], were applied to select a parsimonious set of predictors for consideration in MLM. An

extension of Elastic net[34] was used to explore all pairwise combinations of predictive features

for significant interactions. Feature selection was performed in R (version 3.2)[35] using

glmnet (version 2.0–2)[36] and glinternet (version 1.0.0)[37] packages. Elastic net methods do

not account for clustering in the data, therefore a more lenient shrinkage penalty was selected

Fig 1. Environmental sensor placements throughout surgical intensive care unit sixteen patient rooms were

instrumented with two sensor badges, one immediately inside the room by the computer terminal and the second

on the wall opposite the door; two nursing stations were instrumented with three sensor badges; and three services

areas (medication, supply, and nutrition) were instrumented with one sensor badge. The service areas were

relatively isolated from other work areas and redundant sensors were not needed for accurate localization. Two low

occupancy and two isolation rooms on the unit were excluded from this study.

https://doi.org/10.1371/journal.pone.0204819.g001
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so important predictors were not eliminated at this stage. Subsequently, a traditional back-

wards elimination process was used in MLM with the shift grouping structure in place to fur-

ther reduce the feature set.

MLM was used to evaluate the predictive validity of sensor-based measures, and conducted

with R (version 3.2) using nlme (version 3.1–122)[38] and multilevel (version 2.5)[39] pack-

ages. MLM was chosen to account for the non-independence of data collected in four-hour

segments within a shift and test cross-level interactions between task demand variables and

sensor-based measures. Shift was the grouping variable used to analyze perceptions of ME and

PE as dependent variables, sensor-based measures of work processes as Level 1 predictors, and

task demand workload variables as Level 2 predictors. All sensor-based measures were grand

mean centered prior to analyses. Intraclass correlation coefficients (ICC) measured the pro-

portion of variance between different shifts relative to four-hour segments within the same

shift. Model deviance was computed to compare model fit of MLM using an L ratio test. An

alpha level of< 0.05 was used for assessing significance. Supplementary Methods C in S1 File

provides full detail on data analysis methods.

Results

Our analysis included 89 four-hour shift segments across 35 bedside nursing day shifts

(between 7 AM and 7 PM), totaling 356 work hours of data collected in July and August, 2014.

Seventy percent (62/89) were weekday shift segments.

Feature selection

Elastic net analyses selected 23 variables related to ME from the initial pool of 72 (listed in Sup-

plementary Methods D in S1 File) and 6 interaction terms, as well as 14 variables related to PE

and 6 interaction terms. Each of the features retained as either a main effect or interaction

term are indicated in Supplementary Methods D in S1 File. Two tuning parameters are used

for Elastic net: α which specifies the degree of mixing of penalties from LASSO and ridge

regression and λ which controls the degree of shrinkage. Both α and λ can range from 0 to 1.

An α of 0 indicates a pure ridge regression penalty, and an α of 1 indicates a pure LASSO. Val-

ues in between indicate a proportional mixing of the penalties. For these analyses, α was set at

.9 which more heavily weighted the LASSO penalty. A λ value of 0 indicates no shrinkage is

performed, and increasing values indicate more severe shrinking of coefficients. For these

analyses, the lambda.min function of glmnet identified lambda values that minimized cross-

validation error (for PE: λ = 0.18; and for ME: λ = 0.19).

Multi-level modeling (MLM)

Tables 1 and 2 detail results of MLM for ME and PE, respectively. Level 1 variables included

sensor-based measures as predictors and perceived exertion as dependent variables collected

for each four-hour shift segment. Level 1 variables were grouped within shift, and Level 2 vari-

ables were task demands associated with that specific shift such as the number of patients

cared for and their status level. We detail each step of the MLM process below, followed by a

summary of the final ME and PE models.

ICC values supported the use of shift as the grouping structure for ME (ICC = 0.63) and PE

(ICC = 0.57), indicating that 63% of total variance in ME and 57% in PE occurred between

shifts. Group mean reliability exceeded the standard of 0.7 for both ME (0.81) and PE (0.76).

