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Abstract

Painting is an art form that has long functioned as a major channel for the creative expres-

sion and communication of humans, its evolution taking place under an interplay with the

science, technology, and social environments of the times. Therefore, understanding the

process based on comprehensive data could shed light on how humans acted and mani-

fested creatively under changing conditions. Yet, there exist few systematic frameworks

that characterize the process for painting, which would require robust statistical methods for

defining painting characteristics and identifying human’s creative developments, and data

of high quality and sufficient quantity. Here we propose that the color contrast of a painting

image signifying the heterogeneity in inter-pixel chromatic distance can be a useful repre-

sentation of its style, integrating both the color and geometry. From the color contrasts of

paintings from a large-scale, comprehensive archive of 179 853 high-quality images span-

ning several centuries we characterize the temporal evolutionary patterns of paintings, and

present a deep study of an extraordinary expansion in creative diversity and individuality

that came to define the modern era.

Introduction

Human have painted to express, record, and communicate ideas and recount experiences

since long before the invention of writing [1]. Painting thus has an essential and intimate con-

nection to human history and, as a visual art form borne out of human sensitivity, imagina-

tion, and dexterity, is also a product of the human thought, science, and technology that

determine the limits of what humans can envision and visualize on a physical medium such as

a canvas. Such direct, intimate relationship between painting and science implies that a robust
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scientific study of painting could produce insights and reveal new answers to many pertinent

questions in interdisciplinary field in quantitative and analytical manner. To proceed with a

scientific inquiry of paintings, we first establish that a piece of art can be viewed as a “complex

system”, as it is composed of heterogeneous elements that combine to effect novel emergent

phenomena, a hallmark characteristic of one; in the case of an artwork, the stimulation of the

senses the viewer experiences in its presence–be it cerebral, emotional, or physiological–can-

not be attributed to a single element of it, for instance a single dot of a certain color, but the

collective effect of all its parts.

A recent development that is proving to have far-reaching implications for a scientific

exploration of human actions and behavior in many social, cultural complex systems is the

increasing availability of massive high-quality data that allows a large-scale application of sci-

entific frameworks and verification [2–7]. In the area of culture, subjects on which quantitative

pattern-finding have been performed to a degree include literature [8–12] where Polish lin-

guist Wincenty Lutosławski’s work on the statistical features of word usage in Plato’s Dialogue

[8] is well known, music [13–17], and painting [18–26]. A landmark scientific study of paint-

ings can be found in Taylor et al.’s characterisation of Jackson Pollock’s (1912–1956) drip

paintings using fractal geometry to distinguish between authentic Pollocks and those of

unknown origins [18], demonstrating that an artistic style can be quantified. More recent

examples regarding painting include Lyu et al.’s wavelet-based decomposition of images [20],

Hughes et al.’s sparse-coding models for authenticating artworks [21], Kim et al.’s characteri-

zation of variations in chiaroscuro technique via the so-called “roughness exponent” from sta-

tistical physics [22] and Gatys et al.’s style representation derived from correlations between

the different features in different layers in a Convolutional Neural Network [23]. Besides quan-

tification of artistic styles, some studied perceived similarities between different paintings [24],

the influence relationships between artworks for quantifying creativity in an artwork [25], and

the changes in the perception of beauty using face-recognition on images from different eras

[26].

Upon these progress in scientific analysis of painting, there still remains much necessity

for a robust, comprehensive effort to overcome the following shortcomings therein: First, they

often fall short of presenting a coherent and robust quantitative framework for analysis of mul-

tiple images; second, they do not use the full color information (due to the added complexity);

third, they tend to focus on specific artworks or painters, not seeking generality, among others.

In this work, we overcome these problems by formulating a framework for analyzing paintings

that uses the complete color information which at the same time incorporates the geometrical

relationships between the colors, two essential building blocks of an image. Our proposed

quantity can be computed rapidly on the entire collection of digital images, allowing us to

trace the stylistic evolution of painting throughout different periods, and identify significant

patterns that characterizes each period.

