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Abstract

Episodic memories have been suggested to be represented by neuronal sequences, which

are stored and retrieved from the hippocampal circuit. A special difficulty is that realistic neu-

ronal sequences are strongly correlated with each other since computational memory mod-

els generally perform poorly when correlated patterns are stored. Here, we study in a

computational model under which conditions the hippocampal circuit can perform this func-

tion robustly. During memory encoding, CA3 sequences in our model are driven by intrinsic

dynamics, entorhinal inputs, or a combination of both. These CA3 sequences are hetero-

associated with the input sequences, so that the network can retrieve entire sequences

based on a single cue pattern. We find that overall memory performance depends on two

factors: the robustness of sequence retrieval from CA3 and the circuit’s ability to perform

pattern completion through the feedforward connectivity, including CA3, CA1 and EC. The

two factors, in turn, depend on the relative contribution of the external inputs and recurrent

drive on CA3 activity. In conclusion, memory performance in our network model critically

depends on the network architecture and dynamics in CA3.

Introduction

The hippocampus has been implicated in the acquisition and consolidation of memories in a

variety of paradigms, for instance: episodic memories in humans [1, 2], associating time-

delayed stimuli in rats [3], paired-associate memory even in the absence of a delay [4], and spa-

tial memory [5]. However, it remains unclear, how the hippocampal circuit stores and retrieves

memories. Based on its anatomical and physiological properties, the hippocampus can be

divided into the DG, which includes a large number of small granule cells with low activity [6],

and the CA3, CA2 and CA1 regions consisting of a homogeneous set of pyramidal cells. The

connections between the subregions are established in a feedforward manner [7]. CA3 is well-

known for its recurrent collaterals [8, 9], which play a key role in memory retrieval. The CA3

region has been suggested to function as an auto-associative memory, performing pattern

completion when a partial and/or noisy cue is provided [10–15]. The attractors in the
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recurrent CA3 network are thought to be established rapidly when cortical inputs drive activity

and plasticity in CA3. Over the last decades, this model has become known as the standard

framework [16] and it continues to drive hippocampal research forward.

However, the experimental support for the standard framework remains mixed. On the one

hand, it is bolstered by observations that rats with lesioned CA3 are impaired in remembering

a location when parts of the spatial cues are removed [17] and that spatial pattern completion

apparently requires plasticity in the recurrent CA3 synapses [18]. On the other hand, the stan-

dard framework cannot readily account for observations of numerous types of sequential neu-

ral activity in the hippocampal formation, because CA3 dynamics is designed to reach stable

attractor states [19]. For instance, multiple studies implicate the hippocampus in temporal

sequence learning. Rats with hippocampal lesions have difficulty remembering sequences of

spatial locations [20] and hippocampal lesions impair a rat’s ability to learn which odor came

first in a sequence of odors [21]. However, they were unimpaired at recognizing whether a par-

ticular odor had previously appeared in the experiment, or not. Similarly, animals with CA1

lesions have difficulty in disambiguating the temporal order of stimuli, particularly when they

happened close together in time [22]. Agster et al. [23] showed that hippocampal rats had defi-

cits disambiguating overlapping odor sequences. More generally, subsequent studies have

shown that the medial temporal lobe (MTL) is involved in associating discrete items and their

contexts across time and/or space [24, 25]. Electrophysiological studies have revealed further

evidence that temporal sequences might be intimately tied to the hippocampus. After rats run

through the place fields of hippocampal CA1 place cells causing the place cells to fire in a cer-

tain order, the cells become active in the same sequences during immobility awake states or

sleep [26, 27]. This phenomenon has been called replay [28–31].

The generation of neuronal sequences in recurrent neural networks has been extensively

studied in general computational models [32–37] and in models of the hippocampus [38, 39].

Levy and colleagues used sparsely connected random networks as a model of CA3 [38]. This

model provides a unified computational framework that accounts for a number of hippocam-

pal sequence processing tasks, e.g., sequence completion with an ambiguous subsequence,

jump-ahead recall, finding a short cut, etc. It has also been suggested that neural codes in the

hippocampus are organized by theta and gamma oscillations [39–41]. The aforementioned

CA3 models focus on rather artificial memory patterns, which are either random or correlated

in a systematic fashion. By contrast, neural activity patterns in the input region of the hippo-

campus, the entorhinal cortex (EC), have a unique non-random structure, for instance from

grid cells [42], with very different correlations than standard noise distributions [43]. Further-

more, the models focus on an isolated CA3 network, thus neglecting the inevitable encoding

and decoding in feedforward projections. It has been shown computationally that associative

projections are capable of reconstructing the memory of grid cell patterns even when the

recurrent connections (auto-associative function) in CA3 are removed [43]. This study illus-

trates how essential it is to consider the whole hippocampal loop while investigating individual

functional roles of the subregions.

We have recently suggested an alternative theory of how neural sequences might be stored

in the hippocampus [19], called CRISP (Content Representation, Intrinsic Sequences, and

Pattern completion). In this framework, neural sequences are intrinsically generated in CA3.

To store episodic memories, sequences of external input patterns are mapped onto these

intrinsic CA3 sequences through synaptic plasticity in the feedforward projections (e.g., [44]).

Here we develop a computational model of the cortico-hippocampal circuit (consisting of the

EC-CA3-CA1-EC loop) to study the storage and retrieval of sequence memory. The neural

network architecture is largely derived from our previous work [43], which in turn was

adopted from Fontanari et al. (1995) [45] with the important exception of the CA3 recurrent

Storage fidelity for sequence memory in the hippocampal circuit

PLOS ONE | https://doi.org/10.1371/journal.pone.0204685 October 4, 2018 2 / 33

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0204685


dynamics. Nevertheless, storing sequences presents entirely different challenges from storing

static patterns. We focused on two aspects that are key in the CRISP theory. First, what is the

computational advantage, if any, of generating sequences intrinsically in CA3? We previously

argued that limited plasticity in CA3 during memory encoding is a better match to experimen-

tal findings [19, 46], but this hypothesis has not been studied computationally before. Here, we

test recurrent CA3 networks that are driven to a different degree by intrinsic dynamics vs.

external inputs for their ability to robustly generate sequences of activity patterns. Second,

how do correlations due to CA3 dynamics affect pattern completion in the complete circuit?

Unlike the CA3 recurrent network, the feedforward connectivity between the hippocampal

subregions [7] has received much less attention until recently [43, 47]. We previously found

that the degree of spatial correlations in the EC inputs determine whether a recurrent or a

feedforward network architecture is better at performing pattern completion [43].

We find that two factors have a strong influence on overall memory performance in our

model: the robust retrieval of sequences from CA3 and the network’s ability to perform pattern

completion through the feedforward connectivity in the hippocampal circuit. Both of these

factors, in turn, depend on the relative influence of EC feedforward and recurrent inputs on

CA3 activity. So, the cortico-hippocampal circuit can robustly store and retrieve sequences of

patterns, but memory performance critically depends on the network architecture and dynam-

ics in CA3.

Materials and methods

In this study, we store and retrieve sequences of external input patterns in a neural network,

which represents the hippocampal formation. The model includes the entorhinal cortex (EC),

CA3 and CA1 (Fig 1).

Input statistics

To test the ability of each network model to store memory sequences, we generate P = L × M
patterns, where L is the number of sequences, each with M patterns. We denote the set of

Fig 1. Schematic of the model. The three subregions EC, CA3 and CA1 are included in the model. The parameter a
denotes the proportion of cells that are active, on average, at any given time. Arrows indicate connectivity between

regions. Solid black lines indicate fixed random connections, solid green lines represent plastic connections that are

adjusted during learning, and dashed lines show connections that could be either fixed (using hand-wired models for

CA3) or plastic (using EC-input and intrinsic input to train CA3 weights). The number next to the arrows shows the

number of connections that one cell receives from cells in the upstream region.

https://doi.org/10.1371/journal.pone.0204685.g001
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input patterns as

ful;m : 1 � l � L; 1 � m � Mg: ð1Þ

Since we recently found that the statistics of the stored patterns has a large impact on the

memory performance of a network [43], we consider more realistic inputs in EC. As the ani-

mal traverses the environment (Fig 2A), the activity of a grid cell in the medial entorhinal cor-

tex (MEC) of many species is modulated by the location of the animal such that discrete firing

fields are arranged in a periodic hexagonal grid (Fig 2B) [42]. At each spatial location rl,t, the

population of grid cells form an activity pattern ul,t (Fig 2B), the sequence of which are stored

in our hippocampal model. According to experimental findings the grid cell population is

divided into four modules [48]. Cells in the same module have similar grid spacing and orien-

tation, but different spatial phases, which were drawn from normal distributions. The mean

grid spacings si and orientations of the modules are 38.8, 48.4, 65, 98.4 cm, and 15, 30, 45, 60

degrees. For each grid cell, these parameters are drawn from normal distributions with stan-

dard deviations of 8 cm and 3 degrees, respectively. See [43], Fig 1B and 1C for the resulting

distribution of spacings and orientations of the population. Most grid cells (87%) belong to the

two modules with small spacings [48].