Both ME0 (χ2(1) = 27.30, p< .001) and PE0 (χ2(1) = 24.98, p< .001) had significantly better fit

than models without the shift grouping variable.
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Models ME1 and PE1 added Level 1 sensor-based predictors. To generate ME1 and PE1, all

features retained from Elastic net analysis (i.e., 23 main effects and six interaction terms for

ME; 14 main effects and 6 interaction terms for PE) were added to the respective ME0 or PE0

model which included the shift grouping structure, and a traditional backward elimination

process was performed. ME1 and PE1, as detailed in Tables 1 and 2 respectively, represent the

end of the backward elimination feature reduction process. This process produced a model for

ME with one significant main effect term and one significant interaction term, accounting for

Table 1. Results of multilevel modeling for perceived mental exertion (ME).

ME0: Intercept

Only

ME1: + Level 1

Predictors

ME2: + Level 2

Predictors

ME3: + Random

Coefficients

ME4: + Cross-level

Interactions

Fixed Componentsa,b

Predictor ß [S.E.] df p ß [S.E.] df p ß [S.E.] df p ß [S.E.] df p ß [S.E.] df p
1. Intercept 0.02

[0.15]

54 .90 -0.23

[0.18]

50 .21 -0.23

[0.17]

50 .20 -0.10

[0.18]

49 .58 -0.19

[0.17]

48 .26

2. Environmental noise in patient rooms - - - 0.28

[0.12]

50 .02 0.27

[0.12]

50 .02 0.27

[0.10]

49 .008 0.30

[0.10]

48 .003

3. Time outside of main work areas - - - 0.87

[0.67]

50 .20 0.73

[0.66]

50 .27 -0.16

[0.81]

49 .84 0.23

[0.76]

48 .76

4. Activity level outside of main work areas - - - -0.33

[0.20]

50 .11 -0.36

[0.19]

50 .07 -0.30

[0.18]

49 .09 -0.32

[0.17]

48 .08

5. Time outside of main work areas x Activity level outside

of main work areas

- - - 2.01

[0.84]

50 .02 2.10

[0.81]

50 .01 2.34

[0.75]

49 .003 2.24

[0.73]

48 .004

6. Burstiness of speaking - - - - - - - - 0.08

[0.12]

49 .54 0.03

[0.11]

48 .78

7. Patients on an insulin drip - - - - - 0.30�

[0.12]

33 .01 0.05

[0.12]

33 .68 0.05

[0.11]

33 .64

8. Patients on an insulin drip x Burstiness of speaking - - - - - - - - - - - 0.19

[0.07]

48 .01

Random Components

Between-shift variance (σ2
e) 0.64

[0.80]

0.46

[0.68]

0.36

[0.60]

0.22

[0.47]

0.17

[0.41]

Within-shift / residual variance (σ2
u0) 0.38

[0.62]

0.35

[0.59]

0.35

[0.59]

0.35

[0.59]

0.36

[0.60]

Slope variation (Burstiness of speaking) 0.08

[0.29]

0.02

[0.15]

Variance Modelledc

Level 1: R2
Within Shift 0.08 0.05 0.05 0.05

Level 2: R2
Between Shift 0.28 0.44 0.66 0.73

Ran. Coef.: R2
slope: Burstiness of speaking 0 .75

Model Fit

Deviance (-2 � Log likelihood ratio)d 224.2 210.00 203.40 195.47 190.43

L. Ratio χ2(1) =

27.30,

p < .001

χ2(4) = 14.27,

p < .01

χ2(1) = 6.60,

p < .05

χ2(3) = 7.93,

p = .05

χ2(1) = 5.04,

p < .05

aThere were 89 shift segments nested within 35 shifts.
bTerms 2–4, and 6 are Level 1 main effects; Term 5 is a Level 1 interaction; Term 7 is a Level 2 main effect; term 8 is a cross-level interaction.
cProportion of variance explained for Level 1 (within shifts) and Level 2 (between shifts) were calculated relative to ME0, the model with only a grouping variable;

Proportion of slope variation explained was calculated relative to ME3, the model with random coefficients, but no cross-level interactions.
d Reduction in model deviance was tested as follows: ME0 contained only the shift grouping variable and was tested against a model without the grouping variable; ME1

included Level 1 sensor-based measures and was tested against ME0; ME2 included Level 2 task demand fixed effects and was compared to ME1; ME3 included random

coefficients for Level 1 sensor-based measures and was evaluated relative to ME2, the model without random coefficients; ME4 included cross level interactions between

Level 1 and Level 2 predictors and was evaluated relative to ME3.
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Table 2. Results of multilevel modeling for perceived physical exertion (PE).

