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Abstract

Navigation plays an essential role for many animals leading a mobile mode of life, and for

central place foragers in particular. One important prerequisite for navigation is the ability to

estimate distances covered during locomotion. It has been shown that Cataglyphis desert

ants, well-established model organisms in insect navigation, use two odometer mecha-

nisms, namely, stride and optic flow integration. Although both mechanisms are well estab-

lished, their mode of interaction to build one odometer output remains enigmatic. We tackle

this problem by selectively covering the ventral eye parts in Cataglyphis fortis foragers, the

eye regions responsible for optic flow input in odometry. Exclusion of optic flow cues was

implemented during different sections of outbound and inbound travel. This demonstrated

that the two odometers have separate distance memories that interact in determining hom-

ing distance. Possible interpretations posit that the two odometer memories (i) take on differ-

ent relative weights according to context or (ii) compete in a winner-take-all mode.

Explanatory values and implications of such interpretations are discussed. We are able to

provide a rough quantitative assessment of odometer cue interaction. An understanding of

the interaction of different odometer mechanisms appears valuable not only for animal navi-

gation research but may inform discussions on sensor fusion in both behavioural contexts

and potential technical applications.

Introduction

Cataglyphis desert ants are accomplished navigators in the barren landscape of North African

salt pans, dunes and steppe biotopes [1, 2]. During foraging trips, ants may stray from their

nest for distances exceeding 10.000 body lengths [3, 4]. Cataglyphis has thus become a well-

studied model organism in animal navigation research [3, 5]. The ants’ major means of orien-

tation is path integration, combining angles steered and distances travelled during outbound

travel into a home vector that guides them back to their nest. To estimate covered distances,

Cataglyphis employs two odometer mechanisms [6], namely, stride and optic flow integration

[7–9], that appear to represent two independently evolved odometers [9, 10]. Both
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mechanisms are well established but their mode of interaction to control homing behaviour

remains enigmatic. Indeed, the interaction of odometer mechanisms has not been tackled

before, contrasting with the interactions of different compass cues [11–14] and compass and

landmark cues [14–17] that have been addressed previously.

In the present study, we examine interaction of the two odometers and their respective

memories by the transient inactivation of one of the two mechanisms. The stride integrator

is invariably active in walking ants [18] and thus cannot be disabled in Cataglyphis foragers.

We therefore eliminated optic flow perception by covering the ventral eye parts in foraging

desert ants. These eye regions are responsible for optic flow input in odometry [7, 9]. The

exclusion of optic flow cues was implemented during different sections of outbound and

inbound travel to assess the relative contribution of the optic flow odometer. This demon-

strated that stride and optic flow odometers have independent memories that interact in deter-

mining homing distance. Interaction of the two odometer memories may be conceptualised by

a set of (related) interpretations. One straightforward interpretation assumes that the two

odometer memories together drive homing with relative weights that vary according to con-

text. The present experiments provided a rough quantitative assessment of these respective

weights.

The experiments reported below often follow a logic where the design of a given experiment

is based on the outcome of the previous experiment. We therefore outline a set of working

hypotheses related to the experimental design and previous reports in the literature. This is

meant to facilitate understanding of the rationale of the experimental sequence, while the Dis-

cussion will pick up these hypotheses, scrutinize them, and put them in the context of possible

interpretations.

1. Optic flow and stride integrator odometers have separate distance memories, and these

are charged in parallel. In previous reports, separate odometer memories have either been

strongly suggested in Cataglyphis cursor [19] and have actually been demonstrated in Cata-
glyphis bicolor [9].

2. The two odometer memories interact in driving homebound travel with adjustable rela-

tive weights. Together with hypothesis 1 this implies that one odometer alone should be

able to guide the ant towards the nest in particular situations, e.g. with one odometer is

incapacitated, while under normal conditions both are interacting to establish odometer

output.

3. The memory contents of an odometer is maintained at its current value if the odometer

is (temporarily) incapacitated. That is, transient exclusion of one odometer results in

maintenance of its memory contents that can be re-activated later.

4. The optic flow and stride integration memories are discharged separately. The two dis-

tance memories can be charged, as postulated by hypothesis 1, and also discharged

independently.

5. A nest search is initiated as soon as one of the odometer memories has been depleted,

and the other odometer memory has either also been discharged to zero, or it is inactive

and cannot be used. This hypothesis has indeed been verified previously in different con-

texts. One example are local vectors that are activated by landmark arrays [20], and that

may drive homing behaviour even when the path integrator has been run off, signalling the

nest position, and vice versa.

Odometer interaction in ant navigation
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Material and methods

1. Animals and experimental situation

Experiments were performed on a field site near Maharès (34˚ 31’ 46” north, 10˚ 32’ 24” east),

a Tunisian village just south of Sfax. The experimental season lasted from the end of May until

the beginning of September in 2007 to 2009 and in 2015 to 2016. Large and active nests of Cat-
aglyphis fortis (Forel 1902) [21] were selected for the experiments. The experiments reported

here comply with all requirements concerning animal welfare and are in full accord with cur-

rent laws in Germany and Tunisia. No endangered or protected species were involved in our

field studies. The research conducted was covered by a research permission of the national

authorities (Ministère des eaux et forêts) and kindly approved by the owner of the land.