The activation of grid cell i at location r = (x, y) is determined by

hiðrÞ ¼ Aij exp � ln ð5Þ
dðrÞ
si

� �2
" #

; ð2Þ

where d is the Euclidean distance to the nearest field center j and σi is the radius of the firing

field. Each field has the same size, which is related to the grid spacing via σi = 0.32si (see Fig

S4G in [42]). Aij is the peak firing rate of the cell in the center of a field and reaches 0.2Aij at

the border, which is motivated by the definition of a place field [42]. The peak firing rates Aij

are drawn from a normal distribution with mean 1 and standard deviation 0.1 (see [43] for a

visualization of grid patterns). At any location, a binary activity pattern is generated by setting

the k cells with the highest activation to one and all others to zero according to Eqs 6 and 7.

To generate a sequence of input patterns, we simulate the spatial behavior of a rodent run-

ning in a 1m × 1m square environment. The trajectory is generated as follows. The agent is

placed at a randomly chosen starting point and then traverses the environment with a constant

speed of v = 10 cm per time step. In each time-step, the position of the agent rt is determined

by

rt ¼ rt� 1 þ v
mt

kmt k
ð3Þ

mt ¼ ð1 � mÞmt� 1 þ mεt; ð4Þ

where mt is a velocity vector, momentum μ modulates the smoothness of the path, which is set

to μ = 0.4, and εt is a random vector with two elements each drawn from a uniform distribu-

tion between −1 and 1. Whenever the virtual animal hits the boundaries, in the next time-step

it turns into the environment with a random direction. Finally, the trajectory positions are dis-

cretized by replacing them with the closest node on a 40 x 40 lattice laid over the environment.

Using the model described above we generate sequences of input patterns ul,m, which represent

the activity of grid cells when an animal explores a novel environment.

The dynamics of neural networks in the brain is continuous and the time constants govern-

ing synaptic conductances are in the range of tens of milliseconds. Here, we study sequence

memory encoding and retrieval at this fast time scale. To relate these neural sequences to
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Fig 2. Schematic of memory storage and retrieval. A: Four example trajectories that are traversed in the

environment. B: Illustration of the firing rate map of four example grid cells (one from each module) and three

population patterns ul,t (arrows) at example locations rl,t. C: To store a sequence (ul,1, . . ., ul,M) that represents an

episodic memory, a sequence (yl,0, yl,1, . . ., yl,M) is activated in CA3 and each element ul,t is associated with a particular

CA3 state yl,t. The CA3 dynamics is initialised externally with an initial pattern (yl,t = 0), which is a random pattern for
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behavioral sequences on the order of seconds or more, we assume that there is sequence com-

pression mechanism outside the storage network, such as, e.g., theta phase precession [49].

Theta phase precession is already present in the input to the hippocampus, in the medial ento-

rhinal cortex [50], suggesting that behavioral sequences arrive in the hippocampus temporally

compressed. The sequence compression mechanism is outside the scope of this paper, since

we focus on the storage and retrieval of neural sequences.

Model architecture and activation function

The number of neurons N in each region (Fig 1) is based on anatomical data from the rat hip-

pocampal formation [7, 51] and is scaled down by the factor of 100 in order to reduce the

computational costs (see [43] for details). Neurons in our model are binary, i.e., they are either

active or silent reflected by a value of 1 or 0, respectively [45]. The activation hi of the receiving

cell i is calculated as the weighted sum of its inputs uj

hi ¼
XNin

j¼1

wijuj; ð5Þ

where wij is the strength of the connection from cell j to cell i and is set to 0 when a connection

does not exist. Inhibitory cells are not modeled explicitly but rather through their effect on a

population level [52–56]. A k-Winner-Take-All (kWTA) mechanism is applied to determine

which cells become active. The k cells with the highest activation are set to 1 and the others are

inhibited and thus set to 0, i.e.,

k : RN
þ
� N! f0; 1gN ð6Þ

kiðh; kÞ ¼
1 if hi is among the k highest fhj : 1 � j � Ng:

0 otherwise:

(

ð7Þ

The number k is chosen uniformly from the interval [(1 − δ)aN, (1 + δ)aN], ensuring that a

varying number of k cells is recruited in different patterns. The parameter a is the sparsity in

the corresponding region (Fig 1) and δ = 0.15.

The number of connections that a neuron receives from upstream neurons is scaled up by a

factor
ffiffiffiffiffiffiffiffi
100
p

from the rat hippocampus (Fig 1). This ensures that a sufficient number of con-

nections exist to store the sparse patterns in the network. In particular, the sparse connectivity

in rat CA3 (< %3) [15] turns into 32% after scaling. We confirmed that our qualitative results

do not depend sensitively on the connectivity parameter by running our simulations for more

diluted and denser connectivities. The initial weights for the feedforward EC-CA3 and

EC-CA1 projections are randomly sampled from a uniform distribution between zero and

one. The weights of the CA3-CA1 and CA1-EC projections are initialized to zero since they

the DDN and RCN and a local bump-shape pattern in a random location for the LCN. When the DDN model is used,

the successive states of CA3 at t� 1 are associated together, otherwise CA3 connections remain fixed. The solid green

and black lines between the areas indicate the associations between patterns and fixed random connections,

respectively. Furthermore, the feedforward connections EC-CA3, CA3-CA1, and CA1-EC are adjusted to associate the

activity patterns between the respective regions. D: Retrieval of a stored memory sequence from CA3 based on a partial

input cue u0EC
l;t¼1

. Note that in the retrieval phase all connections are fixed. The first pattern in CA3 is driven directly

from EC and CA3 dynamics retrieves the rest of the sequence. The retrieved elements (patterns) are noisy and are

cleaned up by the CA1–EC network.

https://doi.org/10.1371/journal.pone.0204685.g002
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will be learned in the learning phase. Initialization of the recurrent CA3 weights will be

described below.

Recent findings indicate that reciprocal interactions between deep and superficial layers of

the EC are quite substantial [57, 58]. Furthermore, main cortical inputs target both deep and

superficial layers. Thus, the deep and superficial layers of the EC might act as a single func-

tional entity, rather than as separate structures [59]. Therefore, the superficial and deep layers

of the EC are clamped to the same activity during learning. Please note that this does not mean

that we close the loop, namely the activities in the EC outputs do not propagate, via the EC

input, through the network.

Models of CA3

The dynamics of CA3 is crucial for the overall function of the model, since only CA3 stores

and retrieves the sequential aspect of the memory sequences. To study the different roles of

external inputs and recurrent connections in driving CA3 network states, we systematically

vary the relative contributions of the two inputs (see the first model below). This model is the

main focus of our current study. To explore some of our findings in more constraint settings,

we contrast this main model with two further models, which produce CA3 sequences entirely

intrinsically and do not exhibit plasticity in recurrent CA3 connections. The second model

generates sequences of uncorrelated patterns, whereas the third model generates sequences of

highly correlated patterns. In all networks, non-existing connections are modeled as connec-

tions with zero weight.

1. Dual-driven network (DDN): Each CA3 node is connected randomly to 32% of the other

nodes. The weights for the connections are sampled from a uniform distribution between

zero and one. CA3 activity patterns are driven jointly by EC inputs and CA3 collateral

inputs during the learning phase. We use the mixing parameter (0� α� 1) to control the

contribution of these inputs to the activation of a CA3 cell. The activation hi of the receiving

cell i depends on the activity of the CA3 network in the previous time step and the concur-

rent activity in EC.

hi
t ¼ ð1 � aÞ

XN
CA3
in

j¼1

wijyjt� 1 þ a
XN

EC
in

k¼1

wikuk
t ð8Þ

When α = 0 the network activity is driven intrinsically. On the other hand, when α = 1, the

network activity is driven entirely by EC inputs. Intermediate values of α integrate contri-

butions of both inputs. The CA3 recurrent network learns the sequences through successive

hetero-associations, i.e., each network state is associated with the subsequent state of the

CA3 network (see subsection Learning Phase). Note that here we study sequence memory

storage in CA3, which is different from its suggested auto-associative function, where indi-

vidual, single patterns are stored in the network.

