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Abstract

Background

Meningiomas are stratified according to tumor grade and extent of resection, often in isola-

tion of other clinical variables. Here, we use machine learning (ML) to integrate demo-

graphic, clinical, radiographic and pathologic data to develop predictive models for

meningioma outcomes.

Methods and findings

We developed a comprehensive database containing information from 235 patients who under-

went surgery for 257 meningiomas at a single institution from 1990 to 2015. The median follow-

up was 4.3 years, and resection specimens were re-evaluated according to current diagnostic

criteria, revealing 128 WHO grade I, 104 grade II and 25 grade III meningiomas. A series of ML

algorithms were trained and tuned by nested resampling to create models based on preopera-

tive features, conventional postoperative features, or both. We compared different algorithms’

accuracy as well as the unique insights they offered into the data. Machine learning models

restricted to preoperative information, such as patient demographics and radiographic features,

had similar accuracy for predicting local failure (AUC = 0.74) or overall survival (AUC = 0.68) as

models based on meningioma grade and extent of resection (AUC = 0.73 and AUC = 0.72,

respectively). Integrated models incorporating all available demographic, clinical, radiographic

and pathologic data provided the most accurate estimates (AUC = 0.78 and AUC = 0.74,

respectively). From these models, we developed decision trees and nomograms to estimate

the risks of local failure or overall survival for meningioma patients.

Conclusions

Clinical information has been historically underutilized in the prediction of meningioma out-

comes. Predictive models trained on preoperative clinical data perform comparably to
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conventional models trained on meningioma grade and extent of resection. Combination of

all available information can help stratify meningioma patients more accurately.

Introduction

Meningioma is the most common primary cancer of the central nervous system, accounting

for more than 30% of all brain tumors and more than 50% of benign intracranial neoplasms

[1]. It is estimated that more than 25,000 meningiomas are diagnosed in the United States

each year, and the majority are effectively managed with surgery, radiation, or a combination

of both [2]. The World Health Organization (WHO) categorizes meningiomas into three

grades based on mitotic activity and histopathologic characteristics [3]. Most WHO grade I

meningiomas can be cured with gross total resection or definitive radiotherapy, but grade II

(atypical) and grade III (anaplastic) meningiomas are prone to local recurrence and generally

require adjuvant treatment [2]. There are no effective systemic agents for meningioma, and

thus, patients with high grade or subtotally-resected meningiomas undergo serial craniotomy,

radiotherapy and radiosurgery for recurrent disease, often leading to significant morbidity and

even treatment-associated mortality [4,5].

Evolving understanding of the molecular genetics of meningiomas suggests that targeted

agents may eventually improve treatments and outcomes for meningioma patients [6,7]. In the

interim, meningioma patients are stratified and assigned to adjuvant treatment primarily

according to tumor grade and extent of resection. Indeed, the majority of clinical data from

meningioma patients, such as demographic and radiologic features, are largely ignored when

prognosticating outcome. These data are omitted from clinical decisions because prospective,

multi-institution trials have yet to identify clear features that influence meningioma outcomes

[8,9], and no tractable algorithms or predictive models have been developed.

Machine learning (ML) enables the development of robust predictive models by identifying

multivariate patterns in patient data that are related to clinical outcomes of interest. ML algo-

rithms can incorporate a large number of variables of different data types (continuous, cate-

gorical or ordinal) in a single model, maximizing performance and minimizing problems

associated with multiple comparisons. Unlike statistical hypothesis testing, machine learning

focuses on prediction accuracy and offers ways to estimate model generalizability on unseen

and future datasets, both of which are of critical importance in clinical practice. Aside from

outcome prediction, different machine learning algorithms offer complementary ways of

exploring and visualizing patterns in clinical data, which may provide new insights in disease

pathophysiology and treatment. For meningioma, the random forest algorithm has been used

to predict tumor grade from radiomic data [10]. Yet random forest is only one of a multitude

of tractable ML algorithms, and according to the “No Free-Lunch Theorem,” no individual

algorithm is guaranteed to perform best across all clinical scenarios [11]. Other algorithms

could offer better performance in biomedical data analyses in terms of accuracy or interpret-

ability, meaning that they may provide more accurate and precise information about relation-

ships between patient characteristics and outcomes [12,13]. In that regard, while tumor grade

is a surrogate marker for clinical outcome, it does not encapsulate the full biologic or clinical

diversity of meningioma. Instead, it may be better to predict clinical outcome directly and use

grade as an additional feature. To address the need for integrated predictive models for menin-

gioma patients, we used seven ML algorithms to predict clinical outcomes based on preopera-

tive information, conventional prognostic features such as grade and extent of resection, or a

Machine learning prediction of meningioma outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0204161 September 20, 2018 2 / 16