2. Procedures for behavioral experiments

2.1 Eye covers. It was the objective of the present experiments to study the mode of inter-

action of two odometer memories, namely, stride integrator [8, 22] and optic flow integrator

memories [7, 9]. Ants were therefore trained and tested with or without ventral eye covers that

eliminated visual input from the ommatidia of the ventral half of the compound eyes. The ven-

tral parts of the eyes were painted over with car paint (Motip Dupli GmbH, Haßmersheim,

Germany), sometimes already on the day before testing. There was no difference in the behav-

ior of ants that had their eye covers applied immediately before and on the day before the

respective experiment. That is, there were no effects of longer lasting deprivation of ventral eye

input. The eye covers were checked with a hand held 10x magnifying glass after the paint had

set, and they were re-checked before every test run. In some experiments, the ventral eye cov-

ers were removed in the course of the test runs, or they were (re-) applied during the test pro-

cedure. In these cases, too, successful removal and (re-) application were checked with the

magnifying lens.

2.2 Channel set-up and feeder. An ant nest was connected to a feeder established in 10 m

distance by a linear U-shaped aluminium channel (training channel). In addition, a channel

aligned in parallel and 35 m long (test channel) was installed at a short distance from the train-

ing channel. The profiles of training and test channels were 7 cm wide and the walls 7 cm high.

This provided the ants with a strip-like view of the sky of approximately 53˚ to read the sky-

light pattern and derive compass information. The channel walls were painted homogeneously

with dull grey varnish to eliminate reflections, potential landmark cues, and lateral optic flow

cues [23]. The channel floor was coated with fine grey sand to provide an even ground with

traction for walking and homogeneous ventral optic flow. The feeder in the training channel

was equipped with cookie crumbs cut and sieved to a size of approximately 1.5 by 1.5 mm to

produce food items easily accepted by the ants. A few drops of peach juice made these morsels

even more attractive.

2.3 Training and test procedures. Experiments were performed according to established

procedures [22, 24]. Individually marked ants had visited the feeder at least five times in the

training channel before experiments were started. Ants that had taken up a food crumb were

gently caught at the feeder and transferred to the test channel to record their homing perfor-

mance. Only those ants were considered that held on to their food crumb for the entire home-

bound trajectory, even in the cases of interruptions of homing behavior for removal or (re-)

application of eye covers. Transport of a food item indicates that an ant is motivated to carry

the morsel back to the nest and is thus indeed on its homebound journey [25]. Once placed in

the test channel, the animals took up determined homebound runs. A switch from homing

behavior to nest searching (compare [26]) is indicated by a conspicuous U-turn, followed by a

Odometer interaction in ant navigation
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search pacing back and forth around the assumed position of the nest entrance [27]. We

recorded the point of this switch in homing behavior (first turning point, 1. TP), as well as six

consecutive turning points of the subsequent search. U-turns were recorded only when the

new walking direction was maintained for at least 40 cm before another turn occurred (Fig 1).

Depending on the experimental paradigm (see below), the ants’ ventral eye halves were

manipulated during three different experimental phases: (i) during outbound training, (ii)

until the first turning point (1. TP) of homing and (iii) during the second to sixth turning

points (2.-6. TP).

2.4 Experimental paradigms. The following training and test paradigms were carried

out, with “0” denoting intact ants without eye covers, and “1” meaning that the ventral eye por-

tions had been painted over. In the labels used below (e.g. 0–00), the hyphen (—) separates

training and test runs. In some experimental series, eye covers were changed–removed or re-

applied–during the test phase, after the first turning point, which is indicated by the two fig-

ures behind the hyphen.

1. 0–00: One group of control ants (sham control) was trained and tested without eye covers.

These ants were caught at the feeder and their ventral eye fields were painted over for 30s.

Afterwards, the eye caps were removed again and the ants were released into the test chan-

nel to record their homebound walking trajectories and six consecutive turning points of

nest search behavior.

2. 1–11: Another control group was trained and tested with eye covers present throughout the

experiment. Again, we recorded the homebound trajectory and six consecutive turning

points.

3. 0–11: Ants were trained with intact eyes and subsequently tested with eye covers. Again,

homing and six consecutive turning points were recorded.

4. 0–10: Ants were trained with intact eyes, ventral eye covers were applied for testing until

the animals had exhibited the first turn and thus initiated their nest search; the animals

Fig 1. Examining ant homing behaviour. A) During I. Training (outbound), a nest (N) was connected via an aluminium channel to a feeding station

(F) at 10 m distance. After arriving at the feeder, an ant forager was captured and transferred to a distant channel, where it performed its inbound

journey and thus completed the experiment (II. Test). The ant’s homebound travel and consecutive turning points (1, 2, 3. . ., not drawn to scale) during

searching were noted to assess homing performance. (B) During different stages of an experiment (Training, Homing until 1. turning point (TP),

Homing from 2. to 6. TP), exclusion of optic flow cues was achieved by ventral eye caps. Presence (1) or absence (0) of eye caps is indicated in insets left

to the channel drawings. 0–10, for example, signifies the absence, presence and again absence of eye caps during training, homing until the 1. TP, and

searching from the 2. to 6. TPs, respectively; 0–00 signifies the sham controls without eye caps at any stage.

https://doi.org/10.1371/journal.pone.0204664.g001
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were captured within 20 cm of the turning point, the eye covers were removed, and the ants

released at the point of capture to record another five turning points.