Reflecting its ubiquity in nature and intriguing scientific characteristics, color boasts a long

history as a subject of extensive scientific investigation in many fields such as physics (e.g.,

optics), biology (e.g., vision), and especially in the modern times, visual technology, to name

only a few. The beginning of modern quantitative research on color can be attributed to two

groundbreaking investigations by Newton [27] and Goethe [28, 29] who focused on the nature

of light as the combinations of, and differentiations between, colors that lay foundations to

more modern research on color and vision [30, 31]. Inspired by these works and subsequent

developments, here we propose the concept of ‘color contrast’ as a signature of how color has

been used in a painting. As its name suggests, color contrast refers to the compound effect of

chromatic differentiation originating from different colors in a painting. Well-known exam-

ples of paintings with intuitive, easily noticeable color contrast include Vincent van Gogh’s
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(1853–1890) Starry Night (1899) where a bright yellow moon is embedded in the dark blue sky

and Piet Mondrian’s (1872–1944) Composition A (1923) where well-defined geometric shapes

of distinct colors are juxtaposed to form the so-called ‘hard edge’ painting, a style popularized

during the twentieth century and became one of its signature styles. These two examples sug-

gest that the sources of color contrast are the color difference (e.g., bright yellow versus dark

blue) and the geometrical proximity (e.g., the juxtaposition of distinct colors generating clear,

crisp boundaries). Based on this realization, in this paper we devise a statistical measure of the

color contrast in a painting we label seamlessness S, demonstrate that this quantity is indeed a

useful indicator for characterizing distinct painting styles, and finally apply it to nearly 180000

digital scans of historical paintings–the largest yet in our type of study–to track the evolution

of painting and characterize how individual painters have developed creatively.

Data description

Digital scans of paintings (mostly western) were collected the following three major online

art databases: Web Gallery of Art (abbreviated WGA) [3], Wiki Art (WA) [4], and BBC-Your

Paintings (BYP) [5]. The WGA contains paintings dated pre-1900, while the WA and BYP

datasets contain those dated up to 2014 (all datasets are up-to-date as of Oct 2015). WGA pro-

vides two useful metadata on the paintings: the painting technique (e.g., tempera, fresco, oil)

and genre (e.g., portrait, still life, and ‘genre painting’–itself a specific genre depicting ordinary

life). BYP is mainly a collection of oil paintings preserved in, and originating from, the United

Kingdom. (We show that BYP data still exhibits a comparable trend in color contrast with

other datasets.) The paintings dated pre-1300s were excluded, as they were too few. Also

excluded were those deemed improper for our analysis or outside the scope of it: They include

partial images of a larger original, non-rectangular frames, seriously damaged images, photo-

graphs, etc. The final datasets used in our analysis contain 18 321 (WGA), 70 235 (WA), 91

297 (BYP) images for a total of 179 853. A significant majority of the images considered in this

work–99.8% of WGA, 76.0% of WA, and all of BYP–are 500 pixels or larger in their length of

longer side.

Results

Characterizing color contrast of a painting from inter-pixel color

difference distribution

Color contrast represents the effect brought on by the differences in color between different

points in a painting. It therefore can play a key role in characterizing the results of how a

painter places different colors on a canvas in various positions, in other words, paintings.

Human sense of color contrast between two colors in a painting (the pixels in case of a digital

image) would be affected most strongly by two factors, the difference between the colors them-

selves and the geometrical separation—the more different the colors and the closer they are

in real space, the more pronounced the effect of color contrast will be. Quantifying color con-

trast with such a property thus requires two elements: A measure of the chromatic difference

between two colors that agrees with human perception, and the spatial separation between the

two.