PE0: Intercept Only PE1: + Level 1

Predictors

PE2: + Level

2

Predictorse

PE3: + Random

Coefficients

PE4: + Cross-level

Interactions

Fixed Componentsa,b

Predictor ß [S.E.] df p ß [S.E.] df p ß [S.

E.]
df p ß [S.E.] df p ß [S.E.] df p

1. Intercept -0.01

[0.14]

54 .97 -0.01 [0.11] 42 .92 - - - -0.01

[0.11]

43 .9 -0.04

[0.11]

43 .70

2. Entropy of transitions 0.15 [0.10] 42 .11 - - - 0.14

[0.09]

43 .11 0.15

[0.08]

43 .06

3. Burstiness of transitions -0.07 [0.12] 42 .57 - - - -0.6 [0.10] 43 .58 -0.03

[0.09]

43 .76

4. Time speaking outside of main work areas -0.02 [0.10] 42 .84 - - - 0.03

[0.09]

43 .71 0.03

[0.09]

43 .78

5. Volume while speaking at nursing stations 0.07 [0.09] 42 .44 - - - 0.02

[0.14]

43 .87 0.05

[0.13]

43 .68

6. Time at nursing stations 0.16 [0.10] 42 .14 - - - 0.16

[0.10]

43 .10 0.17

[0.09]

43 .08

7. Environmental noise in service areas 0.19 [0.09] 42 .04 - - - 0.19

[0.08]

43 .03 0.18

[0.08]

43 .03

8. Time walking in patient rooms 0.09 [0.10] 42 .36 - - - 0.12

[0.09]

43 .18 0.12

[0.09]

43 .18

9. Temperature in service areas -0.04 [0.09] 42 .62 - - - -0.04

[0.09]

43 .65 -

10. Entropy of transitions x Burstiness of transitions 0.19 [0.09] 42 .04 - - - 0.23

[0.07]

43 .004 0.22

[0.07]

43 .003

11. Time speaking outside of main work areas x Time

at nursing stations

0.38 [0.11] 42 <

.001

- - - 0.38

[0.10]

43 <

.001

0.37

[0.09]

43 <

.001

12. Environmental noise in service areas x Time

walking in patient rooms

-0.23 [0.10] 42 .02 - - - -0.21

[0.08]

43 .01 -0.19

[0.08]

43 .02

13. Volume while speaking at nursing stations x

Temperature in service areas

-0.14 [0.07] 42 .04 - - - -0.02

[0.08]

43 .86 - -

14. Average patient load -0.05

[0.11]

33 .68

15. Average patient load x Volume while speaking at

nursing stations

0.30

[0.13]

43 .02

Random Components

Between shift variance (σ2
e) 0.55 [0.74] 0.19 [0.45] - - 0.26

[0.51]

0.25

[0.50]

Within shift / residual variance (σ2
u0) 0.42 [0.65] 0.32 [0.56] - - 0.16

[0.40]

0.20

[0.45]

Slope variation (Volume while speaking at nursing

stations)

0.27

[0.52]

0.16

[0.40]

Variance Modelledc

Level 1: R2
Within Shift 0.24 - - 0.62 0.52

Level 2: R2
Between Shift 0.65 - - 0.53 0.55

Ran. Coef.: R2
Slope: Volume spkng at RN statns 0 0.41

Model Fit

Deviance (-2 � Log likelihood ratio)d 226.59 183.34 174.25 168.55

(Continued)
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28% of the between and 8% of within shift variance. Model PE1 was reduced to four interaction

terms (Table 2, predictors 10 to 13), accounting for 65% of between shift and 24% of within

shift variance. Models ME1 and PE1 were significantly better fitting models compared to ME0

(χ2(4) = 14.27, p = .007) and PE0 (χ2(12) = 43.25, p< .001), respectively.

Models ME2 and PE2 added task demands documented by nurses working that shift (Level

2). One task demand, number of patients on an insulin drip, was a significant predictor of ME,

producing a model that accounted for 44% of between-shift and 5% of within-shift variances.

Model ME2 exhibited a significantly better fit compared to ME1 (χ2(1) = 6.60, p = .01). No task

demand predictors were retained for PE. Therefore, PE2 was equivalent to PE1.