5. 1–00: Ants were trained with ventral eye covers present and the covers were removed for

testing. We recorded six consecutive turning points.

6. 1–01: Finally, ants trained with ventral eye covers had the covers removed to record the

first turning point. The animals were captured within 20 cm of the turning point and the

eye covers were re-applied before recording the next five turns of homing behavior.

3. Analysis of homing performance

As described above, we recorded six consecutive turning points to obtain representations of

the ants’ searching performance and homing distance (as the center of the search, or the first

turning point). To do so, the test channel was divided into 10 cm bins by stringing a tape mea-

sure along the channel, and the turning points were noted with regard to these bins for further

analysis.

First, search density distributions were evaluated for each experimental situation. This anal-

ysis illustrates how often an ant has visited a certain bin of the test channel during its six conse-

cutive turns. These visits were counted and cumulated to calculate the relative distribution.

This means, the more often a channel segment (10 cm bin) was visited during the search, the

higher was its value in the density distribution. Search density distributions were normalized

to their peak values for presentation in the figures (Figs 2–4, S1 Fig).

Second, the median values of the turning points of the ants’ nest searches were calculated to

provide an estimate of the search center. From these data, box-and-whisker plots were con-

structed. Marked values in the box-and-whisker plots are the center (grand median), the

spread (inter-quartile range, IQR, 25% and 75% percentiles), and the 10th and 90th percentiles

(whiskers) (Figs 2–4, S1 Fig).

4. Statistical analyses

We determined medians instead of means because not all data were normally distributed.

Pair-wise comparisons were performed between relevant experimental groups. The t-test was

used for normally distributed data and the Mann–Whitney rank sum test (U-test) for non-

normally distributed data. A Bonferroni correction was applied considering the multiple use

of our control group for comparison, and we thus tested for a significance level of p = 0.01,

instead of 0.05. Sample sizes ranged from n = 20 to n = 91. All experimental groups consisted

of different sets of animals and thus were independent. Tests were performed with SigmaPlot

11.0 (Systat Software, San Jose, CA, USA).

Results

Examining ant homing behavior; sham (handling) controls

Ants are accomplished navigators using a multitude of cues for orientation (e.g. [14]). To

focus our study on odometer function we performed experiments in straight channels, thus

excluding other orientation cues such as panorama (e.g. [28]) and landmarks (e.g. [29]). The

ants completed their outbound journey in a training channel connecting the nest to a feeding

station. Before starting their homebound travel, ants were gently captured and transferred to a

parallel test channel, where homing and subsequent nest search were recorded (Fig 1A). By

covering the ventral parts of the compound eyes with light-tight paint we excluded optic flow

input during different sections of the ants’ foraging trips (Fig 1B).

Odometer interaction in ant navigation
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Animals of a sham control group (0–00) (terminology see legend Fig 1 and Methods), were

caught at the feeder, at 10 m distance from the nest, and had ventral eye covers applied that

were removed again after just 30s. Afterwards, they were transferred to the test channel to

record their typical homing and nest search behaviours (Figs 1A and 2A). One measure of an

Fig 2. Correct distance measurement is possible without optic flow cues. (A) Median of 1. TPs and relative search density (RSD) plot of 0-

00-experiment (n = 26). Ants of this sham control group were able to perceive optic flow during the entire experimental procedure. However, between I.

Training and II. Test, eye caps were applied and removed 30s afterwards. (B) Median of 1. TPs and relative search density (RSD) plot of 1-11-experiment

(n = 26). Ants were deprived of ventral optic flow cues during the entire experimental procedure. Release point (0) and fictive nest position (10) are

marked by grey vertical lines, and 1. TP medians by coloured lines, in this and the following figures. (C) Box-and-whisker plots and statistical analysis.

There is no statistically significant difference between the grand medians of the 0–00 and the 1–11 groups, demonstrating correct distance estimation for

both groups. Nevertheless, the RSD-plot reveals a narrower search distribution of the 1-11-experiment, the reason remaining unclear.

https://doi.org/10.1371/journal.pone.0204664.g002
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ants’ distance estimate is the point where the nest search is initiated, that is, the first turning

point (1. TP) after a fairly straight and uninterrupted homebound run [7, 30, 31]. The median

of the first turning points of the 26 control ants was at 10.80 m (interquartile range, IQR

8.60 m to 13.10 m). Another measure of an ant’s distance estimate is the search centre, deter-

mined as the median of the subsequent second to sixth turning points (2.-6. TP). In the present

Fig 3. Stride and optic flow odometer memories interact. (A) Median of 1. TPs and relative search density (RSD) plot of 0-11-experiment (n = 39).

Ants approached the feeder without eye covers but were deprived of optic flow cues during the entire homing run. (B) Corresponding plot of 0-

10-experiment (n = 26). Ants were deprived of optic flow cues during homing until they had exhibited their 1. TP, where eye covers were removed. (C)

Box-and-whisker plots and statistical analysis. There is no statistically significant difference between the 0–11 and the 0–10 groups regarding the 1. TPs

(p = 0.329, t-test). However, there is a significant difference between the search densities exhibited by the 0–10 and 0–11 groups (p<0.001, U-test). That

is, restoring normal optic flow perception after the 1. TP results in the ants resuming homebound travel over appreciable distance.

https://doi.org/10.1371/journal.pone.0204664.g003
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experiment, the grand median (median of all individuals’ search medians) of the nest searches

was at 10.75 m (IQR from 8.90 m to 13.60 m), just 75 cm past the correct nest-feeder distance.