2. Randomly connected network (RCN): The connectivity is initialized randomly like in the

DDN, but the weights in this model remain fixed during the learning phase. CA3 activity is

driven intrinsically, i.e., described by Eq 8 with α = 0.

3. Locally connected network (LCN): Each CA3 node is assigned a virtual location in a 2-d

square environment and connected to 800 of its nearest neighbours. The weights of these

connections are assigned according to a Gaussian kernel based on the distance between

cells. Such a continuous attractor network generates a bump of activity. We introduce an

adaptation parameter (0� J� 1) to destabilize the bump of activity. The adaptation term
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forces the bump to move through the network [46]. The adaptation parameter controls the

speed of the bump movement. In summary, the activation hi of the receiving cell i depends

on its activity in the previous time step and the weighted sum of its recurrent inputs yj.

hi
t ¼ ð1 � aÞð1 � Jyit� 1

Þ
XN

CA3
in

j¼1

wijyjt� 1; ð9Þ

where we use the factor (1 − α) to be consistent with Fig 2C, but α = 0 in all simulations.

Note that there are no periodic boundary conditions in the LCN. The neurons at the

boundaries receive the same number of inputs as the neurons in the center of the sheet.

This slightly slows down the diffusion of the activity bump near the boundaries of the LCN.

During the learning phase, when input patterns from EC are hetero-associated with net-

work states in CA3, the initial CA3 pattern has to be triggered externally. The initialization pat-

tern is adjusted according to the CA3 model: the DDN and RCN are initialised with a random

pattern; and for the LCN, we use a local bump-shaped pattern in a random location. Once ini-

tialized, the next pattern in CA3 is generated according to Eqs 8 or 9, and 6 and 7 (also see

Fig 2C).

Learning phase

Our goal is to store a set of sequences {ul,m: 1� l� L, 1�m�M} in the network such that

they can be retrieved as accurately as possible. To store a sequence of patterns during the learn-

ing phase, the plastic weights between subregions (green arrows in Fig 1) are adjusted accord-

ing to Hebbian learning (Eq 10). For a hetero-association of a pre-synaptic pattern a with

post-synaptic pattern b, we use the so-called Stent-Stinger rule [60]

wij ¼ cij
XL

l¼1

XM

m¼1

ðaj
l;m � �ajÞbil;m: ð10Þ

c denotes the connection matrix between two regions, i.e., cij = 1 if there is a connection from

cell j to i and cij = 0 otherwise. It insures that non-existing connections remain at zero weight.

�aj is the mean activity level of the pre-synaptic cell over all sequences. To store sequences, we

first apply the input patterns ul,m to EC. The activities in CA3 are generated according to the

model used and as described in subsection. The sequence of CA3 patterns y are then hetero-

associated with the EC inputs u (Eq 10). Neural activity in CA1, x, is triggered by the constant

EC input weights via Eqs 5–7 (Fig 2C). Furthermore, the patterns in CA3 are hetero-associated

with the patterns in CA1, and the CA1 patterns with input patterns u in the EC output (Eq 10).

The weights in CA3 are plastic only in the DDN model. The CA3 patterns are first driven

jointly by recurrent and external EC inputs (Eq 8). Then, the corresponding patterns between

the CA3 and EC and successive patterns in the CA3 are hetero-associated based on Eqs 10 and

11, respectively. During the learning phase for the DDN, we adjust the recurrent weights vij in

CA3 according to the co-variance rule [61] to learn hetero-associations among a set of patterns

in a sequence {yl,m: 1� l� L, 1�m�M}.

vij ¼ cij
XL

l¼1

XM� 1

m¼1

ðyjl;m � �yjÞðyil;mþ1
� �yiÞ: ð11Þ

By subtracting the mean, the two learning rules model LTP and LTD. Furthermore the sub-

traction is essential for computational reasons (for example, see chapter 8.2 of [62]). After
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applying the learning rules, the Euclidean norm of the vector wi of incoming weights to cell i,
in all layers, is normalized to one to ensure that not always the same cells are activated.

Retrieval phase

After sequences have been stored in the network, we initiate recall by setting EC to a noisy

recall cue u0l;1. This cue is generated by modifying the first pattern of the stored sequence ul,1. A

number of active neurons are chosen randomly and inactivated. The same number of silent

neurons is chosen randomly and set to be active. Therefore, the number of active neurons is

preserved in all cue patterns. The quality of the recall cue is controlled by the number of cells

that fire incorrectly. It is measured by the Pearson correlation between the original pattern and

the recall cue (Ccue) (see below). This model of retrieval corresponds to placing the animal at a

previously visited location, but the grid cell population activity at that location might not per-

fectly match the pattern during the previous visit because of internal noise or slight changes in

the external environment. We test the model performance with 6 different levels of average

recall cue qualities, namely Ccue 2 {0, 0.2, 0.4, 0.6, 0.8, 1}. The actual cue quality of a particular

cue varies slightly depending on the number of cells, the sparsity of the pattern, and how many

cells have the incorrect activity. Hence, negative recall cue qualities are possible as well. The

recall cue triggers a pattern ~yl;1 in CA3 directly via the previously learned weights from EC to

CA3, which subsequently generates an intrinsic sequence (~yl;2; ~yl;3; . . .). This sequence is trans-

ferred to CA1 (~xl;1; ~xl;2; . . .) and from CA1 back to EC (~ul;1; ~ul;2; . . .). Fig 2D illustrates the

retrieval process in our model. The synaptic weights remain fixed during the retrieval process.

Analysis

Retrieval quality. To measure how well a retrieved pattern matches the stored pattern in

any region, we use the Pearson correlation between the originally stored pattern al,m of a

sequence and the retrieved one ~al;m. It is defined as

Cðal;m; ~al;mÞ ¼
ðal;m � �aÞTð~al;m �

�~aÞ
jjal;m � �ajj � jj~al;m �

�~ajj
;

where �a and �~a are the means of the stored and retrieved patterns over all sequences, l = 1,

2, . . ., L and m = 1, 2, . . ., M, respectively. The higher the value of this correlation is, the more

similar the recalled pattern is to the original one. We refer to the retrieval quality in CA3, CA1

and the output in EC as CCA3, CCA1, and CEC, respectively.

Pattern completion. Pattern completion is defined as the retrieval of additional informa-

tion from a memory network that was not present in the recall cue. To measure pattern com-

pletion in our model, we compare the retrieval quality at some stage Cðbl;m; ~bl;mÞ to the

retrieval quality at the next stage Cðal;m; ~al;mÞ. Here, the stages correspond either to two con-

nected layers in a feedforward network, or to subsequent network states in the recurrent CA3

network.

To perform the comparison, we make a scatter plot of Cðbl;m; ~bl;mÞ vs Cðal;m; ~al;mÞ for all

pairs of stored and retrieved patterns. If the points line up along the identity line, then the pro-

cessing does not add any information and thus does not perform pattern completion. Points

above the main diagonal show that the output of the network is more similar to the stored pat-

tern than the input was. So the network has performed some amount of pattern completion.

The more the measurements are above the diagonal, the better the pattern completion perfor-

mance (see Fig 3, right column). Measurements below the main diagonal indicate that the

Storage fidelity for sequence memory in the hippocampal circuit

PLOS ONE | https://doi.org/10.1371/journal.pone.0204685 October 4, 2018 9 / 33

https://doi.org/10.1371/journal.pone.0204685


Fig 3. Recall performance in CA3. Left: Each panel on the left column shows an example of the retrieval quality in a CA3 model as labelled on

the right hand side of the figure, when recall cue with cue quality Ccue = 0.4 is provided to EC. The horizontal axes represent the position of the

pattern in the sequence. Each colored line shows the correlation between the retrieved and the correct patterns in a sequence. The RCN (first

row) is highly sensitive to noise, whereas the LCN (last row) seems to keep the same input information while retrieving the stored sequence.

DDN(α� 0.9) shows the best performance and retrieves the previously stored sequence from the noisy input cue. Right: Summary of recall
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output of the network is on average less similar to the stored pattern than the input was,

reflecting that information was lost during processing (see Fig 3 right column, RCN model).

To quantify the degree of pattern completion in a processing step, we define the pattern

completion index (PCI) as the area between the main diagonal and the averaged output

retrieval quality. Averaging was performed in 10 bins in input retrieval quality. The area is

multiplied by a factor of 2 to obtain numerical values of the PCI between −1 and 1. Positive val-

ues imply that the network performs pattern completion, whereas negative values show that

the network loses information. Values close to zero imply that the processing step does

neither.