One significant random coefficient term was retained in Models ME3 (burstiness of speak-

ing) and PE3 (volume while speaking at nursing stations), producing significantly better fitting

models compared to ME2 (χ2(3) = 7.93, p = .05) and PE2 (χ2(2) = 9.08, p< .05), respectively.

Model ME3 accounted for 66% of between shift and 5% of within shift variances. Model PE3

accounted for 53% of between-shift, and 62% of within-shift variances. In Model PE3, a previ-

ously significant main effect term (temperature in service areas) and interaction term (volume

while speaking at nursing stations by temperature in service areas) became non-significant

and were excluded from further analysis.

One significant cross-level interaction was retained in Models ME4 and PE4. The final

model ME, ME4, included a significant and positive cross-level interaction between a Level 2

task demand variable, number of patients on an insulin drip, and a Level 1 sensor-based mea-

sure, burstiness of speaking (ß = 0.19, p< .05) as well as the interaction term between two

Level 1 sensor-based measures (time spent and activity levels outside of main work, ß = 2.24, p
< .01) and a Level 1 main effect term (environmental noise in patient rooms, ß = 0.30, p<
.01). We defined the main patient care or work areas as patient rooms, nursing stations, and

service areas. Areas outside of these main patient care areas included unit halls, locker room,

and conference or break room areas. Main work areas were instrumented in this study, and

areas in the unit outside of this were not.” This model accounted for 73% of between-shift and

5% of within-shift variances, and for 75% of the variation in slopes between burstiness of

speaking and mental exertion across shifts. The final model for PE, PE4, included a significant

Table 2. (Continued)

PE0: Intercept Only PE1: + Level 1

Predictors

PE2: + Level

2

Predictorse

PE3: + Random

Coefficients

PE4: + Cross-level

Interactions

L. Ratio χ2(1) =

24.98,

p < .001

χ2(12) =

43.25,

p < .001

χ2(2) =

9.08,

p < .05

f

aThere were 89 shift segments nested within 35 shifts.
b Terms 2–9 are Level 1 main effects; Terms 10–13 are level 1 interactions; Term 14 is a Level 2 main effect; Term 15 is a cross-level interaction.
cProportion of variance explained for Level 1 (within shifts) and Level 2 (between shifts) were calculated relative to PE0, th model with only a grouping variable;

Proportion of slope variation explained was calculated relative to PE3, the model with random coefficients, but no cross-level interactions.
dReduction in model deviance was tested as follows: PE0 contained only the shift grouping variable and was tested against a model without the grouping variable; PE1

included Level 1 sensor-based measures and was tested against PE0; PE2 included Level 2 task demand fixed effects and was compared to PE1; PE3 included random

coefficients for Level 1 sensor-based measures and was evaluated relative to PE2, the model without random coefficients; PE4 included cross level interactions between

Level 1 and Level 2 predictors and was evaluated relative to PE3.
eNo Level 2 task demand variables were retained as significant in PE2. Therefore, PE2 = PE1.
fFor PE4, model deviance was reduced, but model complexity (due to the loss of degrees of freedom by the inclusion of nonsignificant main effects for significant

interactions) precluded significance testing

https://doi.org/10.1371/journal.pone.0204819.t002
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and positive cross-level interaction between a Level 2 task demand variable, average patient

load, and a Level 1 sensor-based measure, volume while speaking at the nurses’ station (ß =

0.30, p< .05) as well as three interaction terms between Level 1 sensor-based measures

(entropy by burstiness of physical transitions, ß = 0.22, p< .01; time speaking outside of main

work areas by time at nursing stations, ß = 0.37, p< .001; environmental noise in service areas

by time walking in patient rooms, ß = -0.19, p< .05) and one Level 1 main effect (environmen-

tal noise in service areas, ß = 0.18, p< .05). This model accounted for 55% of between-shift

and 55% of within-shift variances, and for 41% of variation in slopes between volume while

speaking at the nurses’ station and physical exertion across shifts. Both Models ME4 and PE4

had large decreases in model deviance. This decrease was significant for Model ME4 (χ2(1) =

5.04, p< .05), but model complexity (degrees of freedom lost due to including non-significant

main effect terms for multiple interaction terms) precluded significance testing for Model PE4.