Our sham (handling) control group is thus indistinguishable from the normal search

behaviour of untreated ants in channel arrangements (1. TP median 11.00 m, search median

Fig 4. An odometer mechanism that is inactive at the time of nest exit does not contribute to homing, even if activated later on. (A) Median of 1.

TPs and relative search density (RSD) plot of 1-00-experiment (n = 91). Ants were deprived of optic flow during the entire outbound run and eye covers

were removed for the homebound journey. (B) Corresponding plot of 1-01-experiment (n = 30). Ants were deprived of optic flow cues during the

outbound run, eye covers were removed before the start of the homebound run and re-applied after an ant had exhibited its 1. TP. (C) Box-and-whisker

plots and statistical analysis. There is no statistically significant difference between the 1–00 and the 1–01 groups regarding 1. TPs (p = 0.358, U-test) and

grand medians of the subsequent search densities (p = 0.637, t-test). Differences in optic flow input between outbound and inbound travel per se thus do

not cause misjudgement of walking distance.

https://doi.org/10.1371/journal.pone.0204664.g004
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10.60 m; see also [22]). Apparently, neither handling nor eye painting procedures influenced

the ants’ search behaviour (see S1 Fig).

Homing performance of ants with ventral eye covers

In this experiment, we covered the ants’ ventral eye halves during both outbound (training)

and inbound (testing) journeys (1–11; see legend Fig 1 and Methods for terminology). These

animals used their stride integrator but had no ventral optic flow available to measure walking

distance [7, 29]. Ventrally blinded ants gauged travel distance correctly (Fig 2B), and their

homing performance was statistically indistinguishable from the sham control group (Fig 2C)

(1. TP median 11.40 m (IQR 9.63 m to 12.43 m; p = 0.544, U-test), search distance grand

median 11.30 m (IQR 10.65 m to 12.53 m; p = 0.371, U-test)). The fact that the search is close

to the 10 m mark demonstrates that optic flow cues are not essential for an ant to measure

walking distance rather correctly in the present situation, in agreement with previous studies

[19].

Optic flow was absent during the whole foraging trip in these experiments (1–11 and [19]).

Exclusion of optic flow during the homebound journey only, that is, with charged optic flow

memory according to the above hypotheses, has not yet been examined. This particular experi-

ment (0–11) should however allow to ascertain if the two odometer mechanisms indeed oper-

ate independently and how they interact in determining homing distance.

Exclusion of optic flow cues during the homebound journey only

To address the interaction of optic flow and stride integration, we first applied eye covers only

during the homebound journey. That is, the ants were captured at the feeder as usual but

before releasing them into the test channel their ventral eye halves were painted over (0–11).

These animals consistently searched for the nest at remarkably shortened distances, well below

10 m (Fig 3A and 3C). In the present experiment, the median search distance (grand median)

of the experimental ants was at 5.70 m (IQR 4.03 m to 7.40 m) and the median position of the

first turning points was at 6.10 m (IQR 4.20 m to 8.55 m). The difference between the search

distances of this experimental group (0–11) and the handling control animals (0–00) was sig-

nificant (1. TPs, p<0.001, t-test; 2.-6. TPs, p<0.001, U-test; both significant after Bonferroni

correction).

According to the hypotheses outlined in the Introduction, this distinct–and from a naïve

perspective, unexpected—shortening of homing distance may be a result of the charged optic

flow memory that has been (temporarily) incapacitated by the eye covers. Testing whether or

not an optic flow memory is actually present in the ants that have reached the nest according

to their stride integrator is thus the next logical experiment.

Exclusion and subsequent re-activation of optic flow during homebound

travel

This experiment was carried out by applying eye covers before an experimental ant started its

homebound travel as before, and removing the eye covers once the animal had commenced its

nest search, indicative of the stride integrator memory having been run off. The results of this

experiment (0–10) are shown in Fig 3B and 3C. After removal of the eye caps at the first turn-

ing point (median 7.65 m; IQR 5.10m to 9.40m), the ants travelled further into the nest direc-

tion, actually overshooting the fictive nest position. The second nest search commenced at a

median distance of 16.10 m (IQR 15.60 m to 17.80 m; median of 2. TPs; not shown in figures)

from the initial release point (i.e. fictive feeder position), and the search median was at 15.80 m

(IQR 14.90 m to 17.00 m). When comparing the search medians in the 0–11 and 0–10

Odometer interaction in ant navigation
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experiments, the difference is 10.10 m, a value close to the assumed 10 m content of the optic

flow integrator when removing the eye caps after the first turning point. When considering

homing distance (search grand median) with respect to the second release point (i.e. the point

of eye cap removal at the 1. TP, median 7.65 m), instead of the original release point (0 m), the

ants covered a median distance of 8.15 m.

Exclusion of optic flow cues during the outbound journey

The preceding set of experiments requires completion by the remaining combinations of eye

cover applications to address the hypotheses outlined in the Introduction and potential expla-

nations for the above results. For example, a change of ventral eye covers might affect homing

performance in itself. In addition to the 1–11 and 0–00 experiments reported above, we there-

fore performed the 1–00 and 1–01 experiments (i.e. the reverse of the 0–11 and 0–10 experi-

ments above).