Institutes of Health (1F32CA213944-01) to S.T.M.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0204161


combination of both using data from a cohort of 235 patients with 257 meningiomas. In par-

ticular, we use standard clinical statistical methods (Logistic and Cox Regression) and recom-

mended ML algorithms for biomedical data where input features are known (CART,

MediBoost, Random Forests, Gradient Boosting, and Support Vector Machines) [12,13]. Our

results reveal that ML models can estimate the risk of meningioma recurrence and patient sur-

vival from information that is available before meningioma resection, but that integrated mod-

els incorporating all available demographic, clinical, radiographic and pathologic data provide

the best estimates of outcome. From these models, we develop decision trees and nomograms

that may be used to individualize treatment for meningioma patients, and provide a frame-

work for using ML analysis for other central nervous system tumors.

Materials and methods

Study design and patient population

Patients treated with surgical resection for meningioma at a single institution from 1990 to

2015 were retrospectively identified from a prospective tissue biorepository. Only patients

with sufficient tissue for re-grading were included, and all meningiomas were re-evaluated by

neuropathologists using contemporary diagnostic criteria [14]. Demographic and clinical

information were extracted from the medical record, and patients without either were

excluded. These stringent inclusion criteria assured that only cases with thorough and accurate

data were included in our analyses. Diagnostic imaging was reviewed for all patients to con-

firm meningioma location and extent of resection, and perform volumetric analysis with

three-dimensional (3D) contours that were manually generated by a single radiation oncolo-

gist with expertise in radiotherapy for meningioma (D.R.R.) using MIM Vista version 6.4.9

(MIM Software, Inc., Cleveland, OH). Meningiomas that occupied more than one anatomic

location were counted in each location for analysis. With respect to meningioma recurrence

after gross total resection, local recurrence of any size was scored on subsequent brain imaging.

After subtotal resection, Response Evaluation Criteria In Solid Tumors (RECIST) criteria were

adapted to define progression of residual meningioma as interval growth of�20% along any

dimension. Local failure (LF) and overall survival (OS) were quantified from the date of

meningioma resection until the date of tumor recurrence, or death, respectively, or the date of

last contact for patients who were alive and without radiographic evidence of recurrence. Sur-

vival status of patients was collected by a combined search of the electronic medical record,

institutional cancer registry, Surveillance, Epidemiology & End Results Program (SEER),

Department of Motor Vehicles (DMV), social security and nationwide hospital obituary data-

bases, as well as a search for publically available obituaries. This study was approved by the

Institutional Review Board, Human Research Protection Program Committee on Human

Research, and written informed consent for study inclusion was obtained from patients at the

time of surgery. Raw, re-identified data are available in S1 Table.

Features

Three sets of predictors were used to develop models: (1) preoperative clinical features alone;

(2) postoperative clinical features, which are conventionally used to stratify meningioma

patients; and (3) a combination of both preoperative and conventional postoperative features.

Preoperative features included demographic information (age, sex and race), past medical his-

tory (prior history of therapeutic radiation to the head or neck, including a prior history of

meningioma treatment) and radiographic characteristics derived from computed axial tomog-

raphy scans and magnetic resonance imaging (meningioma size from 3D volumetric contours,

intratumoral necrosis as denoted by low-intensity MRI signal, presence of multiple
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meningiomas, meningioma invasion of bone or brain, peri-meningioma edema and meningi-

oma location within the anterior cranial fossa, middle cranial fossa, posterior cranial fossa,

midline, convexity and/or skull base). Radiographic characteristics, including bone or brain

invasion and necrosis, were based on physician assessment of preoperative imaging and are

not pathology-verified tissue characteristics. They reflect information that would be commonly

available to a physician at that point in time. Models based on conventional postoperative fea-

tures included patient age, race, sex, meningioma grade, extent of resection and adjuvant

radiotherapy.

Statistical analysis

Kaplan-Meier estimates were plotted to visualize 5-year probabilities of LF and OS. Models

were fit on the full cohort and also grouped by grade and extent of resection. Heatmaps were

created based on pairwise Pearson correlations and ordered using hierarchical clustering to

explore the relationships among features and outcomes of LF or OS.