Quantifying the difference between two colors starts by placing them on a three-coordinate

system called ‘color space’. A color space is named according to what the three coordinates

measure. Commonly used ones include the RGB (Red, Green, Blue) space, the HSV space

(Hue–position on the color wheel, Saturation, Value–brightness), and the CIELab space (the

full nomenclature being 1976 CIE L� a� b�) for L� (lightness between 0 for black and 100 for
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white), a� (running the gamut between cyan and magenta, but no specified numerical limits),

and b� (between blue and yellow, similar). To measure the color contrast we use the CIELab,

as it was designed so that the human perception of the difference between two colors
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[32]. And in the present work, we take the

simplest approach of considering the color distances between adjacent pixel pairs, which yields

a total of *2N pixel pairs in a rectangular image of N pixels to consider. Fig 1(a) and 1(d) visu-

alize the differences between adjacent pixel colors for two paintings, Piet Mondrian’s Composi-
tion A and Claude Monet’s Water Lilies and Japanese Bridge.

We label the distribution of color difference between the * 2N neighboring pixel pairs in a

painting its ‘inter-pixel color difference distribution’ π(d). While the measured π(d) is image-

resolution dependent (Fig 1(b) and 1(e)), rescaling it by

pðdÞ ¼
1

�d
F

d
�d

� �

; ð1Þ

where �d ¼
P1

d¼0
dpðdÞ is the mean, caused distributions collapse into a single curve (Fig 1(c)

and 1(f)), demonstrating its size-independent universal characteristic.

In Fig 1(c) and 1(f), we see that the shapes of π(d)s from the two paintings are significantly

different. In the Mondrian, a number of large d correspond to the conspicuous walls between

Fig 1. Quantifying the color contrast of a painting from the color distances between adjacent pixels. The distance is visualized as height d along the z-axis overlaid

on the corresponding paintings, Piet Mondrian’s Composition A ((a)–(c)) and Claude Monet’s Water Lilies and Japanese Bridge ((d)–(f)). (a) In the Mondrian, a

number of large d correspond to the conspicuous walls between regular patches of uniform colors. (b) Such pattern can be shown in more detail via the distribution π
(d) (‘o’), plotted in log-log scale. (c) The image size-dependent raw distributions can be rescaled into a single curve. (d) The Monet, meanwhile, lacks the crisp patchy

structure of the Mondrian, indicative of heavily intertwining brushstrokes using complex color mixtures of the impressionism, resulting in high average d but few

extreme values. (e) The Monet’s π(d) accordingly shows a more rapidly decaying tail. (f) The distribution again collapses onto a single characteristic curve, regardless of

image size. All images are obtained from Wiki Art and in the public domain.

https://doi.org/10.1371/journal.pone.0204430.g001
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regular patches of uniform colors resulting in a heavy-tailed distribution of π(d) compared

to an exponential. The Monet, meanwhile, lacks the crisp patchy structure of the Mondrian,

indicative of heavily intertwining brushstrokes using complex color mixtures of the impres-

sionism, resulting in high average d but few extreme values. The Monet’s π(d) accordingly

shows a more rapidly decaying tail.

To see what types of painting a given π(d) represents, we generate artificial images that pos-

sess the π(d) of a real painting as input. The process starts by randomly relocating the pixels of

the input image, then updating the image stepwise using the Metropolis-Hastings algorithm

until the original painting’s π(d) is reconstructed, and inspecting the resulting image. To apply

the Metropolis-Hastings algorithm we define the energy E of an interim image I to be the Kol-

mogorov–Smirnov (K-S) statistic between the π(d)’s of the interim image and the original

EðIÞ ¼ sup
x
jPIðxÞ � PðxÞj; ð2Þ

where PI(x) and P(x) are the cumulative distributions of their π(x), and supx denotes the

supremum of the set of distances. The K-S statistic quantifies a distance between two cumula-

tive distributions and is useful for nonparametric methods for comparing two sample distribu-

tions. Other statistical distances such as Jensen-Shannon divergence and Bhattacharyya

distance may also be used for this purpose. Our Metropolis-Hastings process is as follows:

1. Initialize: The pixels of the original image are completely randomly shuffled, resulting in

the initial configuration we label I0.

2. Generate a candidate configuration I0 by randomly choosing two pixels from the current

configuration I then switching their locations.

