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Abstract

Sea lice Lepeophtheirus salmonis (Krøyer) are a major ectoparasite affecting farmed Atlan-

tic salmon in most major salmon producing regions. Substantial resources are applied to

sea lice control and the development of new technologies towards this end. Identifying and

understanding how sea lice population patterns vary among cages on a salmon farm can

be an important step in the design and analysis of any sea lice control strategy. Norway’s

intense monitoring efforts have provided salmon farmers and researchers with a wealth of

sea lice infestation data. A frequently registered parameter is the number of adult female

sea lice per cage. These time-series data can be analysed descriptively, the similarity

between time-series quantified, so that groups and patterns can be identified among cages,

using clustering algorithms capable of handling such dynamic data. We apply such algo-

rithms to investigate the pattern of female sea lice counts among cages for three Atlantic

salmon farms in Norway. A series of strategies involving a combination of distance mea-

sures and prototypes were explored and cluster evaluation was performed using cluster

validity indices. Repeated agreement on cluster membership for different combinations of

distance and centroids was taken to be a strong indicator of clustering while the stability of

these results reinforced this likelihood. Though drivers behind clustering are not thoroughly

investigated here, it appeared that fish weight at time of stocking and other management

practices were strongly related to cluster membership. In addition to these internally driven

factors it is also possible that external sources of infestation may drive patterns of sea lice

infestation in groups of cages; for example, those most proximal to an external source. This

exploratory method proved useful as a pattern discovery tool for cages in salmon farms.

Introduction

Sea lice Lepeophtheirus salmonis (Krøyer) is an important ectoparasite affecting farmed Atlan-

tic salmon Salmo salar L. [1]. High infestation levels can be responsible for severe damage or

even death to the host fish [2]. Combined treatment and management efforts typically lower

sea lice abundances to levels that rarely impact fish health [3]. Although the parasite causes
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little direct mortality, it is responsible for high economic losses, making sea lice control a prior-

ity among salmon farmers and the scientific community, worldwide [4].

Since its emergence in the 1960s, Norwegian salmon farming has led the world in terms of the

production of farmed salmon [5]. The impact of sea lice L. salmonis on Norwegian salmon farms

was already apparent during the 1970s, and in 1997 the “National Action Plan Against Salmon

Lice on Salmonids,” for regional and farm-level coordinated efforts, was implemented [6]. The

Norwegian authorities have since developed and modified regulations and surveillance programs

in an effort to control infestations in Norwegian salmon farms [7, 8]. Regulations include manda-

tory sea lice count reporting and a maximum threshold value, of 0.5 adult sea lice per fish,

reduced to 0.2 adult female lice during the periods when most smolts are out-migrating [7, 9].

Apart from management and regulations, there is significant investment associated with

the development and application of numerous treatment and prevention strategies at the farm

level. Prevention and treatment strategies include the use of oral treatments in medicated feed,

bath delousing through chemical treatments, and biological control using cleaner-fish [10].

New and innovative technologies have been applied to parasite management in salmon farm-

ing in Norway, such as ‘snorkel’ sea lice barrier technology [11] and cage enclosure in plankton

sheeting [12].

Many factors can affect sea lice infestation levels, including the fact that cages may be

stocked and harvested at different moments, treatments may be applied differentially between

cages, and with varying effect, among other factors. Furthermore, events in one cage or group

of cages can impact other cages differentially and in a way that cannot be measured with sim-

ple time-point comparisons, but which require a more flexible way of understanding sea-lice

patterns of infection. This has led to the need for better analytical methods by which to under-

stand how sea lice populations may vary synchronously within a farm to facilitate better man-

agement and evaluation of sea lice prevention and control efforts. This study makes use of

time-series clustering strategies to discern common patterns in sea lice cage count data within

three Norwegian farms. The general objective is to identify sets of cages that form homogenous

groups, based on the sea lice counts, throughout a production cycle. Here we overcome the

limitations of point-by-point clustering using time series clustering that takes into account the

entire set of sea-lice time series counts for each cage. When such clustering is present, it may

be that the commonalities in patterns is due to factors such as management practices or inter-

nal transmission between cages. It may also be the case that common sources of external infes-

tation are impacting on sets of cages, causing the sea lice dynamics within these cages to follow

similar patterns. Typically the types of clustering algorithm used here are designed as explor-

atory tools and do not allow for formal statistical inference regarding the causal mechanisms

generating common patterns. However, in addition to their descriptive value they can generate

hypotheses that can be explored using more traditional statistical methods.

Materials and methods

Data sets

The Norwegian sea lice surveillance protocol includes mandatory data collecting and report-

ing, which provides a wealth of surveillance time-series data of sea lice counts. The sea lice

data sets used in the present study were supplied on request by 3 Norwegian farms, for a vary-

ing number of production cycles and within a time period from 2012 to 2017. The data con-

sists of weekly, per-cage values of adult female lice, for varying numbers of sampled fish. The

adult female lice counts are the most critical for overall sea lice population control, which aims

to keep their values as low as possible. From January 2000, the limit for adult female lice per

farm was set at 0.5 per fish, with values in excess of these levels requiring the application of
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control measures at the farm level within a two-week period [6]. Recently, the threshold value

was lowered to 0.2 adult female lice per fish, during weeks 16 to 21 in the south of Norway,

and weeks 21 to 26 in the north of Norway, specifically Nordland, Troms and Finnmark [9].

The data used in this study is provided in S1 File.

Data preprocessing

Time-series clustering was performed by farm, considering the sea lice counts per cage as

multivariate time-series objects, and for the entire sequence of time points that made up the

salmon grow-out phase. Some cages started or completed their production at different times,

meaning that some cages were considered to have no salmon and no sea lice during periods

when other cages were producing fish. In order to consider time-series of equal lengths for

all cages, these periods of non-production where given a sea lice count value of zero. All cage

time-series data were equally spaced in time at one-week intervals and as such, any missing

values were imputed using a linear Gaussian state-space model [13]. The final pre-processing

step included a z-score normalization of the time-series data [14].