Significant Level 1 and cross-level interactions for final reduced models are depicted in Fig 2A

and 2B (ME4) and Fig 3A through 3D (PE4). The interaction plots detailed in Figs 2 and 3

were generated with the r package sjPlot [40]. Variables were centered by subtracting the mean

value of that variable, and then scaled by dividing values by the standard deviation. Each plot

was constructed by plotting the relationship between two of the three interaction terms while

holding the third moderator variable constant at the upper (maximum value depicted in blue)

and lower (minimum value depicted in red) bounds. Fig 2A illustrates a cross-level interaction

where burstiness of speaking, a Level 1 predictor, becomes a stronger predictor of mental exer-

tion with increasing numbers of patients on an insulin drip, a Level 2 predictor. Fig 2B shows

the positive interaction between two Level 1 predictors, activity levels and time spent outside

Fig 2. Interaction terms for final reduced mental exertion model. Blue lines represent the maximum value (upper bound), and red lines indicate the minimum value

(lower bound) for the Level 2 variable to illustrate the interaction. The shaded areas around each line indicates the 95% confidence region surrounding the upper and

lower bounds moderator variable. Panel A: Cross-level interaction between burstiness of speaking (Level 1 sensor-based measure) and number of patients on an insulin

drip (task workload factor) on mental exertion. This illustrates that the task demand of patients on an insulin drip positively moderates the relationship between the

burstiness of speaking and mental exertion, such that high levels of burstiness of speaking become more predictive of high levels of mental exertion when caring for

patients on an insulin drip. Panel B: Level 1 interaction illustrated that high levels of activity outside of main work areas and longer time outside of main work areas were

predictive of high levels of mental exertion.

https://doi.org/10.1371/journal.pone.0204819.g002
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of main work areas, on mental exertion. Fig 3A illustrates that work shifts with higher levels of

entropy and burstiness of transitions are more physically exerting. Fig 3B shows that shifts

with higher levels of time at nursing stations and time spent speaking outside of main work

areas were more physically exerting. Fig 3C illustrates a negative interaction between time

spent walking in patient rooms and noise in service areas predicted physical exertion. Fig 3D

shows a cross-level interaction where volume while speaking at the nurses’ station became a

stronger predictor of physical exertion with increasing levels of average patient load.

Fig 3. Interactions for final reduced physical exertion model blue lines represent the maximum value (upper bound), and red lines indicate the minimum value

(lower bound) of the moderator variable to illustrate the interaction between the independent variable and moderator. The shaded areas around each line indicate

the 95% confidence region surrounding the upper and lower bounds moderator variable. Panel A: This positive interaction between two sensor-based measures (Level 1)

indicates that work shifts with physical transition events that are both highly unstructured (high entropy) and bursty (high clumping together of transition events in time)

are more physically exerting. Panel B: Level 1 interaction illustrates the positive conditional effects in which higher levels of time at nursing station and higher levels of

time speaking outside of main work areas are associated with higher levels of physical exertion. Panel C: Level 1 interaction illustrates a negative effect in which less time

walking in the patient rooms and high levels of environmental noise in service areas were associated with higher physical exertion. Panel D: Cross-level positive

interaction between volume of speaking at the nursing station (Level 1) and average patient load (task workload factor) indicated that a general vocal stress indicator

(speaking volume) is only significantly associated with physical exertion when localized to the nursing station and when caring for more complex patients.

https://doi.org/10.1371/journal.pone.0204819.g003
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Discussion

In the final reduced models for mental and physical exertion, sensor-based measures of work

processes accounted for large proportions of unique variance above and beyond task demand

variables typically used for evaluating workload (i.e., task demands derived from patient and

shift level factors). These findings support the further development of these technologies for

workforce management issues in healthcare. The significant cross-level interactions our mod-

els are consistent with existing multi-level frameworks of nursing workload[41] in that rela-

tionships between different work processes and perceived exertion changed based on higher

level task demand workload factors.