3. Calculate the energy difference between I and I0.

4. Accept the new configuration with a probability

PðI ! I 0Þ ¼
expð� DE=TÞ; if DE > 0

1; otherwise:

(

.

5. Proceed to next time step t = t + 1, and repeat the processes 2–4 until the target π(d) is

achieved.

Temperature T can be tuned to help escape local energy minima and help in convergence,

and various techniques including simulated annealing could be employed to find approximate

global energy minima [33]. Fig 2 shows the method applied to Pieter Bruegel the Elder’s Census
at Bethlehem (1566) and the final images obtained from using image generation process (see

Fig 2(c) and 2(d)) using a reduced grayscale version (Fig 2(b)) for a faster simulation. The π(d)

s of the original and the reconstructed image are shown in Fig 2(e). The reconstructed images

using simulation, with identical π(d), exhibits clusters of similar sizes and colors as the original,

i.e. color contrast. This does demonstrate that π(d) indeed characterizes the color contrast of a

painting. But π(d) can be bothersome to use, so we devise a simpler measure derived from π(d)

itself, inspired by the relationship between the shapes of π(d) and paintings shown in Fig 1.

The long- and short-tail distributions can be conveniently compared by the coefficient of vari-

ation sd=
�d , where �d and σd are the mean and the standard deviation of π(d). A further desir-

able property of this quantity is that it is invariable under scaling of Eq 1. Other characterizing

measures using higher moments of the distribution such as skewness or kurtosis also could

be used as they are independent of location and scale parameters. The value of the coefficient

of variation ranges between 0 and1, 0 for completely regular distributions such as a delta
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function (σd = 0), 1 for an exponential or Poisson distribution (�d ¼ sd), and1 for heavy-

tailed distributions with an infinite variance. For convenience, it is commonplace to use

instead a quantity

S �
sd=

�d � 1

sd=
�d þ 1

¼
sd �

�d
sd þ

�d
ð3Þ

which takes the range [−1, 1] of values. This quantity has found a wide range of use in various

scientific fields, for instance in the study of inter-event time distributions such as analysis of

earthquake occurrence patterns [34], heartbeats of human subjects [34, 35], communication

patterns of individuals [36], and human behavioral dynamics online and offline [37, 38], etc.

We do the same here, and we label this quantity the seamlessness of a painting, to be further

explained below.

In Fig 3 we show sample randomly generated grayscale images with S taking the two extreme

values and one the middle: (a) A power-law π(d) * d−α with power exponent α = 1 (S = 1), (b)

an exponential π(d) * exp(−λd)) with λ = 1/40 (S = 0), (c) a Gaussian distribution (�d ¼ 40)

with a small width (σd = 1) (S� −1). In Fig 3(a), we see that the images with a power-law π(d)

(large S) exhibit interfaces of abrupt color change between extensive patches of similar colors to

accommodate a large inhomogeneity in d, giving rise to a strong sense of overall color contrast.

Then in Fig 3(b) we see a weakened such effect: compared with (a), here the pixel-to-pixel

color transitions are more gradual and relatively lack particularly sharp boundaries. Finally in

Fig 2. Generating a reconstructed simulated image with the same inter-pixel color difference distribution as an input painting. (a) The input painting The Census
at Bethlehem by Pieter Bruegel the Elder (1566). The image is obtained from Wiki Art and in the public domain. (b) For a faster simulation we used a rescaled (20x20)

grayscale version. (c) The reconstructed image from a completely randomized version of the original. While the locations of the patches of like colors have changed,

they are of similar sizes as the original image. (d) The simulated image where 30% of the pixels were maintained fixed in the original image. (e) π(d) of the rescaled

original image (b), reconstructed (c), and the randomly shuffled images.

https://doi.org/10.1371/journal.pone.0204430.g002
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Fig 3(c) we see a lack of sizable patches of uniform colors, resulting in blurred boundaries with

a small S. This observations is also origin of our nomenclature ‘Seamlessness’: A higher S (Fig

3(a)) implies the image appears as if made up of a smaller number of patches (but each one

being larger), requiring less seams (if one were to stitch them). A smaller S (Fig 3(c)) means

many smaller patches of different colors are intertwined, resulting in more seams.