Time-series clustering

Clustering is an unsupervised data mining technique by which homogenous groups, or clus-

ters of objects, are formed with minimum inter-cluster and maximum intra-cluster similarity

[15]. Time-series data are dynamic in the sense that they change over time, with time-series

objects usually consisting of large numbers of observations (high dimensional data), making

for interesting pattern discovery. Time-series clustering considers the complex nature of the

data, aggregating large time-series objects into groups in what is a common exploratory tech-

nique in time-series visualization and comprehension [15].

Time-series clustering requires the definition of a clustering algorithm, a dissimilarity mea-

sure, a representative cluster centroid, and a cluster evaluation step [14]. It is not possible to

know in advance what will be the best clustering approach for a given data set. To investigate

the different partitions of cages and find which provide the best fit to the data, we apply several

clustering algorithm configurations, for a total of 9 approaches, with cluster evaluation using 7

cluster evaluation indices, and a final step investigating cluster stability. In some cases, we

expect clustering results to be consistent across different configurations, which may be an indi-

cation of clustering patterns in sea lice counts. However, given the unique behaviour of each

algorithm and the inherent stochasticity in some of the methods, cluster membership would

be expected to show variation between methods and even across random repetitions within

the same method. Where cluster membership differs from total concordance within a specific

method, stability is indicated to be ‘partial’ so as to contrast this with methods which result in

largely identical membership and indicate highly stable clusters. However, it can be the case

that two methods both result in stable clusters but that their membership differs between

methods; this lack of stability is more problematic and indicates that treatment of one or more

variables, or their use in the estimated distance metric is leading to inconsistent outcomes,

making interpretation more challenging.

Definition of the cluster algorithm

Time-series clustering algorithms are typically classified as data-based, working with the data

as is and performing reduction methods that can be feature-based, extracting features for

clustering; or, it can be model-based, extracting model parameters before clustering [15, 16].

Partitional clustering algorithms are raw-data-based and among the most explored and con-

ventional clustering methods, such as the well-known k-means algorithm [15, 17]. Partitional
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clustering algorithms build “crispy” clusters, where each object belongs to a single cluster, and

rely heavily on the choice of cluster centroid and the k chosen number of clusters [15]. For this

reason, 3 centroid methods were investigated, as were all possible number of clusters, from 2

to k individual cage cluster members, where each cluster is a single cage.

Definition of distance measure

Distance measures between time-series reflect their degree of similarity [14]. One of the most

commonly used distance measures for time-series clustering is Euclidean distance [15]. Euclid-

ean distance is parameter-free and frequently used as a benchmark for time-series dissimilarity

searches [18–21]. Most other distance metrics are compared to the Euclidean distance metric,

given its simplicity and stability [15]. In spite of being sensitive to noise, scale, and time shifts,

Euclidean distance has been found to be very competitive [14].

To investigate whether patterns of sea lice counts vary among cages, where the effect of

increased numbers of sea lice or treatment applications could yield a non-immediate effect

on a neighbouring cage, we investigated similarity in time-series prioritizing the patterns of

change over time. Dynamic Time Warping (DTW) is a distance measure that allows non-lin-

ear alignments between time-series to identify sequences similar in shape, even when mis-

aligned and of different lengths [22, 23]. Events do not need to be perfectly aligned to be

grouped by the algorithm, using DTW distance. In such a way, DTW allows for flexible

sequential pattern discovery, adapted to real-world situations [24]. DTW was also chosen as a

distance metric, overcoming many limitations associated with the use of Euclidean distance

[25]. For faster computation and to prevent small sections of one time-series from mapping

onto larger sections of another, a constraint, warping window is recommended [22]. A fixed

window size of 9 weeks was selected for all datasets, to confer a biological basis for the choice

in parameter, which would represent the 9 weeks for Lepeophtheirus salmonis generation time

[26]. Note that a window size of zero is equivalent to applying the Euclidean distance measure

[25]. Many authors believe that employing a correct warping window can increase classifica-

tion accuracy [25, 27]. Ratanamahatana et al., (2004) investigated the effect of window size on

classification accuracies and found that, for smaller data, the decrease in data size meant a

decrease in classification accuracy, with peaks in accuracy appearing for increasingly larger

window sizes. These authors also found that they were unable to simulate data sets that

required more than a 10% window size to improve classification accuracy [25]. In this study,

the window size of 9 weeks represents just less than 10% of the average length of the time-series

data, for any of the production cycles analysed.

A third distance metric for time-series clustering was proposed by Cuturi et al., (2017)

using Global Alignment Kernels (GAK) [28]. For GAK, similarities are based on kernels [14]

that consider the cost over all possible alignment distances that map time-series onto each

other as a positive kernel, which is more coherent than DTW alone [14, 28, 29].

Definition of cluster centroid

Time-series centroids, also known as prototypes, can be considered as time-series that summa-

rize the cluster around which they were built [14]. The most common centroid for clustering

is the mean of each time point across the multiple time-series that make up the cluster [14]. A

second common approach is to partition around medoids (PAM), the medoid being a repre-

sentative time-series whose distance to all others in the cluster is minimal [14]. The third cen-

troid function considered was developed by Petitjean et al. (2011): partitioning using DTW

barycenter averaging (DBA) [30]. In this approach, representative time-series are used as cen-

troids and the DTW alignments map to average values using the values within the cluster [14].
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Cluster evaluation

In the absence of labelled data, the internal cluster validity indices (CVIs) evaluate clustering

results using information available in the data [15]. For each clustering method, the CVIs help

determine the best k number of clusters [31]. There is no way of saying which CVI is best, so

we simultaneously considered 7 CVIs. Briefly, the CVIs are based on the within-cluster cohe-

sion and the between-cluster separation, relying on certain distances between time series

points and centroids, and expressed in terms of the indices detailed in Table 1 [31].