The first turns recorded after removal of the eye covers just after transfer to the test channel

had median distances of 10.50 m (IQR 8.60 m to 13.68 m) for the 1–00 experiment, and of

11.95 m (IQR 9.60 m to 13.30 m) for the 1–01 experiment. Similar results were obtained when

examining search behavior after the first turning point (2.-6. TP). In the 1–00 experiment, the

search grand median was at 9.80 m in this case. Re-applying the ventral eye covers in the 1–01

experiment produced little change in the search center, too, with the search median at 9.05 m

(IQR 7.80 m to 11.10 m) (Fig 4) and without any statistically significant difference to the sham

control group (1. TPs, p = 0.824, t-test and 2.-6. TPs, p = 0.052, U-test; both not significant

also after Bonferroni correction).

These results demonstrate that a change of ventral eye covers in itself does not affect hom-

ing performance, and neither does the absence of optic flow input during the outbound jour-

ney, as shown previously (1–11 experiment, [19]).

Discussion

Interpreting the experimental results in context

Before scrutinising the hypotheses listed in the Introduction in detail, a possible interpretation

of the above results shall be presented. This conceptualisation is intended to illustrate our gen-

eral lines of thought, and thus facilitate subsequent discussion of critical points of this interpre-

tation later on. We further provide an illustrative summary of possible odometer interaction in

the form of a hydraulic model (Fig 5).

In the normal life of an ant (0–00), the stride and optic flow odometers both measure walk-

ing distance. In the present experiments this results in a value of 10 m in each of the odometer

memories (hypothesis 1, parallel charging of separate odometer memories). In homing, the two

odometers interact in driving homebound travel, each with a particular relative weight (“rela-

tive” is meant to indicate that the total is 1.0 under normal circumstances). These weights are

adjusted according to the behavioural situation (see below) (hypothesis 2, interaction with dif-
ferent relative weights of the two odometers). In the 1–11 experiment, for example, the optic

flow integrator remains “empty” from the outset and cannot contribute to homing. The rela-

tive weight of the stride integrator is thus 1.0. In the 0–11 experiment, by contrast, the homing

distance is shortened to about 6 m, and thus the stride integrator must have assumed a relative

weight of about 0.6 (and the optic flow integrator, 0.4). The ventral eyes covers incapacitate the

optic flow integrator and only the stride integrator is able to drive homing–much like in the

1–11 experiment. However, the optic flow integrator has been charged during outbound travel

to 10 m, and this charged optic flow memory appears to have set the stride integrator’s weight

to a value normally appropriate for homing. The memory of the optic flow integrator
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maintains this value since it cannot be read out with eye covers present (hypothesis 3, odometer
memory is maintained at its current value if not active). Once the stride integrator is depleted, a

nest search is initiated (despite the still charged optic flow memory!) (hypothesis 5, nest search
is initiated as soon as one of the odometer memories has been depleted, and the other odometer
memory is either also zero, or the odometer is inactive and cannot be used). When removing the

eye covers at the point where the first nest search has been initiated, the ants resume home-

bound travel, driven by the still charged optic flow integrator (hypothesis 4, separate discharg-
ing of the two distance memories). A quantitative assessment of the result of the 0–10

experiment is provided further below.

Fig 5. Hydraulic model of optic flow integration (left half of diagram) and stride integration (right half) odometry in Cataglyphis ants. The

diagram illustrates the idea of separate optic flow and stride integration memories and their possible interaction. Depiction as hydraulic model was

already put forward by Konrad Lorenz’ psycho-hydraulic model of instinct behaviour [52, 53]. Outbound and inbound locomotion (symbolised by

cogwheels, bottom centre) drive the optic flow and stride integrators (turbine pumps, driven by cogwheels). The distance integrators fill or deplete their

respective distance memories (elevated water troughs above turbine pumps) during outbound or inbound travel, respectively (arrows on the right).

Either odometer may work alone when the other one is incapacitated (cogwheels would be disengaged, only one of them active). Normally, however,

the two odometer memories drive homing together, although with different weights, or competitively. This is illustrated by two interconnected

membrane valves that open or close the supply pipes to the water troughs at each other’s expense. Competitive interaction is indicated by the valve to

the trough with the higher water level, and thus higher water pressure, constricting the valve in the pipe with the lower pressure. Although both

odometers would normally measure the same walking distance, the (symbolic) water levels need not to be identical. Neither the denomination nor even

the currency of the two odometer memories have to be identical (see Discussion, potential neuronal substrates of odometers).

https://doi.org/10.1371/journal.pone.0204664.g005
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The above hypotheses appear consistent, are in agreement with the above results, and

together correctly predict the outcome of the (critical) 0–10 experiment. Nonetheless, a set of

other interpretations exists, of course. This concerns in particular the mode of interaction of

the odometer memories. For example, instead of assigning different (complementary) weights

to the two memories in driving homebound travel, one may postulate a competitive interac-

tion (modified hypothesis 2). An appropriately adjusted (soft) winner-takes-all scenario (com-

pare [17]) is in agreement with the present results, too. The odometer memory with the higher

charge level reduces contribution of the competing memory to homing performance (compare

Fig 5)–perhaps biased towards stride integration that appears to take precedence in normal

foraging situations (compare [7]). This may be achieved, for instance, by inhibiting the charg-

ing and promoting the depletion of the competing memory contents (modified hypothesis 4).