Sequence memory capacity. We further study the capacity of the CA3 network as well as

the complete circuit, and estimate the number of patterns (sequences) the network is able to

store and retrieve. For the specific number of stored sequences, we calculate the pattern com-

pletion index (PCI) for CA3-CA3 projections and end-to-end retrieval (EC1 − ECM), respec-

tively. We define the network capacity in our model as the maximum number of sequences

that can be stored in the network such that this PCI� 0.

Robustness against dynamic noise. To make our neuron model more biologically plausi-

ble, we also add noise to the neural dynamics and investigate its effect on sequence retrieval. In

these cases, Eq 5 is rewritten as

hi ¼
XNin

j¼1

wijuj þ εið0; s2Þ; ð12Þ

where εi is independent Gaussian noise with zero mean and variance σ2. The noise term is

present in the dynamics both during storage and retrieval. We exclude this term for EC input

neurons since we control the amount of noise added to the recall cue explicitly.

Results

Sequence completion in the CA3 network

Recall performance in CA3. We first investigate the ability of the network to retrieve the

stored sequences when initialized with a noisy cue. Fig 3 (left column) shows the performance

of the three different network models (DDN(α), RCN, and LCN) for a cue quality of Ccue = 0.4

which is initialised in EC input. In the subplots, each line indicates the retrieval quality for one

sequence as a function of time. For α� 0.9, i.e., if CA3 still has some recurrent dynamics dur-

ing storage, the DDN retrieves the entire sequence almost perfectly. It is thus able to perform

pattern completion and reach a retrieval quality of about 1, even when retrieval is initiated

with a corrupted cue via EC, CCA3ðyl;1; ~yl;1Þ ’ 0:3. However, the DDN is quite sensitive to

noise for α> 0.9 and does not maintain the high retrieval quality for all sequences. At its maxi-

mum value α = 1, when the CA3 inherits the spatial correlations from the correlated grid

inputs, memory performance of the network decreases abruptly. In this extreme case, the net-

work model cannot even retrieve one of the stored sequences.

The reason for this difference in network performance for different values of α is not simply

that intrinsically driven CA3 networks perform better. For instance, two other intrinsically

driven CA3 networks do not perform well. The RCN is overall highly sensitive to noise as the

performance in CA3 for the entire range of noise levels. The pattern completion plot for different network models. Data-points above the

diagonal indicate good sequence completion, whereas data below the diagonal indicate that information in the input is lost. Data on the

diagonal show that the network maintains the information in the input cue along the sequence. Overall, DDN(α� 0.9) performs best, even with

highly corrupted cues.

https://doi.org/10.1371/journal.pone.0204685.g003
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retrieval quality is generally low (Fig 3, top-left). By contrast, the LCN, which allows control-

ling the correlation between successively stored patterns and is able to generate a continuously

moving bump of activity, performs moderate pattern completion and maintains the retrieval

quality for the remainder of the sequence (Fig 3, bottom-left). In this example, the adaptation

parameter is J = 0.33. The slower the bump moves, the more robust the network is.

The results for these networks are summarized for the range of noise-levels, Ccue 2 {0, 0.2,

0.4, 0.6, 0.8, 1}, in the PCI plots (Fig 3, right column). The DDN(α� 0.9), performs sequence

completion as the data points are well above the diagonal (PCI> 0). To examine the influence

of plasticity in the recurrent CA3 synapses on the generation of robust sequences in CA3, we

switch off plasticity in CA3 in the DDN(0) model. This model is equivalent to the randomly

connected network (RCN). For the RCN, the data points lie below the diagonal, i.e., the net-

work does not perform sequence completion (PCI = −0.1). Since sequence completion is cru-

cial for the complete loop performance, we exclude this model from the following analyses.

For the LCN, with low moving bump speed (J = 0.33), the data-points lie mostly on the diago-

nal (PCI = 0.03), suggesting that the network model largely maintains the information from

the input cue. To conclude, the performance of recurrent networks in generating robust spa-

tio-temporal sequences highly depends on their structure.

Impact of correlation on CA3 sequence dynamics. Since the external drive from grid-

cell inputs on CA3 introduces correlations into CA3, we hypothesize that the DDN performs

poorly for α� 0.9 because the CA3 patterns are correlated. We therefore examined the spatial

correlations between pairs of stored CA3 patterns, and quantified the proportion of large cor-

relations, i.e., higher than Cth = 0.1.

xCA3 ¼

X

fl;mg6¼fl0 ;m0g

YðCCA3ðyl;m; yl0 ;m0 Þ � CthÞ

PðP � 1Þ
;

ð13Þ

where Θ() is the Heaviside function and P = L × M is the total number of stored patterns in

CA3. This proportion depends on curvature and intersection of trajectories that the simulated

animal traverses in the environment. The average ξCA3 is at or near zero for α� 0.9 and

sharply increases for larger values of α (Fig 4). To put these spatial correlations into perspec-

tive, we compared CA3 to EC and CA1. As expected, the proportion of large correlations is

higher in EC, hξECi ’ 0.3, than in CA3, since EC patterns are generated by periodic grid cells.

In CA1, the proportion of large correlations, hξCA1i ’ 0.12, is comparable to CA3 in DDN(1),

but lower than in EC. So, the random EC-CA1 projections decorrelate the patterns, which

would be the same for CA3 in the DDN(α = 1) model. The powerful decorrelation effect of

random projections also accounts for the near zero average ξCA3 in CA3 for the DDN(α�
0.9). Adding a small contribution from the initially random recurrent CA3 connections is suf-

ficient to completely decorrelate the EC inputs in CA3.

Furthermore, the dependence of the average ξCA3 on α is mirrored by the average PCI

value, which sharply decreases around α’ 0.9. The anti-correlation between the average ξCA3

and the average PCI suggests that it is the spatial correlation between patterns in the sequence

that interferes with sequence retrieval. This result makes sense because the subsequent patterns

in CA3 are hetero-associated according to Eq 11 and hetero-associations are known to be sen-

sitive to correlations between the patterns.

Including the LCN model helps us better understanding the effect of correlation on the pat-

tern completion. With J = .33, the average ξCA3 = 0.16, is higher than for the DDN because of

the continuous movement of the bump across the network. However, since the LCN does not

engage synaptic plasticity, it does not suffer from the same interference problem as the DDN
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for α� 0.9. The LCN neither performs sequence completion, nor does it lose information, as

is evident from its low PCI of 0.03 and Fig 3. The low sequence memory performance of the

LCN is the result of the continuous attractor network dynamics. Any activity bump is margin-

ally stable—until the adaptation term in the LCN forces the bump to move. This property

allows the network to remove noise deviations from the bump attractor, but it also makes it

impossible for the CA3 network to correct an incorrect bump location once it has formed.

In summary, we find that the robustness of sequence generation depends sensitively on the

dynamics of CA3 and that the reasons for low performance on sequence completion can be

quite different for different networks. To achieve robust sequence completion in CA3 with

correlated EC inputs, the sequential patterns in CA3 must be decorrelated.

Sequence memory capacity and the effect of dynamic noise on CA3 network. To assess

the biological plausibility of the DDN as a model for CA3, we study how many sequences the

CA3 network in our particular model can store and whether the neural dynamics is robust to

noise in the neural dynamics. The general sequence memory capacity of recurrent networks

has been studied previously in idealized models in much greater detail (e.g., [63, 64]). We

determine the CA3 capacity by calculating the average PCI for DDN networks, while increas-

ing the number of stored sequences (Fig 5, left). The colors depict the results for an CA3 DDN

(α) model for different values of α. There is no evidence for an abrupt change in retrieval qual-

ity as more and more patterns are stored, which would be evidence for catastrophic interfer-

ence. Instead, retrieval quality degrades gracefully. The DDN(α> .9) does not reach our

criterion (PCI> 0) at all and thus has zero capacity. The DDN(α< .9) has a capacity of at least

around 70 sequences (about 1000 patterns), which is compatible with previous studies [12, 65].

When noise is added to the network dynamics in CA3, the network performance degrades

gracefully (Fig 5, right). The recall performance remains remarkably constant up to σ’ 0.3,

suggesting that the dynamics of the network is robust against low to moderate noise. In this

simulation, we stored 256 patterns (16 sequences) in the network.