For the different number of k clusters considered per algorithm configuration, the CVI val-

ues were plotted and the steeper changes in values, either for maximization or minimization,

helped indicate which was the best number of k partitions. Steeper drops or rises ending with

improved CVI values would be preferred. Additionally, if the CVI value is followed by a steep

change that indicates worse performance, then the value it drops/increases from is chosen. If

the CVIs disagreed on the number of clusters that result in the best partitioning, the majority

vote was used to choose the best k cluster value. Furthermore, if consecutive CVI values were

steadily and increasingly better, the smallest k was chosen, since it was expected that the CVIs

perform better on increasingly smaller clusters.

Due to their random choice of initial cluster members, partitional clustering procedures are

stochastic in nature [14]. The best clustering algorithm configuration can also be evaluated

through its stability, without the assumption of compactness, by quantifying the agreement

between 20 and 100 random repetitions of the clustering algorithm [14, 31]. With the help of

the clue package, the clusters can be evaluated against the medoid of the random repetitions of

the same clustering algorithm through a confusion matrix to identify all, partial, or no cor-

rectly predicted cluster memberships [32].

Statistical software

The time-series clustering algorithms were implemented in R statistical computing software

and the majority of the time-series analyses were performed using the R package dtwclust [33,

34]İmputation of missing values was performed using the imputeTS package, and clustering

stability was performed using the source code in dtwclust and the R clue package [32, 35].

Results

There was no single best CVI to determine the ‘ideal’ number of clusters across all data sets.

For the majority of cases, the Score Function index was relatively constant and for this reason

was eliminated from the analysis. There was a tendency for CVIs to show an improvement for

the maximum value of k, which is a natural consequence of the lack of intra-variance and high

inter-variance, given single-element clusters.

Table 1. Clustering validity indices (CVI), the distances that are used as a measure of intra-cluster cohesion or inter-cluster separation and whether their value

should be maximized or minimized when choosing the most robust set of clusters.

CVI Cohesion Separation Goal

Calinski-Harabasz Ponts to centroid Cluster centroid to global centroid Maximized

Davies-Bouldin and Davies Bouldin Modified Points to centroid Between centroids Minimized

Silhouette Between all points Nearest-neighbor distance Maximized

Dunn Nearest-neighbor distance Maximum cluster diameter Maximized

COP Points to centroid Furthest neighbour distance Minimized

Score function Points to centroid Cluster centroid to global centroid Maximized

https://doi.org/10.1371/journal.pone.0204319.t001
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For the 2012-2013 time-series for Farm I, the CVI plots for 3 of the most stable algorithms

are shown in Fig 1. The average values for the CVIs, according to whether these belonged to

the group of CVIs for which decreased or increased values indicate an improvement, are

shown as blue and red lines, respectively (Fig 1). In most cases, the Calinski-Harabasz index

dominated the behaviour of the red line, while the Davies-Bouldin and Davies-Bouldin modi-

fied indexes, which sfrequently overlap, tended to drive changes in the blue line. In some

instances, CVIs behaved in agreement as the number of clusters changed, as was the case in

GAK+PAM 2012-2013 and the choice of k = 3. However, consensus between CVIs was not

always apparent. Examples of such behaviour can be seen for the DTW+PAM and the Euclid-

ean+PAM based clusters for 2012-2013. For the DTW+PAM algorithm, two clusters were

determined as the best k, where CVIs worsened with easily identified steep changes, from 2 to

3 clusters, with the exception of the COP index. Thereafter, most CVI values improved when

moving from 3 to 4 clusters, with the exception of the Calinski-Harabasz index. The choice of

2 clusters rather than 4 relied on the fact that the steepest change in values occurred for the

change from 2 to 3 clusters, and was reinforced by the fact that three CVI values at k = 4 had

similar or worse values than those seen at k = 2. An increased number of clusters will typically

lead to apparent improvement in the performance based on CVI values, as there is a natural

tendency for the variance within groups to decrease and increase the variance between clus-

ters. This is analogous to over-fitting in the modelling context.

The Euclidean+PAM algorithm for the same production cycle (2012-2013) revealed a fairly

steady improvement for the CVIs that should be minimized to indicate better clustering, as

well as for the indices to be maximized, with the exception of the Calinski-Harabasz index.

The choice of 3 clusters was clearly supported by the Calinski-Harabasz index with the inflec-

tion in value from k = 3 to k = 4. For the Dunn index a steeper improvement occurred for the

change from 2 to 3 clusters, and also improved from 3 to 4 which, as previously mentioned, is

to be expected and should not be over-interpreted.

The clustering results are presented for Farm I in Table 2 for each of the three production

cycles, with the most stable clustering results shown in Figs 2, 3 and 4. For the 2012 to 2013

production cycle, the clustering algorithms identified 2 or 3 clusters. In almost all cases cages

2, 3, and 5 were in a cluster, sometimes joined by cage 4, while cage 1 was always a “singleton”

cluster (Fig 2). Furthermore, the GAK algorithms and Euclidean algorithms produced the

same cluster memberships, suggesting a strong clustering pattern for 2012-2013.

Fig 1. Farm I CVI plots. Cluster validity index plots for the most stable algorithms applied to the time-series data for

Farm I in 2012-2013. (A) individual CVI plots; (B) average values for each group of CVIs.

https://doi.org/10.1371/journal.pone.0204319.g001
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In the production cycle of 2014 to 2015, an additional 3 cages were present, giving a total of

8 cages. This cycle was characterized by a less obvious partitioning pattern, with cluster results

varying, depending on the distance metric applied (see Table 2 and Fig 3). All but two algo-

rithms supported clustering of cages 7 and 8, and all but three supported the clustering of

cages 3, 5, and 6. As was the case for the first production cycle, the GAK distance metric pro-

vided the most stable clustering results, for both 20 and 100 randomizations.

During the third production cycle, 2016 to 2017, the clustering results were fairly consistent

within and between algorithms (Table 2 and Fig 4). The clustering algorithms identified two

large clusters of possible cage-level related sea lice behaviour. Most of the algorithms supported

clustering of cages 7 and 8, as was the case of the previous production cycle, though in this

cycle they also almost always clustered with cage 4. Likewise, cages 3, 5, and 6 often clustered

together during both production cycles, though in this latter cycle they were always clustered

Table 2. Clustering results for Farm I, with cluster membership as shown in the plots in Figs 2, 3 and 4. The most stable clusters are identified per cycle, alphabetically.