We further conduct a cluster size analysis on the simulated images to quantify our visual

inspection. To do so we measure the color difference between adjacent pixel pairs (taking a

value between 0 and 1 in a grayscale image) and link the pixels that are of 0.1 or a smaller

value. Then the set of pixels that are connected via those links are considered to define a cluster

of similar colors. We measure the size of the largest cluster and the average size of clusters to

characterize each image. The generated images from the three different π(d)s in Fig 3 show

quantitatively different characteristics. The largest cluster size of the images (whose full size is

20×20), generated from a power-law distribution is 85.5 and the average cluster size is 7.01 on

average (Fig 3(a)). The images following an exponential distribution (Fig 3(b)) have the largest

cluster size as 62.75 and the average cluster size is 4.68 on average. Lastly, the largest cluster

size of the images generated from a gaussian distribution is 11.0 and the average cluster size is

1.45 on average (Fig 3(c)). The difference in the size of largest clusters and the average cluster

size of three distinct π(d)s shows that different π(d)s indeed exhibit different characteristics.

Mapping the evolution of color contrast from massive painting data sets

S measured from the data set is presented as a scatter plot in Fig 4(b) with the date of produc-

tion in the x-axis. Clearer statistical patterns of changes in color contrast are presented in

Fig 3. Three distinct probability distributions π(d) and simulated images. (a) Power-law distribution π(d) * d−1 (S = 1) with �d ¼ 42 (b) Exponential distribution

(π(d) * exp(−d/40)) (S = 0). (c) A narrow Gaussian distribution with mean �d ¼ 40 and σd = 1 (S� −1). As we go from large S (left) to small (right), the cluster of like

colors become smaller, showing signs of lower color contrast.

https://doi.org/10.1371/journal.pone.0204430.g003
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Fig 4(c) to 4(g). First, in Fig 4(c) to 4(g), the average and standard deviation in S have generally

increased over time (with the exception of a temporary dip in the 18-19th centuries for the

average S). These changes can be found to correspond to notable and well-understood devel-

opments in painting technique and apparatuses. For example, the increase in S around the fif-

teenth century coincides with the adoption of oil as pigment binder medium (Fig 5(a)) [1, 39];

Fig 4. The evolution of S showing the development of paintings over time. (a) The number of paintings in the three datasets (WA, WGA,

BYP) used in this study. (b) Scatter plot of S from 1300 CE to 2014 CE. We observe an increase in the average and the variance of S, most

noticeable in the mid-nineteenth century. (c) Changes in average S over time, along with the standard error of the mean. (d) Each individual

painter’s standard deviation of S tends to grow, showing the widening diversity in style of works produced by a painter. Each gray dot

indicates an artist. (e)—(g) The changing variances of S over time (WA, WGA, and BYP). The distributions become the broadest in the

modern era. (The WGA dataset contains paintings only up to 1900.)

https://doi.org/10.1371/journal.pone.0204430.g004
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Before then, tempera (using egg yolk as binder medium) and fresco (watercolor painted

directly on wet plaster; Michelangelo’s Sistine Chapel ceiling painting is a famous example)

were the most common. The very physical characteristic of oil–high viscosity and the longer

time to dry–provided painters with an opportunity to try new techniques that resulted in

high contrast (Fig 5(b)), most notably chiaroscuro (noted by gradations between dark and light

that create the effect of highlighting the subject [39]) during the Renaissance period, and tene-
brism (representing a dramatic contrast between light and dark [39]) made popular during the

Baroque period by such painters as Caravaggio (1517–1610).