Treves and Rolls (1992) [65] reported that the recurrent network capacity is proportional to

the number of modifiable synapses per cell, with a factor that increases roughly with the

inverse of the pattern sparsity a. However, when we performed simulations with all-to-all or

10% connectivity (data not shown), we found no qualitative difference in the results, indicating

that our results are not sensitive to the number of synapses within the range tested here. The

Fig 4. Correlation between stored patterns affects sequence completion in the DDN model. The average PCI value,

which is calculated based on the results in Fig 3, right column, are shown in blue. The average proportion of large

spatial correlations> Cth between any pair of stored patterns in CA3, hξCA3i, are shown in red. Errorbars indicate the

standard deviation across 20 repetitions of the simulation. Note the strong anti-correlation between hξCA3i and hPCIi,

particularly, the sharp increase and decrease, respectively, around α’ 0.9.

https://doi.org/10.1371/journal.pone.0204685.g004
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most important parameter that can significantly affect the network capacity is the sparsity of

the stored patterns (Fig 6, left). To confirm the role of correlations between patterns in CA3 on

memory performance, we calculated ξCA3 (Fig 6, right). The patterns in both panels confirm

that PCI memory retrieval is only possible, i.e., PCI > 0, if hξCA3i is near zero. Another way to

interpret the results in Fig 6 is the following: The denser the CA3 patterns are, i.e., the higher

a, the lower the mixing parameter α has to be for the memory network to perform. Put differ-

ently, the DDN networks require more CA3 intrinsic contribution (lower α) to decorrelate the

inputs patterns when the patterns are denser (larger a).

Fig 5. Systematic analysis of sequence memory capacity and the effect of noise on DDN. Left: Recall performance as quantified

by the pattern completion index (PCI) in CA3-CA3 projections, for the six different DDN networks as a function of the number of

stored sequences. We define the CA3 capacity in our model as the maximum number of sequences that can be stored such that

PCI> 0. Right: DDN networks can tolerate retrieval noise injected into the neuronal dynamics (see Eq 12). PCI values are averaged

across 20 repetition of the simulation.

https://doi.org/10.1371/journal.pone.0204685.g005

Fig 6. Systematic analysis of the effect of the pattern sparsity on sequence memory storage. Left: The average PCI (indicated by the color scale) in CA3-CA3

projections for different DDN networks as a function of the mixing parameter α and the sparseness of the patterns a (see Fig 1). Sixteen sequences were stored. Based on

our criteria, the CA3 network is able to successfully store and retrieve memory sequences when PCI> 0. PCI values are averaged across 20 repetition of the simulation.

Right: The average proportion of large correlations between pairs of stored patterns, hξCA3i. The patterns in both panels confirm that PCI memory retrieval is only

possible, i.e., PCI> 0, if hξCA3i is near zero.

https://doi.org/10.1371/journal.pone.0204685.g006

Storage fidelity for sequence memory in the hippocampal circuit

PLOS ONE | https://doi.org/10.1371/journal.pone.0204685 October 4, 2018 14 / 33

https://doi.org/10.1371/journal.pone.0204685.g005
https://doi.org/10.1371/journal.pone.0204685.g006
https://doi.org/10.1371/journal.pone.0204685


Storing and retrieving sequences in the hippocampal circuit

We found previously that pattern completion in feedforward networks is important in a

model of the hippocampal formation and that the statistics of CA3 patterns are important for

memory performance [43]. Since our current study suggests that the DDN(α� 0.9) models

work best for sequence completion in CA3, we studied how the generated CA3 pattern statis-

tics affect pattern completion in the feedforward network. To this end, we retrieved the

sequence based on a noisy retrieval cue of the first pattern (see Methods) and then averaged

over the retrieval quality in each time step, hCðal;t; ~al;tÞil, in different processing stages of the

loop, namely EC (cue), CA3, CA1, and EC (output) (Fig 7). Five panels each illustrates the

results for a DDN(α) model with different values of α. The most obvious contrast is the com-

parison between DDN(0) and DDN(1). For intermediate values of α, the DNN(α) network

shows a behavior similar to either DDN(0) or DDN(1), with an abrupt change around the

familiar transition point of α’ 0.9. In the first time step, DDN(0) loses information in the het-

ero-association from EC to CA3, but the next two feedforward stages perform pattern comple-

tion through the CA3-CA1 and CA1-EC projections and more than compensate for the initial

Fig 7. Average retrieval performance at different processing stages in the hippocampal circuit. Each panel shows

the average correlation between retrieved and originally stored patterns for a different CA3 model. The data indicate

that pattern completion occurs in the EC-CA3, CA3-CA3 (through time), CA3-CA1 and CA1-EC projections. Each

data point, except for the retrieval cue, shows the average performance in the network layer. Different colors indicate

the performance for the eight first time steps. In all panels, the cue quality was Ccue = 0.4. Note that our network

consists of deep and superficial layers of the EC, which are clamped to the same activity during learning, but not

during retrieval. During retrieval, we only provide the input cue to the superficial layer and it is completed through the

EC(superficial)-CA3-CA1-EC(deep) pathway. The “cue” is applied to the superficial layers of EC and “EC” in the

panels refers to output of the network in the deep layers of EC.

https://doi.org/10.1371/journal.pone.0204685.g007
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loss of information. In later time steps, the retrieval quality in CA3 steadily increases due to

sequence completion in CA3. Both sequence completion and pattern completion in the feed-

forward circuit eventually saturate as retrieval proceeds in time and through the processing

stages, respectively. The results for DDN(1) are quite different. In the first time step, it consis-

tently performs pattern completion through all processing stages, including from EC to CA3.

Since this latter point markedly differs from DDN(0), and will be studied in more detail below.

Due to the inability of the CA3 recurrent dynamics in DDN(1) to retrieve the second, and

later, elements in the sequence, retrieval performance in CA3 drops dramatically relative to

the first time step.

For the LCN model, a different pattern of retrieval quality across different processing stages

and time emerges (Fig 7, bottom-right panel). Pattern completion of the first pattern looks

roughly similar to DDN(0), but pattern completion of later patterns looks more like that of

DDN(1). Note that in CA3, the retrieval quality for t� 2 does not significantly differ from that

for t = 1, but the subsequent feedforward pattern completion differs greatly. This suggests that

retrieval quality, the correlation between retrieved and stored patterns, in CA3 is not sufficient

to characterize the retrieved pattern completely. In other words, two different noisy patterns

that have the same retrieval quality can nonetheless subsequently yield different feedforward

pattern completion. One type of noise slightly degrades pattern completion, the other type

destroys it. Our analysis in section suggest that random fluctuations of the bump degrade pat-

tern completion, whereas shifts of the bump are destructive. With the LCN model, CA3 can

generate bump patterns that might never have been stored in the network. Therefore the

downstream CA3-CA1 projection cannot decode the information. By contrast, the DDN(α
� .9) models generate uncorrelated patterns in CA3 and store them, which allows for better

retrieval and subsequent pattern completion in the feedforward network.

To assess the overall retrieval quality systematically, we analyzed the end-to-end retrieval

performance by comparing the retrieval correlations of the last sequence element in the output

CECðul;M; ~ul;MÞ to the retrieval quality of the cue in the input (Ccue) (Fig 8). The DDN(α> .9)

models of CA3 fail to retrieve the stored sequences at any recall cue quality. Whereas with the

DDN(α� .9) in CA3, the model performs excellent sequence completion for the recall cue

qualities > 0.2.

Sequence memory capacity and the effect of dynamic noise on pattern completion.

For a memory circuit to be useful in practice, its overall performance should have sufficient

capacity and degrade gracefully when the capacity is exceeded or noise is present in the net-

work dynamics. We, therefore, study the capacity of the network based on the end-to-end

retrieval performance (Fig 8). For the specific number of stored sequences, we calculated the

average PCI and define the network capacity in our model as the maximum number of

sequences that can be stored in the network such that this PCI > 0. Indeed, the retrieval qual-

ity degrades gracefully in all DDN(α� 0.9) models with increasing memory load and noise

(Fig 9). The networks have a capacity of� 25 sequences, i.e.,� 400 patterns. As expected

from the data presented so far, DDN(1) has zero capacity. The capacity limit for end-to-end

retrieval follows an inverted U-shape, initially increasing with α and then decreasing again.

Similarly, the robustness to noise does not follow a simple rule. Our data indicate DDN(0.85)

is the most robust. These results contrast with those for sequence completion in CA3, where

the capacity limit decreases monotonically with α and DDN(0) is the most robust to noise

(Fig 5).

We also investigate the overall network performance with respect to the patters sparsity a
(Fig 10). For the fixed number of stored sequences L = 16, we calculated the average PCI for

different DDN(α) models, while increasing the parameter a. Comparing the results to that of
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Fig 6, reveals the effect of spatial correlation between successive patterns on the overall net-

work performance.

Even though we found that pattern completion through hetero-association in feedforward

networks is sensitive to the CA3 dynamics, it is nevertheless functional for the DDN model of

CA3. The results, therefore, show that the sequential retrieval in CA3 can be combined with

feedforward pattern completion, which is one of the core assumptions of CRISP.