Production cycle from 2012-03-23 to 2013-10-03

Distance metric Centroid No. clusters Cluster members Stability 20;100�

GAK PAM 3 A{2,3,5};B{4};C{1} all;all

DBA 3 A{2,3,5};B{4};C{1} all;all

MEAN 3 A{2,3,5};B{4};C{1} all;all

DTW PAM 2 C{1};D{2,3,4,5} all;all

DBA 3 C{1};E{3};F{2,4,5} nn;nn

MEAN 2 C{1};D{2,3,4,5} all;all

Euclidean PAM 3 A{2,3,5};B{4};C{1} all;ptt

DBA 3 A{2,3,5};B{4};C{1} all;ptt

MEAN 3 A{2,3,5};B{4};C{1} all;ptt

Production cycle from 2014-05-18 to 2015-10-17

Distance metric Centroid No. clusters Cluster members Stability 20;100�

GAK PAM 2 A{1,3,4,5,6};B{2,7,8} all;all

DBA 2 A{1,3,4,5,6};B{2,7,8} all;all

MEAN 3 A{1,3,4,5,6};C{2,8};D{7} all;all

DTW PAM 4 E{4};F{7,8};G{1,2};H{3,5,6} nn;nn

DBA 2 I{1,2,3,4};J{5,6,7,8} ptt;ptt

MEAN 2 F{7,8};K{1,2,3,4,5,6} all;all

Euclidean PAM 3 C{2,8};L{5,6,7};M{1,3,4} all;all

DBA 2 M{1,3,4};N{2,5,6,7,8} ptt;ptt

MEAN 3 A{1,3,4,5,6};F{7,8};O{2} ptt;all

Production cycle from 2016-03-03 to 2017-06-29

Distance metric Centroid No. clusters Cluster members Stability 20;100�

GAK PAM 2 A{4,7,8};B{1,2,3,5,6} all;all

DBA 2 A{4,7,8};B{1,2,3,5,6} all;all

MEAN 2 A{4,7,8};B{1,2,3,5,6} all;all

DTW PAM 2 A{4,7,8};B{1,2,3,5,6} all;all

DBA 2 A{4,7,8};B{1,2,3,5,6} all;all

MEAN 2 A{4,7,8};B{1,2,3,5,6} all;all

Euclidean PAM 2 A{4,7,8};B{1,2,3,5,6} all;all

DBA 2 C{4};D{1,2,3,5,6,7,8} ptt;ptt

MEAN 2 E{4,8};F{1,2,3,5,6,7} ptt;ptt

�ptt: partial; nn: none; GAK: Global Alignemnt Kernels; DTW: Dynamic Time Warping; PAM: Partition Around Medoids; DBA: Dynamic Barycenter Averaging.

https://doi.org/10.1371/journal.pone.0204319.t002
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with cages 1 and 2. Furthermore, the two algorithms that did not identify identical cluster

membership of A and B (Euclidean+DBA and Euclidean+MEAN), also failed to produce

repeatable results for both 20 and 100 randomizations. Overall, the similarity of cluster mem-

berships suggests two similar groups of sea lice populations over the production cycle of 2016

to 2017.

Clustering based on sea lice data from Farm II’s production cycle in 2012-2013 is summa-

rized in Table 3, and a stable configuration is shown in Fig 5. The CVIs for GAK distance met-

ric with PAM or DBA, suggested 4 clusters but with unstable results. When investigating the

stability of 2 clusters with such algorithms, clusters were also unstable. However, if the centroid

is the simple average of time-series counts, most algorithms identify one cluster with a single

member (cage 10), and with stable results. This singleton cluster is also identified in the DTW

and Euclidean algorithms. For the farm’s second production cycle (2013-2015), the algorithms

Fig 2. Farm I clustering for 2012-2013. Time-series plots for the most stable clustering algorithms for Farm I,

production cycle of 2012-2013.

https://doi.org/10.1371/journal.pone.0204319.g002

Fig 3. Farm I clustering for 2014-2015. Time-series plots for the most stable clustering algorithms for Farm I,

production cycle of 2014-2015.

https://doi.org/10.1371/journal.pone.0204319.g003
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produced similar results, identifying two clusters: a small cluster consisting of cage 6 and/or

cage 4, with the second cluster consisting of all remaining cages. The low value of k and the

unstable results for 2013-2015 suggest an absence of clustering and a similarity of sea lice

count patterns among cages (Fig 5). During the final production year (2015-2017, Table 3),

similar cluster membership was found among the algorithms, with clustering of cages 2, 6, 7,

9, and 10, of cages 4 and 5 (often with cages 1 and/or 3), and with cage 8 mostly identified as a

singleton cluster. Overall, the agreement among cluster memberships at Farm II would suggest

that over the final two production cycles the sea lice count patterns were similar among all

cages, with the exception of a few singleton cage clusters. The lack of agreement for the first

production cycle of 2012-2013 deserves comment. Here, the two algorithm configurations that

produced repeatable results, GAK+MEAN and Euclidean+PAM, identified both a large cluster

and smaller clusters with fewer (often only one) member(s).

The various clustering algorithms produced consistent results for the third farm, Farm III

(Table 4). For the first production cycle, all 9 algorithms agreed on cage membership of the

three clusters identified, shown in the upper panel of Fig 6. For the second production cycle of

2015-2016, the clustering algorithms produced similar results, suggesting the existence of 2 or

3 clusters, and the frequent clustering of cages 4 and 6, and of cages 2, 3, 5, 9, 11, and 12. The

cluster membership of cages was not shared between the two production cycles. Overall, the

agreement between algorithms suggests strong clustering at Farm III, with a large number of

cages having a similar sea lice infestation pattern, while a few cages exhibit a different pattern

in both production cycles.