Instead of (complementary) weights one would have to assume competitive factors for such

mutual inhibition.

There is an apparent advantage over the weight assignment. Competitive factor assignment

implies that only odometer cues that are available from the start of a foraging trip contribute to

navigation. In ants foraging in the dark [19], for example, any optic flow input that may occur

later during travel is suppressed by the stride integrator memory that has been charged right

from the outset. This would agree with the results of the 1–00, 1–01 and 1–11 experiments.

The winner-takes-all scenario accounts for the fact that different (competing) home vectors,

both global path integration vectors and local vectors (e.g. elicited by landmarks [20]), deter-

mine homing behaviour according to their vector strengths. For instance, in Cataglyphis ants

close to the nest the path integration vector has little weight and may be overridden by a local

vector elicited by nearby landmarks (e.g. [14, 17, 20, 32, 33]). Interestingly, this interpretation

appears to be applicable to other navigating ant species. The Australian desert ant Melophorus
bagoti inhabits visually cluttered environments and local landmark vectors are thus expected

to assume higher relevance relative to path integration vectors. Indeed, Melophorus ants may

be attracted to learned landmarks much earlier, that is, already with relatively large global path

vectors, compared to Cataglyphis ants that live in visually barren landscapes [14, 34, 35]. Such

species-specific differences may also affect the odometer reading where nest search behaviour

is initiated.

In the winner-takes-all scenario, the critical 0–10 experiment is interpreted as follows. Both

odometer memories are charged during outbound travel, as stated before. During the initial

homebound travel with eye covers, the optic flow memory maintains its charge level and thus

soon dominates stride integration memory. This accelerates depletion of the stride integrator

memory and thus shortens homing distance. Subsequent removal of the eye covers re-activates

homing driven by the maintained optic flow memory. During the ensuing (second) home-

bound travel only minimal charging of the stride integration memory occurs due to the higher

charge level in the competing optic flow memory throughout homing.

Both of the above interpretations have to remain hypothetical at present. Only future exper-

iments might clarify the situation, for example, by intercepting homing ants in a 1–0 paradigm.

Removing the eye covers during the homebound travel, or during searching at a point distant

from the search centre, might distinguish between additive and multiplicative interaction of

the two odometer memories, for example.

Scrutinising the hypotheses

The five hypotheses outlined in the Introduction feature prominently in the interpretations

discussed above. How realistic are these assumptions, which of them are critical, and what

arguments are there in terms of contradicting evidence and support?

Odometer interaction in ant navigation
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1. Separate odometer memories, charged in parallel. This is not really a hypothesis since

it has been demonstrated previously that the stride and optic flow odometers can work inde-

pendently (1–11 experiment above, [9, 19]), and that the contents of the two memories cannot

be transferred, at least not from the optic flow to the stride integrator memory [9, 36]. The

reverse transfer, from stride integrator to optic flow memory, cannot be tested according to

present knowledge; it would require the optic flow memory to drive homing without the stride

integrator being active. The existence of separate odometer mechanisms and memories is not

surprising. The stride integrator is associated with leg motor control and perhaps leg sensory

feedback [22, 24, 31] and may thus be assumed to reside primarily in the thoracic ganglia. The

optic flow odometer is associated with the eyes and optic lobes, where optic flow signals are

evaluated, at least in dipterans [37, 38]. And although the nature and location of optic flow dis-

tance memories are unknown, the brain neuromeres would appear as likely structures. It is

noteworthy in this context that the compass for skylight [39, 40] and landmark [41] orienta-

tion appear to be associated with the central complex, and with the protocerebral bridge in

particular [39]. Strictly separate neuronal networks for the stride and optic flow odometer

memories are not essential features, though, because separate memory functions may also be

realised by a single network, as suggested for dung beetle orientation [40].

Parallel working of different orientation and navigation systems in desert ants–and else-

where [42–44]—has frequently been implied, and recently it has been formally proposed

[17,45]. In normal conditions, the parallel working of two odometers should not present any

problems for the ants even if their relative weights vary with circumstances. After all, both

odometers indicate the same distance, except in special behavioral situations. Such situations

are, for example, the elimination of optic flow inputs by ventral eye caps (see also [7]) or the

disabled stride integrator in carried ants [9].

2. Interaction of the two odometers with different relative weights. This hypothesis is

suggested by the present experiments, although the exact mode of the interaction—for

instance, additive, multiplicative, winner-takes-all—has to remain open. This has been dis-

cussed above in the context of interpreting the shortened homing distance in the 0–11 experi-

ment and the second homing bout in the 0–10 experiment. Assuming a mode of interaction of

the odometer memories along the lines presented above appears essential for explaining the

present results. This is true together with the demands for separate odometer memories (1.

above) and the initiation of a nest search as soon as the active distance memory has reached a

value of zero (5. below). While odometer function and odometer memories are apparently

independent for the stride and optic flow integrators [9, 19, 36], the two clearly interact in driv-

ing homebound travel. This result rules out completely independent superposition of the two

odometer outputs. Incapacitating either odometer mechanism would not matter in the latter

case because homing can be guided by either odometer alone across the correct homing dis-

tance—which is evidently not the case.