The effect of the pattern statistics on pattern completion

Our results reveal that correlations between CA3 pattern have a complex influence on feedfor-

ward pattern completion in the hippocampal circuit. In particular, it is intriguing that not all

processing steps perform well in all cases (see Fig 7). To better understand the causes behind

the different performance in pattern completion, we investigated the manifolds in which the

Fig 8. End-to-end retrieval performance. The retrieval correlations of the last sequence element in the output is

compared to the retrieval quality of the cue in the input. Each panel corresponds to a DDN model with different α. The

panel in the bottom-right illustrates the average PCI value against the parameter α.

https://doi.org/10.1371/journal.pone.0204685.g008
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stored patterns in EC, CA3, and CA1 lie. The input dimensionality of the patterns in each

layer equals the number of cells N. The subspace, in that the P (= 256) stored patterns lie, has a

dimensionality of at most P. However, due to the correlation between the stored patterns, the

number of significant dimensions can be much lower. For instance, since the manifold of EC

Fig 9. Memory capacity of the hippocampal circuit measured by the end-to-end memory performance. Left: Shown is the average PCI when comparing the retrieval

quality of the first and last patterns of the sequences in EC, for six different DDN networks as a function of the number of stored sequences. The capacity degrades

gracefully. Right: Effect of noise in neural dynamics on overall network performance when L = 16 sequences are stored.

https://doi.org/10.1371/journal.pone.0204685.g009

Fig 10. The effect of the pattern sparsity on the end-to-end memory performance. Average recall performance

hPCIi in the complete loop for different DDN networks as a function of the pattern sparsity a and α. Note that the a
parameter is changed only for the CA3 network.

https://doi.org/10.1371/journal.pone.0204685.g010
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patterns are generated from grid cells as the simulated animal moves in a 2-d space, the EC

patterns form a 2-d manifold, albeit a highly nonlinear one. Here, we use principal component

analysis (PCA) to get an impression of what the pattern manifolds in the different layers of our

network look like. PCA identifies orthogonal directions (principal components) in the pattern

space such that the variance of the data along these principal components is maximal. This

way, PCA redistributes the data such that the first k components explain as much of the total

variance as possible.

Analysis on the grid patterns in the EC layer of our model indicates that only few compo-

nents explain any variance (Fig 11, top), cumulatively, 40 dimensions explain about 85% of the

total variance (Fig 11, middle). The estimated dimensionality is higher than the theoretical

value of 2, but since PCA is a linear method, we cannot expect it to be able to identify the

highly nonlinear 2-d manifold. For our purpose, it suffices that PCA shows that EC patterns lie

on a relatively low dimensional manifold. PCA also reveals that CA3 patterns in the LCN are

low dimensional, consistent with the fact that network activity is constrained by the attractor

dynamics to a 2-d manifold. Patterns in CA1 and in CA3 in the DDN(1) model also lie in a

lower dimensional space (Fig 11), since they are directly driven by EC. Nevertheless due to the

decorrelating effect of the EC afferent projections, the dimensionality is higher than in EC.

The DDN(0) patterns have the highest dimensionality, since the patterns are generated purely

by the random recurrent connections in CA3 and are nearly orthogonal to each other. As α
increases from zero, the number of components that are required to explain at least 85% of the

variance in the DDN(α) initially remains constant, but suddenly drops around α’ 0.9 (Fig 11,

bottom). These results are consistent with our findings on the ξCA3 (Fig 4), indicating that the

spatial correlations between the neural patterns arise from a movement along a trajectory in a

low dimensional manifold.

The analysis of the dimensionality also raises an apparent paradox. If the dimensionality of

the pattern space in CA3 decreases with α (Fig 4), the spatial correlations increase accordingly.

Higher correlations should deteriorate hetero-association in the EC-CA3 projections leading

to a decreased memory performance with increasing α. However, the opposite is the case. This

is already visible in Fig 7, where pattern completion from EC to CA3 improves with increasing

α. The average PCI for the EC-CA3 projections shows more clearly that the PCI indeed

increases with α (Fig 12), yet overall memory performance decreases with α (Fig 8).

We hypothesize that the apparent paradox arises because the correlations between retrieved

and stored patterns, the retrieval quality, alone are insufficient to fully characterize memory

performance of a network. We discussed similar cases in our previous work [43] and above,

where very similar retrieval qualities in CA3 nevertheless sometimes lead to pattern comple-

tions and sometimes to information loss (Fig 7, bottom-right panel, discussed in section).

What matters for hetero-association is that one particular pattern in the sending layer is

uniquely associated with one pattern in the receiving layer. If input and target patterns are ran-

dom and uncorrelated, we have pure associative memory [44]. When input or target patterns

are strongly correlated, i.e., patterns are less distinct from one another, it becomes more diffi-

cult to uniquely hetero-associated input and target patterns. However, in this case the retrieval

quality might still be high. Consider the extreme case where all the target patterns were identi-

cal, then retrieval quality would be perfect (1) for every retrieval, but the target pattern contains

no information whatsoever about the input pattern and therefore cannot serve for memory

retrieval downstream.

The correlations between CA3 patterns in our DDN(α� 0.9) are less severe than in this

extreme example, but the extreme example is nevertheless a useful guidance to understanding

pattern completion in the feedforward circuit. So we hypothesize that, for DDN(α� 0.9),

retrieved patterns in CA3 are less informative about the input, even though their correlation to
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Fig 11. Dimensionality of the pattern manifold in different layers. The variance of the stored patterns explained by

principle components (PCA) in EC, CA1, and CA3 for different network models. Top: Fraction of the variance

explained by individual components. Middle: Cumulative fraction of explained variance. Bottom: Number of

components that are required to explain at least 85% of the variance in CA3 for DDN models as a function of

parameter α. Note how this number suddenly drops around α = 0.9.

https://doi.org/10.1371/journal.pone.0204685.g011
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the correct pattern is higher. We therefore compared the correlations between retrieved CA3

patterns and the corresponding original pattern, Corig
CA3ðyl;m; ~yl;mÞ, to the retrieved patterns and

the other stored patterns, Cothers
CA3
ðyl0;m0 ; ~yl;mÞ where {l0, m0} 6¼ {l, m}). Hetero-association is suc-

cessful, if the two distributions are distinct from one another. This is indeed the case for α�
0.9, but not for α� 0.9 (Fig 13), confirming our hypothesis. The retrieval in these simulations

was initiated with the perfect recall cue in EC. Interestingly, for DDN(α� 0.9) the average

retrieval quality of the pattern that initializes retrieval in CA3, hCCA3ðyl;1; ~yl;1Þil (triangles in Fig

13) almost have zero overlap with the Cothers
CA3

distribution. This allows the CA3-CA1 projection

to perform hetero-association with the CA1 pattern and CA3 to perform sequence completion

to retrieve the next elements of the stored sequence, even though the average retrieval quality is

rather low. On the other hand, for DDN(α� 0.9) the retrieval quality is much higher, but the

initially retrieved pattern overlaps with the Cothers
CA3

distribution, making the cue less informative.

The overlap can be quantified by the confusion rate, i.e., how often the correlation between the

retrieved and the original pattern is smaller than the correlation between the retrieved pattern

and at least one of the other stored patterns in the network (variable c in Fig 13). Because of the

high confusion rate for α� 0.9, the CA3-CA1 projections in these networks cannot decode the

stored patterns in CA3 and therefore patterns completion fails. Furthermore, the recurrent

CA3 dynamics fails to retrieve the subsequent elements of the stored sequence in these cases.

To summarize, the pattern statistics imposed by the network structure and dynamics in

CA3 has an important and complex influence on the hippocampal circuit’s ability to perform

pattern completion. Correlations between stored patterns deteriorate CA3 sequence retrieval

as well as feedforward hetero-association. However, the frequently used correlation between

retrieved and original pattern is insufficient to characterize memory performance of the net-

work, or of its subparts, because this correlation does not indicate how informative the

retrieved pattern is about the input pattern.