Discussion

The clustering algorithms explored frequently produced similar and stable results. The GAK

algorithms provided the most stable results across farms and production cycles. The flexibility

of DTW, compared to the results of the less plastic Euclidean distance metrics, was not appar-

ent when evaluating cluster stability: it may be that the nature of the data does not require such

flexibility. Additionally, clusters were frequently made up of a large number of members, con-

tradicting the sometimes posited “worst cage” phenomenon [36].

Fig 4. Farm I clustering for 2016-2017. Time-series plots for the most stable clustering algorithm for Farm I,

production cycle of 2016-2017.

https://doi.org/10.1371/journal.pone.0204319.g004
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Possible drivers behind the clustering include time of stocking and harvesting, as well as

the sorting and splitting of salmon between cages. Another possible driver is fish weight, fre-

quently an indicator of life stage and development. To informally explore these factors, we

reviewed management practices at Farm III, where the clustering algorithms produced consis-

tent results. For the time series from 2013 to 2014, clustering of cages 2 and 8 was frequent

among algorithms. These cages were stocked at the same time and with fish of similar weights.

They were also depopulated at the same time. The remaining cages were stocked and harvested

at very different times and the fish in those cages were harvested at significantly higher weights.

Weight and time of harvest was also considered a driving force behind sea lice abundance

for cages 3, 5, 7 and 11. These cages started production half way through the cycle and were

stocked with larger fish from other cages, while cages 1 and 9, the remaining late starters, were

stocked with lower weight individuals compared to neighbouring cages. The following cycle at

Table 3. Clustering results for Farm II. The most stable clusters are identified per cycle, alphabetically.

Production cycle from 2012-04-20 to 2013-05-25

Distance metric Centroid No. clusters Cluster members Stability 20;100�

GAK PAM 4 A{5};B{3,4,8,9};C{1,2,6,7};D{10} ptt;ptt

DBA 4 A{5};B{3,4,8,9};C{1,2,6,7};D{10} ptt;ptt

MEAN 2 D{10};E{1,2,3,4,5,6,7,8,9} all;all

DTW PAM 4 D{10};F{3,5};G{4,7,8,9};H{1,2,6} ptt;ptt

DBA 4 D{10};F{3,5};G{4,7,8,9};H{1,2,6} ptt;ptt

MEAN 4 D{10};F{3,5};G{4,7,8,9};H{1,2,6} all;ptt

Euclidean PAM 4 D{10};I{3,4,5};J{2,6,7,8,9};K{1} all;all

DBA 4 D{10};F{3,5};L{6,7,8,9};M{1,2,4} ptt;ptt

MEAN 4 D{10};F{3,5};L{6,7,8,9};M{1,2,4} ptt;ptt

Production cycle from 2013-08-30 to 2015-06-5

Distance metric Centroid No. clusters Cluster members Stability 20;100�

GAK PAM 2 A{4};B{1,2,3,5,6,7,8,9,10,11,12} ptt;all

DBA 2 C{4,5,6};D{1,2,3,7,8,9,10,11,12} ptt;ptt

MEAN 2 E{4,6};F{1,2,3,5,7,8,9,10,11,12} ptt;ptt

DTW PAM 2 G{6};H{1,2,3,4,5,7,8,9,10,11,12} ptt;ptt

DBA 2 G{6};H{1,2,3,4,5,7,8,9,10,11,12} ptt;ptt

MEAN 2 G{6};H{1,2,3,4,5,7,8,9,10,11,12} ptt;ptt

Euclidean PAM 2 G{6};H{1,3,4,5,6,7,8,9,10,11,12} ptt;ptt

DBA 2 G{6};H{1,2,3,4,5,7,8,9,10,11,12} all;ptt

MEAN 3 A{4};F{1,2,3,5,7,8,9,10,11,12};G{6} ptt;all

Production cycle from 2015-08-09 to 2017-04-07

Distance metric Centroid No. clusters Cluster members Stability 20;100�

GAK PAM 3 A{1,3,4,5};B{8};C{2,6,7,9,10 ptt;all

DBA 3 A{1,3,4,5};B{8};C{2,6,7,9,10} nn;all

MEAN 4 B{8};C{2,6,7,9,10};D{1,3,5};E{4} all;ptt

DTW PAM 3 F{4,5};G{1,3};H{2,6,7,8,9,10} all;all

DBA 2 I{3,4,5};J{1,2,6,7,8,9,10} ptt;ptt

MEAN 2 I{3,4,5};J{1,2,6,7,8,9,10} ptt;ptt

Euclidean PAM 2 B{8};K{1,2,3,4,5,6,7,9,10} ptt;ptt

DBA 3 A{1,3,4,5};B{8};C{2,6,7,9,10} all;all

MEAN 3 B{8};I{3,4,5};L{1,2,6,7,9,10} all;ptt

�ptt: partial; nn: none; GAK: Global Alignemnt Kernels; DTW: Dynamic Time Warping; PAM: Partition Around Medoids; DBA: Dynamic Barycenter Averaging.

https://doi.org/10.1371/journal.pone.0204319.t003
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Farm III, for 2015 to 2016, included clustering of cages 4 and 6, two cages subject to sorting

and splitting. Here the largest fish were selected and kept in their cage, raising the weight at

harvest in these two cages. Examples suggesting weight and management as driving forces

behind sea lice clustering also occurred at Farms I and II. Further research into the potential

for management factors to influence clustering between cages should be investigated.

Fig 5. Farm II clustering per production cycle. Time series plots for the most stable clustering algorithm for Farm II,

one from each production cycle.

https://doi.org/10.1371/journal.pone.0204319.g005

Table 4. Clustering results for Farm III. The most stable clusters are identified per cycle, alphabetically.