Main study findings

The final model for ME included noise in patient rooms, an interaction between time spent

and activity levels outside the main areas, and an interaction between number of patients on

an insulin drip and burstiness of speaking. Environmental noise is a well-documented stressor

with a positive relationship with perceptions of workload.[42,43]

As illustrated in Fig 2B, the positive interaction between time and activity levels outside of

main work areas indicated that the more time spent away from patient rooms, nursing sta-

tions, or service areas when activity levels were high outside of these areas the higher the

nurse’s mental exertion. High activity levels outside the main patient care areas could mean

the nurse was searching for team member support or supplies, while low levels of activity

could indicate downtime. For example, high activity in non-work areas could involve walking

up and down the unit halls to seek assistance, and low activity in non-main work areas could

involve socializing in a break room.

As illustrated in Fig 2A, the positive interaction between number of patients on an insulin

drip and the burstiness of speaking indicated that certain sensor-based measures were predic-

tive of mental workload when caring for patients requiring specific care interventions. The

burstiness of speaking is a measure of the temporal distribution of time spent speaking. Higher

levels of burstiness of speaking means speaking is more clumped together in time with periods

of relatively intensity and sparseness, and lower levels mean a more even distribution of speak-

ing over time. Insulin infusion protocols improve outcomes for ICU patients,[44] but the nurs-

ing workload associated with these complex protocols is known to be high.[45] For each

patient on an insulin drip, a nurse must assess blood sugar levels, make complex calculations,

enter changes into the infusion pump, document all information, and find a second nurse to

independently double check the completeness of the steps. Fig 2A illustrates that this bursty

social dynamic, potentially an indicator of interruptions[46] or challenges in finding an avail-

able nurse to perform the independent double check, was only significantly associated with

mental exertion in the context of managing patients on insulin drips.

The final reduced model for physical exertion had one significant main effect and positive

as well as negative interactions. First, environmental noise within services areas was the main

predictor for physical exertion. This potentially indicates congestion in these areas contribut-

ing to perceptions of physical effort.

Second, as shown in Fig 3A, the interaction between entropy of transitions and burstiness

of transitions pertained to patterns of movement through physical space. Entropy of transi-

tions was calculated using the Shannon entropy of the time series of physical locations. Higher

levels of entropy indicated less predictability in the sequence of transitions. The burstiness of

transitions characterized the temporal variation of movement events from one physical space

to another. Higher levels of burstiness indicated more clumping in time of movement between
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physical areas. Shift segments where physical transitions were both unstructured and clumped

in time were more physically exerting.

Third, as illustrated in Fig 3B, the positive interaction between high levels of time speaking

outside of the main work areas and high levels of time spent at nursing stations could indicate

care of more complex patients, requiring more documentation and coordination of activities,

thereby compressing physical activity in the patient rooms into less time.

A fourth and also challenging interaction to interpret was the negative interaction between

environmental noise in service areas and time walking in patient rooms, as shown in Fig 3C.

This relationship could indicate that a busier service area (more congested and noisier) and

more physical activity in the patient room combined to impact physical workload. These are

two areas that require the most physical activity from nurses (e.g., patient handling and proce-

dures in the patient room; moving and lifting supplies in service areas).

Fifth, as illustrated in Fig 3D, the interaction between average patient load and volume

while speaking at the nursing stations indicated increased strength in the relationship between

speaking volume at the nursing station and physical exertion in shifts where patients required

more care interventions. Speaking intensity or volume is a feature of speech commonly associ-

ated with stress.[47] In our study, volume was only predictive of perceived physical exertion

when localized to the nursing station and related to the level of monitoring and intensity of

task demands made on the nurse.

Implications for future research and practice

This study demonstrated the predictive validity of sensor-based measures. Some features were

clearly meaningful, while the interpretation of others was more challenging. A tighter integra-

tion with the existing psychometric test development processes is needed to help ensure the

content of these sensor-based systems are indicative of the construct purported to be mea-

sured. With a refined system, sensor-based measures could be used to guide more fine grained

workflow analyses[48] to identify recurrent trends and target these areas for further investiga-

tion and improvement efforts, or as real time feedback to help staff on the unit self-regulate

and balance workload.[49] Projections indicate severe shortages in nurse[50] and physician

[51] workforces for decades to come. Identifying mechanisms to improve productivity and

retention could have substantial savings. By better understanding workload in real time, man-

agers can provide lateral support to reduce workload and ultimately create a safer and more

productive work environment.

Limitations

This study was conducted in one surgical critical care unit in an academic medical center.