Discussion

We have investigated the storage and retrieval of memory sequences in the hippocampal cir-

cuit based on the recently proposed CRISP theory. CRISP is built around intrinsic sequences

in CA3 and pattern completion in feedforward projections. We confirmed many assumptions

of CRISP, which were previously argued for based on experimental results and intuition, in

computational models of the hippocampal circuit. We found that the network model can store

and robustly retrieve sequences of realistic EC inputs. Memory performance critically depends

on the network dynamics in CA3, as already proposed by CRISP. In a prior study, we have

shown that, for realistic inputs pattern, completion through the feedforward network is a supe-

rior alternative to auto-association in CA3. Here, we confirmed that the hippocampal circuit

Fig 12. Pattern completion in EC-CA3 projections. Average pattern completion index (hPCIi) for EC-CA3 increases

with the mixing parameter α.

https://doi.org/10.1371/journal.pone.0204685.g012

Storage fidelity for sequence memory in the hippocampal circuit

PLOS ONE | https://doi.org/10.1371/journal.pone.0204685 October 4, 2018 21 / 33

https://doi.org/10.1371/journal.pone.0204685.g012
https://doi.org/10.1371/journal.pone.0204685


can perform pattern completion with sequential CA3 dynamics in the loop. Furthermore, cor-

relations between stored patterns in CA3 deteriorate both sequence completion in CA3 and

pattern completion in the feedforward projections. We also found that, having good retrieval

performance in CA3 does not necessarily mean that retrieval performance of the complete

Fig 13. How distinct are correct CA3 patterns from incorrect ones? Histograms of correlations between retrieved

patterns and corresponding stored patterns (blue) and between retrieved patterns and all other stored patterns (red).

Retrieval is initiated with the perfect recall cues in EC. The number c inside each panel shows the confusion rate. That

is how often the correlation between the retrieved and the original pattern is smaller than the correlation between

retrieved pattern and at least one of the other stored patterns in the network. The large triangle marks indicate the

average cue quality hCCA3ðyl;1; ~yl;1Þil that initializes CA3 dynamics during the retrieval process. For α� 0.9, there is

little to no overlap between the correct CA3 patterns and incorrect ones.

https://doi.org/10.1371/journal.pone.0204685.g013
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loop will be good as well. In some cases, a lower performance in CA3 can yield better overall

memory performance.

Network structure and plasticity in CA3

It turns out that the best performance in our study was achieved by the DDN model for CA3

with α� 0.9. In contrast to CRISP, which postulated no plasticity in CA3 during learning, this

model requires plasticity in CA3 during the learning phase. How can this discrepancy be

explained? There are several options. First, to salvage the original postulate, one could assume

the DDN(0) model for CA3 and assume that plasticity in CA3 occurs in a separate pre-training

phase. Since the activity in the DDN(0) model is independent of the input, the activity could

be triggered in the absence of any input. Then plasticity in the recurrent CA3 connections

would not be needed during the later learning phase. Second, it might be possible that a static

CA3 model, other than the RCN and LCN studied here, could provide even higher memory

performance than our DDN(α� 0.9) models, and we simply have not found this model, yet.

Third, we could drop the assumption of no plasticity in CA3 during learning from CRISP.

This assumption was based on experimental reports (e.g., [66]), but since their initial publica-

tion, there have not been many follow-up studies. So, the strength of the initial results remains

untested.

We would like to emphasize that despite the uncertainty about plasticity in CA3, our results

suggest that CA3 patterns should be decorrelated and somewhat independent of the EC input.

The latter confirms another assumption of CRISP that CA3 sequences are intrinsically gener-

ated and not imprinted by external inputs. Intrinsically generated sequences have been

observed in a number of different studies. During the delay period in an ongoing task, hippo-

campal neurons fire in a reproducible temporal sequence [67, 68]. Sequential activities were

observed in an offline state before rodents explore a novel environment, which were correlated

with the ordering of place fields in the novel environment (preplay) [69]. This preplay phe-

nomenon suggests that the offline sequences could not have been established by external sen-

sory inputs and are intrinsic to CA3 [46].

Based on our results, it is difficult to predict which one of the tested network architectures

is more likely to resemble the hippocampus anatomy. We have tried to incorporate the ana-

tomical parameters that are most often measured, i.e., neuron numbers, neural activity levels

and degree of connectivity, in all models. Only recently, higher-order anatomical features have

been studied (e.g., [15]). While we believe that it is too early to exclude a model merely based

on their results, they do suggest that a random connectivity is unlikely.

The function of DG

In our network, we did not include the DG explicitly, but the influence of DG can be inte-

grated into our model. A number of studies have indicated that DG orthogonalizes the pat-

terns before storage in a process known as pattern separation [10, 11, 13, 70]. Pattern

separation is facilitated by sparse activity in DG, sparse DG-CA3 connectivity and adult neuro-

genesis in DG. The latter effect results because newborn granule cells have little overlap with

older DG cells with respect to their projections to CA3 [71–73]. According to CRISP, this pat-

tern separation and strong drive from DG onto CA3 are particularly important for initiating

the CA3 sequence during memory storage and retrieval. Sequence initiation is not imple-

mented using neural mechanisms in this study, but ad hoc using some form of random initiali-

zation, because we wanted to focus on sequence and pattern completion. DG could be

responsible for this function, which will have to be studied in the future.
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In our current model, uncorrelated CA3 patterns arise solely due to initial random weights,

which partially drive the CA3 recurrent dynamics: the smaller α, the larger the influence. In a

long-lived animal, this mechanism might not suffice and might have to be supported or sup-

planted by another mechanism. The DG might play a role in producing sequences of uncorre-

lated patterns in CA3. It is conceivable that a pool of uncorrelated sequences is established in

the CA3 network when newborn neurons integrate into the DG network and provide orthogo-

nal activity to CA3. In this scenario, adult neurogenesis would effectively affect the α parame-

ter in our DDN model. The lower the rate of adult neurogenesis, the more correlated CA3

patterns would be, and therefore the higher α. This leads to a prediction for memory perfor-

mance across the lifespan, since the rate of adult neurogenesis changes throughout the animal’s

lifetime [74, 75]. Mice in middle age have about 80% fewer neural progenitor cell proliferation,

neuronal differentiation, and newborn neuron survival than mice in early adulthood [76]. In

the mouse DG, only 8.5% of the neurons born postnatally are added after middle age [77]. If

our hypothesis is correct, then the α in middle and older age is larger than that during early

adulthood. Since our model shows that memory performance is low for large values of α, our

model predicts that the memory performance in middle and older age is inferior to that during

early adulthood.

Pattern completion in CA1

The standard framework does not offer a clear function for CA1, but some studies hypothesize

that CA1 plays a role in novelty or mismatch detection [78, 79]by increasing its activity when

rats are exposed to novel environments [80, 81]. This hypothesis does not however account

easily for the general nature of memory deficits after lesions of CA1, e.g., in the retrieval of

contextual fear conditioning [82], and spatial information [83–85]. By contrast, CRISP sug-

gests that CA1 performs pattern completion of CA3 patterns to increase the precision and

robustness of retrieval. This suggestion is well supported by our modelling results (e.g., see Fig

7). In a way, CA1 decodes the highly transformed patterns in CA3 back to their original ver-

sions in EC [43].

Alternative suggestions for the function of CA1 including the memory for temporal infor-

mation [86], although the experimental evidence does not support a selective role of CA1 since

they also report similar deficits in temporal pattern separation after CA3 lesions (e.g., see ref.

22 in [86]). In addition, there is experimental evidence that the loss of CA3 inputs abolished

temporal coding (or sequence timing) in the CA1 population [87]. Furthermore, CA3 cells

exhibit robust temporal modulation when animals performed a memory task [88], similar to

the activity of time cells in CA1. We note that within the CRISP framework any function

assigned to CA3 requires CA1, as well, since CA3 only projects to neocortex via CA1. Many

other models agree with this notion. By contrast, Kesner hypothesizes that the direct projec-

tions from CA3 (and DG) to neocortex are more important than commonly appreciated and

therefore each hippocampal subregion can be assigned its own independent function. Since

this is an ongoing debate in the field, we unfortunately cannot resolve this issue at this

moment. It is tempting to bring time cells to bear on sequence memory as we discuss it here,

however, we feel that the time scale of the sequences would be too slow for memory retrieval.

The temporal dimension

The dynamics of neural networks in the brain is continuous and any attractor network settles

in the basin of attraction within 10-20 ms [89–91], although this time scale depends crucially

on the time constants governing synaptic conductances. Nevertheless, this raises the question

of how the hippocampus can associate events that are separated by seconds or more. As
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mentioned above, a potential solution could be that sequence of events on the behavioral time

scale are represented by compressed neural sequences at the timescale of milliseconds [41, 92,

93] through theta phase precession [49, 50].