Production cycle from 2013-03-24 to 2014-11-13

Distance metric Centroid No. clusters Cluster members Stability 20;100�

GAK PAM 3 A{3,5,6,7,11};B{1,4,9,10,12};C{2,8} all;all

DBA 3 A{3,5,6,7,11};B{1,4,9,10,12};C{2,8} all;all

MEAN 3 A{3,5,6,7,11};B{1,4,9,10,12};C{2,8} all;all

DTW PAM 3 A{3,5,6,7,11};B{1,4,9,10,12};C{2,8} all;all

DBA 3 A{3,5,6,7,11};B{1,4,9,10,12};C{2,8} all;all

MEAN 3 A{3,5,6,7,11};B{1,4,9,10,12};C{2,8} ptt;ptt

Euclidean PAM 3 A{3,5,6,7,11};B{1,4,9,10,12};C{2,8} all;all

DBA 3 A{3,5,6,7,11};B{1,4,9,10,12};C{2,8} all;all

MEAN 3 A{3,5,6,7,11};B{1,4,9,10,12};C{2,8} all;all

Production cycle from 2015-05-04 to 2016-09-05

Distance metric Centroid No. clusters Cluster members Stability 20;100�

GAK PAM 3 A{4,6};B{2,3,5,9,11,12};C{1,7,8,10} all;all

DBA 2 A{4,6};D{1,2,3,5,7,8,9,10,11,12} all;all

MEAN 2 A{4,6};D{1,2,3,5,7,8,9,10,11,12} all;all

DTW PAM 2 E{1,4,6,7};F{2,3,5,8,9,10,11,12} ptt;ptt

DBA 2 E{1,4,6,7};F{2,3,5,8,9,10,11,12} ptt;ptt

MEAN 2 G{1,4,6,7,8};H{2,3,5,9,10,11,12} all;all

Euclidean PAM 3 A{4,6};B{2,3,5,9,11,12};C{1,7,8,10} all;all

DBA 2 A{4,6};D{1,2,3,5,7,8,9,10,11,12} all;all

MEAN 4 A{4,6};B{2,3,5,9,11,12};I{8};J{1,7,10} all;all

�ptt: partial; nn: none; GAK: Global Alignemnt Kernels; DTW: Dynamic Time Warping; PAM: Partition Around Medoids; DBA: Dynamic Barycenter Averaging.

https://doi.org/10.1371/journal.pone.0204319.t004
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Due to the nature of sea lice count data, any clustering must also consider the similarity in

sea lice populations among clustered cages in the context of their varying response patterns to

treatment interventions. Due to inherent limitations, the algorithms were unable to identify a

global cluster, consisting of all the farm cages. It was also challenging to determine at which

point each cage may be forming its own individual cluster, as might be expected if treatment

effects and transmission were largely random. Either of these two scenarios would most likely

occur where unstable clustering and discordant cluster membership among the algorithms

was frequent. In the analysis presented here the algorithm was applied to all records within

each production cycle: the usefulness of this approach as a monitoring tool, when applied to

smaller datasets of fewer records, could also be explored.

It may also be the case that such clustering analyses could clarify the relative importance of

internal versus external sources of infestation. For example, it may be expected that if the pri-

mary mechanism was internal re-infestation, then all cages would show similar patterns and

thus form a single or at least large clusters. Conversely, if infestation was primarily from exter-

nal sources then it might be expected that certain cages, closer to the location from which such

infestation was arriving would be infected earlier and/or more heavily than other cages. It may

also be the case that infestation due to Caligus species, which are known to present a different

infestation profile on salmon farms, could be more clearly identified using clustering analyses

[37].

Conclusion

Clustering of disease is a well-known concept in aquaculture: clustering has been explored for

identification of spatial-temporal transmission of disease, and explored at the cage level, to

develop improved sampling protocols for sea lice sampling [38–41]. As an unsupervised learn-

ing tool, clustering has been used to characterize aquaculture production systems [42, 43].

Here we extended clustering of time-series data for pattern discovery outside of the habitual

biological field of application for gene expression data, for clustering cage-level sea lice

count data [15]. To our knowledge, this is the first application of such time-series clustering

approaches to identify common parasite population signatures in the context of aquaculture.

The exploratory analysis of the time series cage-level data for adult female sea lice abundance

Fig 6. Farm III clustering per production cycle. Time series plots for the most stable clustering algorithm for Farm

III, one from each production cycle.

https://doi.org/10.1371/journal.pone.0204319.g006
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allowed us to identify clustering patterns across cages in three Norwegian farms; within a

given production cycle and, in some cases, among production cycles. We focused on three

algorithm configurations that allowed us to explore the patterns in varying ways, but which,

in most instances, produced generally consistent results. Time-series clustering is useful for

understanding cage-to-cage sea lice population dynamics and interpreting the effect of man-

agement strategies at the farm level. It is also likely that these approaches could be used to

explore broader patterns of sea lice infestation among a large number of farms, and thus iden-

tify clusters which exhibit similar dynamics as an initial step to exploring the causal mecha-

nisms that may underlie such commonalities. The results demonstrate the potential of time-

series clustering algorithms for pattern discovery in aquaculture.

Supporting information

S1 File. Cage-level data. The cage-level data file for the 3 farms in the analysis.

(CSV)

Acknowledgments

The authors thank management and staff at Måsøval Fiskeoppdrett AS for their support in

providing access to data. We also thank William Chalmers for editorial assistance in prepara-

tion of the manuscript.

Author Contributions

Conceptualization: Ana Rita Marques, Crawford W. Revie.

Data curation: Henny Forde.

Formal analysis: Ana Rita Marques.

Supervision: Crawford W. Revie.

Writing – original draft: Ana Rita Marques.

Writing – review & editing: Henny Forde, Crawford W. Revie.

References
1. Costello MJ. The global economic cost of sea lice to the salmonid farming industry. J Fish Dis. 2009;

32:115–118. https://doi.org/10.1111/j.1365-2761.2008.01011.x PMID: 19245636

2. Johnson SC, Treasurer JW, Bravo S, Nagasawa K, Kabata Z. A review of the impact of parasitic cope-

pods on marine aquaculture. Zool Stud. 2004; 43(2):229–243.