The emergence of such novel painting techniques is also closely related to the rise of novel

painting genres: The ability to highlight the subject is credited for the rise in demand for por-

traits, for instance (Fig 5(c)). Still life, on the other hand, shows notable changes during the six-

teenth century, reaching its peak in the seventeenth century (Fig 5(d)). The increase of S in still

life in the sixteenth century coincides with the changes in themes and subjects: In the first half

Fig 5. Evolution of S in paintings of various techniques and genres. (a) The number of paintings of various techniques in the WGA dataset. (b) Historical changes of

S in different painting techniques, with the standard error of the mean indicated. Kolmogorov-Smirnov tests on the shaded area confirm that the distribution of S of

different techniques are significantly different (P< 10−11 between every pair). (c) Number of paintings in various genres in the WGA dataset. (d) Evolution of S in

various genres, with the standard error of the mean indicated.

https://doi.org/10.1371/journal.pone.0204430.g005
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of the century, Dutch painters such as Pieter Aertsen (1508–1575) and Joachim Beuckelaer

(1533–1573) intentionally combined still life with detailed and bright depictions of biblical

scenes in the background, while in the second half artists began to highlight still objects by

incorporating chiaroscuro previously heavily used in portraits, resulting in high S [39].

The most significant development occurred in the nineteenth century (Fig 4(c) and 4(d))

when artists began to perceive paintings as a means of expressing one’s individuality and origi-

nality more strongly than before [40]. The pursuit of a wide range of different interpretations

of the world gave rise to new techniques for expressing nature [1]. In the beginning of the

nineteenth century, the pursuit of fleeting impressions of light onto nature and landscapes

replaced the dramatic, artificial lighting effect of the previous era, likely causing S to drop. The

arrival of those “impressionists” were also helped by the railroad and the portable paints that

enabled traveling to distant areas, leading to the surge in popularity of landscape paintings in

the nineteenth century [41] (Fig 5(c)). Towards the end of the nineteenth century modern

abstract art began to emerge, noted for an even more drastic departure from realism [1]. After

the decline in S during the impressionist era, such simple and geometric abstraction led to a

rapid increase in S (Fig 4(c)). We note that, in addition, the increase in mean S was accompa-

nied by a significant increase in variance of S, indicating heightened diversity in style of paint-

ings produced. The most notable growth in variance occurs between the nineteenth and the

twentieth centuries (Fig 4(b)). Fig 4(e) to 4(g) shows this in more detail: in earlier periods,

the distribution of S is narrow around the mean, but it becomes increasingly broader as we

approach the modern times, rendering it less and less valid to talk of a ‘typical’ style. Next we

delve into the origin of this increased diversity in more detail.

Characterizing the individuality of painters in the modern era

The patterns of S shown in Fig 4(e) to 4(g) are aggregate, i.e. over all the paintings contained

in our data set. It thus cannot teach us about how varied the individual painters’ styles may be,

since two opposite explanations–painters having clear individual styles (therefore the hetero-

geneity coming from there being many different painters), or painters themselves exhibiting

diverse styles–could lead to the same patterns. While in reality there would be both types of

painters, we find that many modern painters have produced works that span a wide range of

S, as shown in Fig 4(d). This culture of experimentation and embodiment of diverse stylistic

possibilities are in good agreement with the characteristic of the modern era mentioned above

[1]. This prompts us to investigate the nature of individual stylistic diversity for the modern

painter. Here we propose two distinct yet complementary aspects of stylistic individuality and

explore them to better characterize the modern era, namely the individual painter’s stylistic (1)

evolution over their career that we call metamorphosality, and (2) uniqueness relative to the

popular styles of the day that we call singularity.

Individual evolution: Metamorphosality. Mondrian, founder of De Stijl movement and

known for iconic abstractionism, in fact produced paintings that span a wide range of S (Fig

6(d)). And it is reflected in how he progressed gradually from traditional style (small S) to

abstractionism (large S) that matured in the 1920s (Fig 6(a) and 6(d)). Pierre Auguste Renoir

(1841–1919), leader of early impressionism, exhibited the opposite trend: his S decreases over

time, as he transitions to more free-flowing brush strokes of impressionist techniques to gener-

ate boundaries that fuse softly with the background (Fig 6(b) and 6(e)). Other prominent

impressionists such as Claude Monet (1840–1926) and Edgar Degas (1834–1917) demonstrate

similar trends.