Let us first assume additive weighting of the two odometer memories in driving home-

bound travel. In that case, the weights for stride and optic flow odometers appear to be similar,

about 0.6 and 0.4, respectively, during normal homing in experimental channels. This derives

from the outcome of the 0-11-experiment, where ants—exclusively relying on stride integra-

tion during homing—start a nest search around 6 m (and hence 4 m must be attributed to the

optic flow integrator).

In the next experimental step, the 0–10 trial, the nest search was centred close to 16 m, that

is, about 10 m from the search centre in the 0–11 experiment and about 8 m from the release

point after eye cap removal. With respect to the relative odometer weights, there are two ways

of interpreting this result.
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(i). One might assume that the already depleted stride integrator does not contribute to hom-

ing at all, perhaps due to optic flow appearing as the only reliable odometer with a

depleted stride integrator. The relative weight of the optic flow memory should have

shifted from 0.4 to 1.0, therefore. This agrees with the second search being centred on

about 10 m from the release point of the 0–11 experiment, and on just above 8 m from

the point of eye cover removal. The assumed contents of the optic flow memory at the

point of eye cap removal is 10 m, after all.

(ii). Alternatively, the second search in the 0–10 experiment is initiated when stride and optic

flow integrators are in balance. This assumes that both, stride and optic flow odometers

are contributing to homing in the last part of the 0–10 experiment. The stride integrator

drives the animal back into the direction of the first search centre since it now runs

“backwards” (compare [20]), while the optic flow integrator drives the animal away from

the first search centre according to the residual charge in the odometer memory. The

search median measured from the second release point after removal of the eye covers

was 8.15 m (“2. TP”, or 1. TP of second search). Considering the length of this second

search of about 8 m and assuming an initial optic flow memory reading of 10 m, the rela-

tive weights of stride and optic flow integrators for the second search should be about 0.2

and 0.8, respectively. A weight of 0.8 still far exceeds the expected value of 0.4 calculated

for the preceding 0–11 experiment. This would suggest adjustable weighting of the

odometer memories according to context.

Assuming a (soft) winner-takes-all scenario, instead of the above additive weighting, may

avoid the context-dependent “juggling” with adjustable weights. It will afford adjustment of

the competition between the two odometer memories, however. The homing distance short-

ened to about 6 m in the 0–11 experiment would suggest that the two odometers do not really

compete in an all-or-none fashion but in a multiplicative mode, for example. In the 0–11

experiment, the homing distance was shortened to about 6 m. To cover this result, depletion of

the stride integration memory should have been accelerated by a factor of about 1.7 by the

fully charged, competing optic flow memory.

When assuming that factor for the subsequent 0–10 experiment, the second homing bout

after removal of the eye covers should have been about 6 m. This value is obtained when

assuming a 10 m distance value in the optic flow memory and 0 m in the previously depleted

stride integrator memory. During the second homing bout, the optic flow memory is depleted

while the stride integration memory accumulates negative distance. After all, the ant moves in

a direction opposite to home according to the stride integrator (see alternative (ii) above). The

observed homing distance in the 0–10 experiment is just above 8 m, however. Some sort of

non-multiplicative interaction of the two odometer memories might nonetheless satisfy the

results of both experiments, 0–11 and 0–10.

Alternatively, one may consider 10.10 m homing distance obtained by comparing the

search medians in the 0–11 and 0–10 experiments. This assumption implies that the optic flow

memory completely dominates the stride integrator (see alternative (i) above), but not vice
versa, as explained above.

In extreme situations, the relative contributions of the two odometer contents indeed

assume an all-or-none mode, which is already implicated in hypothesis 1. That is, one odome-

ter has a weight of 0 (e.g. the stride integrator in carried ants [9]) and the other, a weight of 1

(e.g. the optic flow integrator in carried ants when homing after loss of their carrier [9]). Vice
versa, ants travelling with ventral eye caps during the outbound journey (1–11, 1–01, 1–00

experiments above) or at night [19] will rely on the stride integrator during homing and disre-

gard the memory of the optic flow odometer that is empty.
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In summary, regardless of whether assuming an additive weighting or a winner-takes-all

scenario, the details of the interaction of the stride integration and optic flow memories have

to remain open. Only future experiments may be able to clarify those details, as noted above. It

is clear from the present results, however, that the two memories do interact in driving home-

bound travel. It further appears that the optic flow memory, always having a larger memory

contents in the present set of critical experiments, tends to dominate stride integration mem-

ory to some extent. This is in contrast to previous studies that have examined the role of optic

flow for distance measurement in ants [7, 23]. Distance memory contents were not manipu-

lated in these experiments, however.

3. Odometer memory is maintained with its current value if not active. The maintenance

of the distance component of a home vector over extended time periods (up to 4 days) has

been demonstrated previously [46]. With the existence of two odometer memories it is to be

expected that the two memory contents are maintained when the respective odometer is

blocked, and that they can be charged and discharged separately. There is no current evidence

for or against this hypothesis beyond the present set of experiments since this problem has not

been addressed previously.