3. Revie C, Dill L, Finstad B,Todd C. Sea Lice Working Group Report 39 ed. NINA Special Report; 2009.

4. Jones AC, Mead A, Kaiser MJ, Austen MCV, Adrian AW, Auchterlonie NA, et al. Prioritization of knowl-

edge needs for sustainable aquaculture: a national and global perspective. Fish Fish. 2015; 16(4):668–

683. https://doi.org/10.1111/faf.12086

5. Liu Y, Olaf Olaussen J, Skonhoft A. Wild and farmed salmon in Norway-A review. Mar Policy. 2011; 35

(3):413–418. https://doi.org/10.1016/j.marpol.2010.11.007

6. Heuch PA, Bjørn PA, Finstad B, Holst JC, Asplin L, Nilsen F. A review of the Norwegian’National Action

Plan Against Salmon Lice on Salmonids’: The effect on wild salmonids. Aquaculture. 2005; 246(1-

4):79–92. https://doi.org/10.1016/j.aquaculture.2004.12.027

7. Directorate of Fisheries. Regulation for the control of sea lice in aquaculture facilities, Oslo, Norway;

2012. Available from: https://lovdata.no/dokument/SF/forskrift/2012-12-05-1140.

8. Solsvik T. Norway introduces new salmon farm regulation to combat sea lice; 2017. Available from:

http://www.reuters.com/article/norway-salmon/norway-introduces-new-salmon-farm-regulation-to-

combat-sea-lice-idUSL5N1GL3JU.

Clustering of sea lice cage data

PLOS ONE | https://doi.org/10.1371/journal.pone.0204319 September 25, 2018 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204319.s001
https://doi.org/10.1111/j.1365-2761.2008.01011.x
http://www.ncbi.nlm.nih.gov/pubmed/19245636
https://doi.org/10.1111/faf.12086
https://doi.org/10.1016/j.marpol.2010.11.007
https://doi.org/10.1016/j.aquaculture.2004.12.027
https://lovdata.no/dokument/SF/forskrift/2012-12-05-1140
http://www.reuters.com/article/norway-salmon/norway-introduces-new-salmon-farm-regulation-to-combat-sea-lice-idUSL5N1GL3JU
http://www.reuters.com/article/norway-salmon/norway-introduces-new-salmon-farm-regulation-to-combat-sea-lice-idUSL5N1GL3JU
https://doi.org/10.1371/journal.pone.0204319


9. Regjeringen. New rules for louse limits during spring; 2017. Available from: https://www.regjeringen.no/

no/aktuelt/nye-regler-for-lusegrenser-om-varen/id2542196/.

10. Liu Y, Bjelland HV. Estimating costs of sea lice control strategy in Norway. Prev Vet Med. 2014; 117(3-

4):469–477. https://doi.org/10.1016/j.prevetmed.2014.08.018 PMID: 25443395

11. Stien LH, Dempster T, Bui S, Glaropoulos A, Fosseidengen JE, Wright DW, et al. ’Snorkel’ sea lice bar-

rier technology reduces sea lice loads on harvest-sized Atlantic salmon with minimal welfare impacts.

Aquaculture. 2016; 458:29–37. https://doi.org/10.1016/j.aquaculture.2016.02.014

12. Grøntvedt R, Kristoffersen A. Permaskjørt kan redusere påslag av lakselus—ana- lyse av feltdata. Del-

rapport Permaskjørt-prosjektet A5. Report 2. Oslo: Institute, Norwegian Veterinary; 2015.

13. Moritz S, Bartz-Beielstein T. imputeTS: Time Series Missing Value Imputation version 2.5. 2017.

14. Sarda-Espinosa A. Comparing Time-Series Clustering Algorithms in R Using the dtwclust Package.

2017;1–41.

15. Aghabozorgi S, Seyed Shirkhorshidi A, Ying Wah T. Time-series clustering—A decade review. Inf Syst.

2015; 53:16–38. https://doi.org/10.1016/j.is.2015.04.007

16. Warren Liao T. Clustering of time series data—A survey. Pattern Recognit. 2005; 38(11):1857–1874.

https://doi.org/10.1016/j.patcog.2005.01.025

17. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. 2nd ed. Springer-Verlag.

New York; 2009.

18. Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subsequence matching in time-series databases.

In: Proceedings of the ACMSIGMOD International Conference on Management of Data. Minneapolis;

1994;419–429.

19. Keogh E. Fast similarity search in the presence of longitudinal scaling in time series databases. In: Pro-

ceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence. California; 1997;

578–584.

20. Chan FKP, Fu AWC, Yu C. Haar wavelets for efficient similarity search of time-series: with and without

time warping. In: IEEE Transactions on Knowledge and Data Engineering. 2003; 15(3):686–705.

21. Keogh E, Pazzani M, Chakrabarti K, Mehrotra S. A simple dimensionality reduction technique for fast

similarity search in large time series databases. In: Proceedings of the 4th Pacific-Asia Conference on

Knowledge Discovery and Data Mining, Current Issues and New Applications. 2000;122–133.

22. Ratanamahatana CA. Making Time-series Classification More Accurate Using Learned Constraints. In:

Proceedings of the 2004 SIAM International Conference on Data Mining. 2004;11–22. Available from:

http://epubs.siam.org/doi/abs/10.1137/1.9781611972740.2.

23. Cong B, Duong G, Anh T. Similarity search for numerous patterns over multiple time series streams

under dynamic time warping which supports data normalization. Vietnam Journal of Computer Science.

2016; 3(3):181–196. https://doi.org/10.1007/s40595-016-0062-4

24. Mizutani E. The Dynamic Time Warping Algorithms. Mechanical Engineering Seminar,Tokyo Metropoli-

tan University. 2016.

25. Ratanamahatana A, Keogh E. Everything you Know About Dynamic TimeWarping is Wrong. In: 3rd

Workshop on Mining Temporal and Sequential Data, in Conjunction with 10th ACM SIGKDD Int. Conf.

Knowledge Discovery and Data Mining (KDD-2004). Seattle, Washington; 2004.