Larger datasets collected across multiple critical care units in different facilities, including a

wider range of task demands and clinical roles will be required to establish the generalizability

of sensor-based measurement features across settings and personnel. For example, burstiness

of speaking was related to mental exertion only when managing patients on insulin drips. This

dynamic could be indicative of higher levels of workload in other situations, but this study was

underpowered to detect the effect. While this study drew from existing models of nursing

workload, qualitative focus groups, and observational methods, it remained largely explor-

atory. Advances in integrating sensor-based measurement within the psychometric test devel-

opment framework will be necessary to develop more prospective measure development and

validation. In contrast to traditional assessment methods (e.g., self-report and observation)

with established best practices and methods, these types of wearable and environmental sen-

sors have generally unknown error structures [52] but systematic device related variance has
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been demonstrated in other research for sensors like those used in this study [53]. Addition-

ally, detecting naturalistic speech and isolating it to the sensor wearer (vs. others speaking in

the area) may be particularly difficult and potentially error prone. We did not formally assess

the reliability of all sensor features used in analyses reported here.

Conclusion

Sensor-based measurement systems are valuable tools for understanding performance in com-

plex socio-technical systems. These methods have the potential to enhance patient safety,

improve productivity and reduce burnout among nurses. This approach may be applied to

physicians and other health care workers and extended to other types of organizational perfor-

mance, such as coordination and teamwork which are known drivers of safety and quality yet

difficult to measure on a large scale with currently available methods.
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40. Lüdecke D (2017). sjPlot: Data Visualization for Statistics in Social Science. doi: 10.5281/

zenodo.1308157, R package version 2.0.2,https://CRAN.R-project.org/package=sjPlot.

41. Carayon P, Gurses AP. A human factors engineering conceptual framework of nursing workload and

patient safety in intensive care units. Intensive Crit Care Nurs. 2005; 21(5):284–301. https://doi.org/10.

1016/j.iccn.2004.12.003 PMID: 16182125

42. Szalma JL, Hancock PA. Noise effects on human performance: a meta-analytic synthesis. Psychol Bull.

2011; 137(4):682–707. https://doi.org/10.1037/a0023987 PMID: 21707130

43. Topf M. Hospital noise pollution: an environmental stress model to guide research and clinical interven-

tions. J Adv Nurs. 2000; 31(3):520–528. https://doi.org/10.1046/j.1365-2648.2000.01307.x PMID:

10718870

44. Kanji S, Singh A, Tierney M, Meggison H, McIntyre L, Hebert PC. Standardization of intravenous insulin

therapy improves the efficiency and safety of blood glucose control in critically ill adults. Intensive Care

Med. 2004; 30(5):804–810. https://doi.org/10.1007/s00134-004-2252-2 PMID: 15127193

Sensor-based measurement of critical care nursing workload

PLOS ONE | https://doi.org/10.1371/journal.pone.0204819 October 12, 2018 15 / 16

https://doi.org/10.1177/0963721414560811
https://doi.org/10.1177/1745691612441215
https://doi.org/10.1177/1745691612441215
http://www.ncbi.nlm.nih.gov/pubmed/26168460
https://doi.org/10.1177/0963721412457362
https://doi.org/10.1001/jama.2014.17841
https://doi.org/10.1001/jama.2014.17841
http://www.ncbi.nlm.nih.gov/pubmed/25668268
https://doi.org/10.1001/jama.2014.14781
http://www.ncbi.nlm.nih.gov/pubmed/25569175
https://doi.org/10.1136/amiajnl-2013-002606
https://doi.org/10.1136/amiajnl-2013-002606
http://www.ncbi.nlm.nih.gov/pubmed/25053579
https://doi.org/10.1109/TSMCB.2008.2006638
http://www.ncbi.nlm.nih.gov/pubmed/19150759
http://www.ncbi.nlm.nih.gov/pubmed/7154893
https://doi.org/10.1016/j.ergon.2008.01.012
https://doi.org/10.1016/j.ergon.2008.01.012
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1080/10618600.2014.938812
http://www.ncbi.nlm.nih.gov/pubmed/26759522
https://www.R-project.org/
https://doi.org/10.1080/10618600.2014.938812
http://www.ncbi.nlm.nih.gov/pubmed/26759522
http://CRAN.R-project.org/package=nlme
http://CRAN.R-project.org/package=multilevel
http://CRAN.R-project.org/package=multilevel
https://CRAN.R-project.org/package=sjPlot
https://doi.org/10.1016/j.iccn.2004.12.003
https://doi.org/10.1016/j.iccn.2004.12.003
http://www.ncbi.nlm.nih.gov/pubmed/16182125
https://doi.org/10.1037/a0023987
http://www.ncbi.nlm.nih.gov/pubmed/21707130
https://doi.org/10.1046/j.1365-2648.2000.01307.x
http://www.ncbi.nlm.nih.gov/pubmed/10718870
https://doi.org/10.1007/s00134-004-2252-2
http://www.ncbi.nlm.nih.gov/pubmed/15127193
https://doi.org/10.1371/journal.pone.0204819