4. Separate discharging of the two distance memories. Much like stated above for hypoth-

esis 1 (separate odometer memories, charged in parallel), this is not actually a hypothesis, but

it has been presented since it forms an important premise of our preferred interpretations. Pre-

vious studies have demonstrated that the stride and optic flow odometers can work indepen-

dently (1–11 experiment above, [9, 19, 36]), and that the two memories are thus charged and

discharged independent of each other and are not transferable ([9], at least concerning transfer

from optic flow to stride integration memory; above). As an important difference from the

present study, one of the odometers was not functional from the outset in those previous

experiments. The ants were either travelling in the dark or had their ventral eyes covered when

leaving the nest. It is to be expected that an animal will rely only on the navigation cues avail-

able during the start of its journey and disregard cues that are unavailable. Even if the initially

unavailable cues appear at a later time during the journey they should not be considered by a

path integrator to avoid integration errors. This demand is actually realised in a rather

straightforward way by a winner-takes-all interaction, as outlined above. This line of thought

also applies to the 1-00- and 1-01-experiments, where the optic flow odometer is deprived of

accumulating distance information during the outbound journey. It seems that the optic flow-

integrator stays at zero during the homebound walk and does not contribute to the measure-

ment of homing distance. Of course, these rather general statements would need further scru-

tiny for the different cue types, from the skylight compass with the tightly coupled elements

sun position, polarisation pattern, and spectral gradient [3] to landmarks with or without

familiarity [47].

5. A nest search is initiated as soon as one of the odometer memories has been depleted,

and the other odometer memory is either also zero, or the odometer is inactive and cannot

be used; this holds although the second memory is still charged. Desert ants are able to initi-

ate a nest search in response to a number of different cues, depending on the situation. For

example, a particular landmark array familiar to the ants from the nest surrounds is disre-

garded when encountered far from the nest. The landmark array will elicit a nest search, how-

ever, if the state of the path integrator indicates vicinity to the nest, even though not the nest

position directly [20]. This fact can be used to lead homing ants away from their nest by pre-

senting the landmark array right in front of them just before they reach the (fictive) nest posi-

tion in a test field. The animals are made to run past and ever further away from the nest with

repeated presentations of the landmarks [20]. The path integrator keeps constantly running in

this situation, and once the animal is placed in an open test field without landmarks it
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truthfully returns to the (fictive) nest position. This demonstrates that several navigation

mechanisms run in parallel in desert ants [3,14,17,45]. When put in conflict, it depends on the

particular situation which cues are presently used to assess nest position and initiate a search.

Often, a weak home vector is dominated by a strong vector [13, 32, 45]. Typically, short vector

lengths are interpreted as weak vectors, among other reasons because a vector that has run

down is also less definitive in its direction. However, landmarks may be disregarded initially

but considered over the path integrator with experience if repeated disagreement occurs

between the two cues at a feeding site [47].

It fits into this context that in the present experiments, the empty stride integrator is able to

initiate a nest search when the optic flow integrator is blocked by ventral eye caps, even though

the corresponding memory is apparently not empty (0-11-experiment). The odometers are

part of the path integrator after all, although only its odometer component is examined in the

present study for reasons of experimental feasibility.

Conclusions and outlook

In summary, our experiments confirm previous studies demonstrating the independent opera-

tion of stride and optic flow odometers and the associated memories [7, 9]. More importantly,

they demonstrate that stride and optic flow integrators interact dynamically in driving homing

performance. The two odometer memories can interact with respective weights or according

to a (soft) winner-takes-all mode, perhaps adjusted to the particular behavioral situation. It

would appear necessary in future studies to decide between the different modes of interaction,

such as additive or winner-takes-all, and to determine the weights or interaction factors

assigned to the two odometer memories in different behavioral situations. Such behavioral sit-

uations are, for instance, meandering outbound and straight inbound travel, or substrates with

different foothold qualities and optic contrast.

Our experiments were designed to examine just odometer mechanisms, while Cataglyphis
ants do not assess travel distance per se but use it to calculate a home vector [48]. The far reach-

ing independence of the stride and optic flow integrators may actually point towards the exis-

tence of two independent path integrators. Although in a different context, similar ideas have

been put forward for the honey bee [48].

More generally, an understanding of the interaction of different odometer mechanisms

appears valuable not just for animal navigation research but may inform discussions on sensor

fusion in both behavioral contexts and potential technical applications [49–51]. After all, there

is often more than one cue available for navigating animals (and humans, and navigation

devices), and the navigator has to decide how to evaluate potentially conflicting information

from these cues. In desert ant navigation, as suggested for a statistically optimal combination

of compass and landmark cues [16,17], reliability of the two odometer mechanisms may con-

tribute to the adjustment of the relative odometer weights or factors assumed above.

Supporting information

S1 Fig. Odometer performance in desert ants is influenced neither by eye painting nor by

associated handling procedures. (A) Relative search density (RSD) plot of untreated control

group 0–00 (n = 20). Ants performed inbound and outbound journeys without eye caps. After

training, the ants were put into the test channel immediately and their homing and nest search

behaviour was recorded. Relative search density (RSD) plot of 0-00-sham control group

(n = 45) is shown here again for comparison (dashed green lines; compare Fig 2A). (B) Box-

and-whisker plots and statistical analysis. There is no statistically significant difference

between the 0–00 untreated control group and the 0–00 sham control group regarding both, 1.
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TPs (p = 0.403, t-test) and grand medians of search densities evaluated from 2.– 6. TPs

(p = 0.261, t-test). Homing performance thus remained unaffected by the application of eye

covers and associated handling.

(TIF)

S1 Table. Raw data. Here you find the original raw data (turning point values) for all experi-

ments as supplementary excel file. Listed are consecutive turning points (1.TP to 6.TP) of all

tested individuals.

(XLSX)
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