26. Hayward CJ, Andrews M, Nowak BF. Introduction: Lepeophtheirus salmonis—A Remarkable Success

Story. In: Simon Jones RB, editor. Salmon Lice: An Integrated Approach to Understanding Parasite

Abundance and Distribution. John Wiley & Sons. 2011;1–28.

27. Chen Q. Learning Optimal Warping Window Size of DTW for Time Series Classification. In: The 11 th

International Conference on Information Sciences Signal Processing and their Applications: Special

Sessions. 2012;1272–1277.

28. Cuturi M, Vert J-P, Birkenes O, Matsui T. A kernel for time series based on global alignments. In: Pro-

ceedings of ICASSP; 2017;413–416.

29. Cuturi M. Fast Global Alignment Kernels. In: Proceedings of the 28th International Conference on

Machine Learning. Bellevue, WA, USA. 2011;929–936.

30. Petitjean F, Ketterlin A, Gancarski P. A global averaging method for dynamic time warping, with applica-

tions to clustering Franc. Pattern Recognit. 2011; 44(3):678–693.

31. Arbelaitz O, Gurrutxaga I, Muguerza J. An extensive comparative study of cluster validity indices. Pat-

tern Recognit. 2013; 46:243–256. https://doi.org/10.1016/j.patcog.2012.07.021

32. Hornik K. clue: Cluster ensembles. R package version 0.3-55 Available from: https://CRAN.R-project.

org/package=clue

33. R Development Core Team. R: A language and environment for statistical computing; 2017. Available

from: http://www.r-project.org/.

Clustering of sea lice cage data

PLOS ONE | https://doi.org/10.1371/journal.pone.0204319 September 25, 2018 14 / 15

https://www.regjeringen.no/no/aktuelt/nye-regler-for-lusegrenser-om-varen/id2542196/
https://www.regjeringen.no/no/aktuelt/nye-regler-for-lusegrenser-om-varen/id2542196/
https://doi.org/10.1016/j.prevetmed.2014.08.018
http://www.ncbi.nlm.nih.gov/pubmed/25443395
https://doi.org/10.1016/j.aquaculture.2016.02.014
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.patcog.2005.01.025
http://epubs.siam.org/doi/abs/10.1137/1.9781611972740.2
https://doi.org/10.1007/s40595-016-0062-4
https://doi.org/10.1016/j.patcog.2012.07.021
https://CRAN.R-project.org/package=clue
https://CRAN.R-project.org/package=clue
http://www.r-project.org/
https://doi.org/10.1371/journal.pone.0204319


34. Sarda-Espinosa A. dtwclust: Time Series Clustering Along with Optimizations for the Dynamic Time

Warping Distance version 5.1.0. Available from: https://cran.r-project.org/web/packages/dtwclust/

35. Moritz MS. Title Time Series Missing Value Imputation. R package version 25. Available from: https://

cran.r-project.org/web/packages/imputeTS/index.html

36. Heuch PA, Gettinby G, Revie CW. Counting sea lice on Atlantic salmon farms—Empirical and theoreti-

cal observations. Aquaculture. 2011; 320(3-4):149–153. https://doi.org/10.1016/j.aquaculture.2011.05.

002

37. McKenzie E, Gettinby G, McCart K, Revie CW. Time-series models of sea lice Caligus elongatus (Nord-

mann) abundance on Atlantic salmon Salmo salar L. in Loch Sunart, Scotland. Aquacult. Res. 2004;

35:764–772. https://doi.org/10.1111/j.1365-2109.2004.01099.x

38. Mardones FO, Perez AM, Carpenter TE. Epidemiologic investigation of the re-emergence of infectious

salmon anemia virus in Chile. Dis Aquat Organ. 2009; 84:105–114. https://doi.org/10.3354/dao02040

PMID: 19476280

39. Heuch PA, Gettinby G, Revie CW. Counting sea lice on Atlantic salmon farms—Empirical and theoreti-

cal observations. Aquaculture. 2011; 320(3-4):149–153. https://doi.org/10.1016/j.aquaculture.2011.05.

002

40. Revie CW, Gettinby G, Treasurer JW, Wallace C. Evaluating the effect of clustering when monitoring

the abundance of sea lice populations on farmed Atlantic salmon. The Fisheries Society of the British

Isles. 2005; 66:773–783.

41. Revie CW, Hollinger E, Gettinby G, Lees F, Heuch PA. Clustering of parasites within cages on Scottish

and Norwegian salmon farms: Alternative sampling strategies illustrated using simulation. Prev Vet

Med. 2007; 81(1-3):135–147. https://doi.org/10.1016/j.prevetmed.2007.04.004 PMID: 17532070

42. Marques AR, Ferreira Neto JS, Ferreira F. Hierarchical clustering and partitioning to characterize

shrimp grow-out farms in northeast Brazil. Prev Vet Med. 2016; 463:37–46.

43. Engle CR, McNevin A, Racine P, Boyd CE, Paungkaew D, Viriyatum R, et al. Economics of Sustainable

Intensification of Aquaculture: Evidence from Shrimp Farms in Vietnam and Thailand. J World Aquacult

Soc. 2017; 48:227–239.

Clustering of sea lice cage data

PLOS ONE | https://doi.org/10.1371/journal.pone.0204319 September 25, 2018 15 / 15

https://cran.r-project.org/web/packages/dtwclust/
https://cran.r-project.org/web/packages/imputeTS/index.html
https://cran.r-project.org/web/packages/imputeTS/index.html
https://doi.org/10.1016/j.aquaculture.2011.05.002
https://doi.org/10.1016/j.aquaculture.2011.05.002
https://doi.org/10.1111/j.1365-2109.2004.01099.x
https://doi.org/10.3354/dao02040
http://www.ncbi.nlm.nih.gov/pubmed/19476280
https://doi.org/10.1016/j.aquaculture.2011.05.002
https://doi.org/10.1016/j.aquaculture.2011.05.002
https://doi.org/10.1016/j.prevetmed.2007.04.004
http://www.ncbi.nlm.nih.gov/pubmed/17532070
https://doi.org/10.1371/journal.pone.0204319