45. Aragon D. Evaluation of nursing work effort and perceptions about blood glucose testing in tight glyce-

mic control. American Journal of Critical Care. 2006 Jul 1; 15(4):370–7. PMID: 16823014

46. Tucker AL, Spear SJ. Operational failures and interruptions in hospital nursing. Health Serv Res. 2006;

41(3 Pt 1):643–662. https://doi.org/10.1111/j.1475-6773.2006.00502.x PMID: 16704505

47. Sharma N, Gedeon T. Objective measures, sensors and computational techniques for stress recogni-

tion and classification: a survey. Comput Methods Programs Biomed. 2012; 108(3):1287–1301. https://

doi.org/10.1016/j.cmpb.2012.07.003 PMID: 22921417

48. Malhotra S, Jordan D, Shortliffe E, Patel VL. Workflow modeling in critical care: piecing together your

own puzzle. J Biomed Inform. 2007; 40(2):81–92. https://doi.org/10.1016/j.jbi.2006.06.002 PMID:

16899412

49. Overdyk FJ, Dowling O, Newman S, Glatt D, Chester M, Armellino D, et al. Remote video auditing with

real-time feedback in an academic surgical suite improves safety and efficiency metrics: a cluster ran-

domised study. BMJ Qual Saf. December 2015. https://doi.org/10.1136/bmjqs-2015-004226 PMID:

26658775

50. Buerhaus PI. Current and future state of the US nursing workforce. JAMA. 2008; 300(20):2422–2424.

https://doi.org/10.1001/jama.2008.729 PMID: 19033594

51. Dall T, West T, Chakrabarti R, Iacobucci W. The complexities of physician supply and demand: projec-

tions from 2013 to 2025. Washington, DC: Association of American Medical Colleges. 2015 Mar

52. Rosen M., Dietz A., & Kazi S. (2018). Beyond Coding Interaction. In Brauner E., Boos M., & Kolbe M.

(Eds.), The Cambridge Handbook of Group Interaction Analysis (Cambridge Handbooks in

Psychology, pp. 142–162). Cambridge: Cambridge University Press. https://doi.org/10.1017/

9781316286302.009

53. Chaffin D., Heidl R., Hollenbeck J. R., Howe M., Yu A., Voorhees C., & Calantone R. (2017). The prom-

ise and perils of wearable sensors in organizational research. Organizational Research Methods, 20

(1), 3–31.

Sensor-based measurement of critical care nursing workload

PLOS ONE | https://doi.org/10.1371/journal.pone.0204819 October 12, 2018 16 / 16

http://www.ncbi.nlm.nih.gov/pubmed/16823014
https://doi.org/10.1111/j.1475-6773.2006.00502.x
http://www.ncbi.nlm.nih.gov/pubmed/16704505
https://doi.org/10.1016/j.cmpb.2012.07.003
https://doi.org/10.1016/j.cmpb.2012.07.003
http://www.ncbi.nlm.nih.gov/pubmed/22921417
https://doi.org/10.1016/j.jbi.2006.06.002
http://www.ncbi.nlm.nih.gov/pubmed/16899412
https://doi.org/10.1136/bmjqs-2015-004226
http://www.ncbi.nlm.nih.gov/pubmed/26658775
https://doi.org/10.1001/jama.2008.729
http://www.ncbi.nlm.nih.gov/pubmed/19033594
https://doi.org/10.1017/9781316286302.009
https://doi.org/10.1017/9781316286302.009
https://doi.org/10.1371/journal.pone.0204819