These observations prompt us to quantify such stylistic evolution of a painter using the

rate of changes in S, given as the slope a of the linear fit over one’s career normalized to 1. For
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instance, we find a = 0.62 for Mondrian and a = −0.10 for Renoir (Fig 6(c)). The distribution

of a for the 1 326 modern painters whose median of the production year is 1800 or later, (who

produced paintings in five or more distinct years) resembles a Gaussian. Given this observa-

tion and that the quality of an artist is more reasonably measured in relation to others (as an

Fig 6. Characterizing individual painters. (a, b) Growth in S of Mondrian’s and Renoir’s paintings, respectively, over the normalized careers of each painter. The

slope a of the linear fit (dashed red lines) is 0.62 for Mondrian and −0.10 for Renoir. (c) The histogram of the linear slopes {a} of 1 326 modern artists who

produced paintings in at least five distinct years. A few notable artists are indicated. The dashed line indicates the average slope (�a ¼ 0:02, a slight trend towards

abstract paintings). (d, e) Painting samples by Mondrian and Renoir, respectively, highlighting their stylistic changes over their careers (All images are obtained

from Wiki Art and in the public domain). (f) Singularity of paintings by seven select artists. The darker band indicates the range −1� z� 1. (g) Histogram of the

singularity of 330 artists with more than 40 paintings. The dashed line indicates the average slope (�v ¼ 0:02).

https://doi.org/10.1371/journal.pone.0204430.g006
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absolute measure of artistic quality is not readily available), we define the metamorphosality μ
of a painter as the z-score m � ða � �aÞ=sa of the painter’s a, where �a is the average, and σa is

the standard deviation. In Fig 7(a) we show the top 100 artists in terms of metamorphosality,

fifty with increasing S fifty with decreasing S. On the positive side the American painter How-

ard Mehring (1931–1978) shows the largest μ = 4.07. Accordingly, Mehring’s early works are

reminiscent of such figures as Pollock or Mark Rothko (1903–1970) and Helen Frankenthaler

(1928–2011), employing scattered colors with vague boundaries [42]. His later works, on the

other hand, begin to feature geometric compositions of vivid colors with abrupt transitions,

similar to Mondrian’s hard-edge paintings. At the other extreme with the most negative μ is

Swiss-French painter Félix Edouard Vallotton (1865–1925), member of the post-impressionist

avant-garde group Les Nabis. Initially having gained fame for wood cuts featuring extremely

reductive flat patterns with strong outlines (high S), he produced classical-style paintings such

as landscapes and still life in later life (low S) for μ = −5.59.

Uniqueness among contemporaries: Singularity. Another way to characterize a strong

stylistic individuality would to measure how unique, or singular, a painting is. It is again

sensible to measure it in relation to other works, in this case especially among those made

around the same time, since a style that is an outlier at one point in time may be mainstream

at another, and vice versa. This can be achieved by computing the z-score of a painting’s S
amongst its contemporary (defined as having been produced within five years of it). We then

call a painting highly singular if its |z|> zc, a threshold value which we set to be 1 in this paper.

In Fig 6(f) we show the z-scores of paintings of seven select painters as a scatter plot where

those within the lightly-shaded areas represent the highly singular paintings (|z|> zc). The

figure teaches us that painters produced different ratios of highly singular works, indicating

their conventional or unorthodox nature, and the styles they belong to (positive or negative S).

The singularity ν of an artist is defined as the difference between the fractions of their works in

z> 1 and z< −1. Such definition of singularity give us the benefit of identifying those who

tended to produce singular paintings and their preferred style (high or low S) simultaneously.