Another important issue is that our network requires a pacemaker to keep the retrieval pro-

cess synchronized within and across the different subregions. This could be achieved by vari-

ous oscillations (e.g. theta, gamma, ripples) that are present in the hippocampus and that have

been linked to episodic memory and sequence learning in the hippocampus [94]. The most

promising candidate for this pacemaker is probably the gamma oscillation (approx. 40-120

Hz), as suggested previously [40, 95–97]. The timescale of theta phase precession, which might

serve to compress behavioral sequences on the timescale of seconds into the range of tens of

milliseconds, fits well with the timescale of gamma oscillations. It is therefore possible that

sequences of events are compressed by phase precession into timeslots of synchronized activity

organized by gamma oscillations.

Finally, we emphasize that some aspects of our study were determined for convenience and

clarity, not because the network depends on them. For instance, we always used the first pat-

terns in the sequences as retrieval cues because that way the sequence of retrieved items is the

longest. We could have initiated retrieval with any later element and the network dynamics

would have been the same, except that the retrieved sequence would have had fewer items to

analyze. While this would not have been an issue for many networks, for the last three net-

works in Fig 3, it could have made it difficult to discern the dynamics of the retrieval. Another

aspect is the number of items from the sequence that are provided as retrieval cues. In our

study, only a single input pattern was presented to the network to study the retrieval of the

memory sequence through the hippocampal circuit, heavily based on sequence retrieval in

CA3. If more input patterns representing later sequence elements were provided in EC, these

would interfere with the subsequent patterns retrieved from CA3. This interference highly

depends on the nature of the patterns that are used in EC, the performance of the EC-CA3 pro-

jections in pattern completion, and CA3 dynamics. Even though the network dynamics would

be the same, the retrieved sequences in the output would be much harder to interpret since

they would be mixtures of multiple processes.

Relationship to spatial memory

In this study, we focused on the function of the hippocampal formation in sequence memory.

However, spatial memory is also likely to be an ethologically relevant function of the hippo-

campus. For instance, the hippocampus is necessary for spatial learning in rodents [5] and

humans [98]. Several types of cells in the hippocampal formation appear to encode spatial

information, including head-direction cells [99], border cells [100], irregular spatial cells [101],

place cells and grid cells. However, other cell types in the hippocampal formation encode non-

spatial information, such as odor-sensitive cells [102], nonspatial cells [101], and time cells [68,

88]. This diversity of cell types is consistent with the function of the human hippocampus in

episodic memory [98]. While the focus of this article was on episodic memory, our network

stored spatial information from grid cells. The full range of inputs to the hippocampus and the

mixture of different inputs are poorly explored. We expect that our results are applicable

beyond grid patterns because it is the correlation between CA3 patterns that are detrimental to

memory performance and similar correlations are present in any of the aforementioned cell

types and quite likely in episodic memory patterns in general.

Our model could help to study whether the spatial representation in CA1 and CA3 can be

reconciled with episodic memory in the same neural network model. We found previously

that a fairly generic and robust solution to the transformation from grid cells to place cells
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could be learned in a feedforward model [103–105]. We also found evidence for spatial coding

in CA1 and CA3 in a model related to the current one [43]. Since our model includes the hip-

pocampal circuit, it enables future investigation of spatial representations in the hippocampal

subregions.

Relation to other studies

It is interesting to consider not only sequence storage and retrieval but also other types of

sequence processing, such as intersecting sequences, the possibility of skipping some patterns,

or even taking longer shortcuts, etc. As we illustrate in Fig 2A, some stored trajectories do

intersect each other. Since CA3 adds a random pattern to the EC input pattern at each time-

step, two identical or similar EC patterns are separated enough (when α� 0.9) so that the net-

work can disambiguate the overlapping patterns and retrieve the right sequence. However,

jump-ahead or shortcut recall would require reward or some other mechanism to define the

goal (as, for example, in [38]), which is not included in our model.

Previous studies have shown that hippocampal sequences can be produced by highly struc-

tured neural circuits, e.g., continuous attractor networks. Here a localized bump of activity in

the neural tissue moves around because of asymmetric patterns of connectivity, short-term

plasticity, or slow, local negative feedback [46, 106–108]. These highly structured circuits are

less likely to produce models with flexible circuitry or to generate dynamics with the temporal

complexity needed to account for experimental data [109]. In contrast, random networks have

been modified by training to perform a variety of tasks [34, 110–113]. Liquid State Machines

(LSMs) learn sequences in a completely different way than conventional recurrent neural net-

work (RNN) systems [112]. LSMs use a dynamic reservoir to recode time-series data. After a

certain time-period, the state of the liquid is used as an input for a readout network. This read-

out network learns to map the states of the liquid to the target outputs. This means there is no

need to train the weights of the RNN, which decreases the computation time and, more impor-

tantly, the complexity of learning time-series data. The LSM model provides a framework to

analyse continuous streams of input. Given a time series as an input, the LSM can produce a

time series of behaviors as an output. The desired behavior can be achieved by adjusting the

weights on the links between the reservoir and the output [114]. While these models can flexi-

bly learn many different tasks, the assumption of chaotic spontaneous activity in a constant

recurrent network is less biologically realistic.

Sussillo and Abbott developed a training scheme called FORCE learning that reorganizes

the chaotic spontaneous activity of a recurrent network into coherent activity patterns

required to generate controlled actions [34]. In this case, a recurrent generator network drives

a linear readout unit through weights that are modified during the FORCE training. It differs

from traditional training in neural networks, where normally network parameters (i.e., synap-

tic strengths) are modified gradually on the basis of initially large output errors until a desired

response is produced. In FORCE learning the output errors are small from the beginning of

the training process. Therefore, the goal of training is not significant error reduction, but

rather reducing the amount of modification needed to maintain these small output errors.

After training, modification is no longer needed, and the network can generate the desired

output autonomously. The FORCE learning also allows the modification of recurrent genera-

tor network synapses. This advantage makes the network architecture more biologically plausi-

ble. The network receives no external feedback, i.e., the feedback is generated within the

network. The FORCE learning procedure has been compared to Jaeger and Hass’ echo-state

learning where the recurrent network synapses are fixed and the desired output is fed back
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without noise to the network during training [113]. Here, feeding erroneous output back into

a network during training modulates its activity, so that learning fails to converge. On the

other hand, removing all feedback errors can lead to stability problem since it prevents the net-

work from sampling fluctuations during training. The FORCE learning procedure is used to

control the feedback signal and allows fluctuations to be sampled and stabilized. Overall,

results show that echo-state learning converges less often and with larger error than FORCE

learning. Even though in these models the random recurrent generator plays an important

role in sequence learning, our model assigns much more critical function to it, namely

sequence completion. FORCE learning is aimed at a pattern of activity in a read-out node,

which computes the output of the recurrent network. Our network learns the input sequences

reliably in one shot, but in FORCE learning the output is fed back to the network several times

forcing the network to generate the desired sequence. In addition, sequence generation in

these models is not guarantee to be robust to noise.

There are a number of biologically motivated sequence memory models that are more

detailed than our neuron model [115, 116]. These models show how spike-timing-dependent

plasticity (STDP) can lead to a cell becoming responsive to a particular sequence of presynaptic

spikes and to a specific time delay between the spikes [117, 118]. Hawkins and Ahmad pro-

posed a mechanism, in which a neuron can predict its activation in hundreds of independent

contexts [119]. They then present a network model based on neurons with these properties

that learns neural sequences. It remains to be seen whether our results on sequence memory in

the hippocampal circuit are reproducible using more biologically plausible model components,

e.g., spiking neurons and STDP learning rule.

Predictions

Our modeling results make the strong prediction that the spatial correlations between patterns

in CA3 is lower than those in EC or CA1, which could be easily tested in existing experimental

data. To our knowledge, the closest that a reported result has come to test this prediction is a

study by Leutgeb et al [120]. They have found that the CA3 population activity had lower over-

lap between two different environments than the CA1 population activity, whereas between

two exposures to the same environment the overlaps were the same in CA1 and CA3. How-

ever, their overlap measure was based on the ratio of the average firing rates in the two envi-

ronments (or exposures) and therefore does not allow any insight into the individual patterns

in CA3 and CA1. Furthermore, in our model CA3 is important for sequence learning, whereas

CA1 performs pattern completion. This can be tested experimentally and compared with the

predictions of the standard framework. One can train an animal on tasks that require either

associative or sequence learning. Our model predicts that a CA3 lesion prevents the animal

from learning the sequential task, but it does not affect associative learning. The standard

framework predicts the opposite outcome.

Conclusion

Compared to previous models, CRISP proposes a different mechanism for storing episodic

memories in the hippocampus. Neural sequences are generated in CA3, and inputs are

mapped onto these sequences through synaptic plasticity in the feedforward projections of the

hippocampus. Here, we used computational models to confirm that CRISP is a viable theory

for episodic memory storage in the hippocampus, but more work is required to test all aspects

of the theory.
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