For example, 45% of Mondrian’s paintings are in z> 1 (singularity high-S) and 6% in z< −1

(singularly low-S) giving ν = 0.39, apparently consistent with his role in high-S paintings. The

histogram of the ν of 330 modern painters (who produced more than 40 paintings for suffi-

cient data) of Fig 6(g) shows us the range of singularities among painters, including those even

more singular than Mondrian. A more comprehensive list of the most singular painters (fifty

for ν> 0 and fifty for negative) of Fig 7(b) contains many names who turn out to be highly

regarded in fact for their groundbreaking and unique styles: Examples include Qi Baishi

(1864–1957), Chinese-born but very popular in the West for witty and vivid watercolors [43],

has the largest singularity (ν = 0.92), followed by Max Bill (1908–1994) known for geometric

paintings that came to symbolize the so-called ‘Swiss design’ (ν = 0.79). On the opposite

side we find Koloman Moser (1868–1918), founding member of the Vienna Secession move-

ment and known for complex repetitive motifs inspired by classical Greek and Roman art

(ν = −0.91), followed closely by Eugène Leroy (1910–2000) known for numerous works featur-

ing thick brush strokes in different colors, resulting in obscure and not readily identifiable

imagery [44], to name but a few.

Discussion

This work presents a study to characterize the creative actions of humans from a massive,

high-quality cultural data spanning several centuries up to the modern era. To accomplish it

we devised a theoretical and computational framework for quantifying color contrast based on

the relationship between the colors and geometry of the paintings. We proposed quantifying
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Fig 7. Modern painters with the highest metamorphosality or singularity. (a) The 100 artists with the strongest metamorphosality μ (50 positively,

50 negatively). American painter Howard Mehring made the most significant shift from low-S to high-S during his career (top), while Felix Vallotton

was the opposite (bottom). (b) The 100 artists with the strongest singularity ν (50 positively, 50 negatively). Qi Baishi’s works contain the highest

fraction of singularly high-S paintings, while Kolomon Moser was the opposite.

https://doi.org/10.1371/journal.pone.0204430.g007
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the overall color contrast of a painting by the seamlessness statistic S derived from the full dis-

tribution of the inter-pixel color differences, and using the Monte Carlo sampling methods

from thermodynamics we demonstrated that S is a consistent representation of color contrast.

Measurements of S on the data were shown to capture in numerical terms multiple histori-

cally important developments (scientific, technological, technical, aesthetic, etc.) in that

impacted the evolution of painting techniques, genres, and subjects. This has allowed us to

present the stylistic evolution over human history and how it relates to the conditions of the

times brought on by scientific, technological, cognitive innovations in a coherent and quantita-

tive manner.

To understand the greatly increased stylistic diversity of painting in the modern era, we

profiled the individual qualities of painters using two criteria, metamorphosality (the variabil-

ity of one’s styles over a career) and singularity (uniqueness of style against one’s contemporar-

ies). We found that the stylistic diversity of painting in the modern era is due not to there

being simply more painters, but to the emergence of painters actively evolving stylistically and

producing original paintings that defied the established norms of the day.

We believe that our work shows a robust scientific methodology for modeling and analysis

of complexity in visual artifacts using large-scale data. Our work could also be fruitfully applied

to a variety of art forms which can clearly be converted to data representing its components

and the relationship among them that allow us to find interesting patterns and information

that can lead to new understanding of humans’ creative process.

Based on our current investigation we can imagine multiple interesting directions for future

research. First, more intricate analysis using S would be possible and desirable in the immedi-

ate future to account for the possible biases across time and place due to the specific data set

we used. Venturing further, non-western European or American art including Asian, Hindu,

and Islamic painting art have been largely untouched in our work; large-scale analyses of these

subjects would also be of immediate, universal interest. Also, integrating an analytical study

using stylometric measures such as ours with object detection and segmentation techniques

from machine learning could lead to a deeper understanding of art that incorporates both

the styles and contents of paintings [26, 45, 46]. For example, how the same objects or motifs

have been portrayed differently over time would shed light on changes in tastes as well as style.

Going beyond the painting form, our work can also find use in understanding sculpture, archi-

tecture, visual design, film, animation, typography, etc.
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