Multivariate models were trained to predict outcomes of LF or OS. For each outcome, we

trained three sets of models based on (1) preoperative features (“preoperative models”), (2)

postoperative features (“conventional models”), and (3) combined preoperative and postoper-

ative features (“integrated models”). In each case, models were trained using multiple algo-

rithms for two reasons: (1) to compare their performance as no individual algorithm is

guaranteed a priori to perform best across all clinical scenarios [11], and (2) to take advantage

of the unique ways different algorithms allow us to derive insights from our data. Throughout

this text, we use the word model to refer to the estimated mathematical relationship linking a

specific set of features and an outcome. In contrast, we use the word algorithm to refer to the

procedure used to build, or train, a model. The following algorithms were used: logistic regres-

sion (generalized linear model, GLM), classification and regression trees (CART) [15], logistic

regression with elastic net regularization (GLMNET) [16], support vector machines (SVM)

with a radial basis kernel [17], MediBoost Tree-Structured Boosting [12], random forest (RF)

[18] and gradient boosting machine (GBM) [19]. The following packages were used within the

rtemis package: GLM: base R; Elastic net: glmnet; SVM: e1071; CART: rpart; MediBoost: rte-

mis implementation; Random forest: ranger. We chose these to include the most common

modeling tool used in clinical medicine to date, logistic regression, along with ML approaches,

each of which are well suited for structured data (in contrast to deep learning, which would be

applicable on unstructured data, such as raw medical images). All models were trained and

tested using nested resampling to minimize overfitting. For each outcome and feature set com-

bination, 100 stratified subsamples were generated (outer resampling), where the full sample

was split into three quarters that were used for training, and one quarter that was left out for

testing. The same sets of subsamples were used across algorithms to make their performance

comparable. Model tuning was performed by grid search of hyperparameters and 5-fold cross-

validation of the training set (inner resampling). In this way, test sets were never seen during

model building and only used to estimate model performance. The performance of each

model was assessed by calculating the balanced accuracy on each left-out set, which is a mea-

sure of classification performance designed for skewed class distributions, and is defined as the

mean of sensitivity and specificity of a model [20]. Finally, the mean and standard deviation of

the balanced accuracy obtained from each of the 100 subsamples was calculated for each set of

models.

Decision Trees were built using MediBoost on the whole sample after tuning on five strati-

fied subsamples. Nomograms were built to estimate 5-year freedom from local failure and

overall survival using penalized Cox regression models trained with an adaptive elastic net
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procedure using 10-fold cross-validation on the whole sample [21]. The adaptive elastic net is

an adaptation of the original Cox regression for survival analysis which can handle correlated

features and performs variable selection. Nomogram performance was assessed on 100 boot-

strap samples. Finally, a random forest model was trained on preoperative clinical features

using the full sample and was used to power an online LF risk calculator. Table 1 highlights

and summarizes some of the algorithms’ main characteristics as they relate to clinical

modeling.

All predictive modeling and visualization was performed using the rtemis package for

machine learning and visualization (https://egenn.github.io/rtemis) in R (The R Project for

Statistical Computing, https://www.r-project.org). Nomograms were created using the hdnom

package [21].

Results

Patients, meningiomas, treatments and outcomes

We identified 235 patients with 257 surgically treated meningiomas with available clinical fol-

low-up data and tissue for re-grading that were eligible for this study (Table 2). The median

age at presentation was 59 years (range: 14–87 years). One-hundred fifty patients were female

(63.8%) and 85 were male (36.1%). Sixty-eight meningiomas (26.5%) were recurrent. One-

hundred fifty meningiomas had evidence of radiographic edema (58.3%), 88 had evidence of

radiographic bone invasion (34.2%) and 47 had evidence of brain invasion (18.2%). The

median meningioma size was 33.4 cm3 (range: 0.30–335 cm3), as calculated from three-dimen-

sional volumetric contours. GTR was achieved in 147 cases (57.2%), and 61 meningiomas

received adjuvant radiation (23.7%). There were 128 WHO grade I (49.8%), 104 WHO grade

II (40.4%) and 25 WHO grade III meningiomas (9.7%). With a median follow-up of 4.3 years

(range: 0–16 years), the Kaplan-Meier 5-year local freedom from recurrence estimates were

86%, 58% and 40%, and the 5-year overall survival estimates were 89%, 73% and 49% for

WHO grade I, WHO grade II and WHO grade III meningiomas, respectively (Fig 1).

Table 1. Algorithms.

Algorithm Type Selected characteristics Interpretability

Logistic regression (generalized

linear model, GLM)

Classification Most commonly used model in medical literature. Models linear relationships, requires

uncorrelated features

++++

Logistic regression with elastic net

regularization (GLMNET)

Classification Adaptation of logistic regression to handle correlated features (as well as high-dimensional

datasets). Among correlated features, some will be dropped entirely from the model, even if

predictive

+++

Support Vector Machine—SVM Classification Popular ML tool in biomedical research offers competitive performance among multiple

datasets but poor interpretability

+

Classification and Regression Trees

—CART

Classification Builds an intuitive decision tree for easy patient stratification. Automatically models feature

interactions

++++

Tree-Structured Boosting—

MediBoost

Classification Same structure as CART (builds a single decision tree), but with improved accuracy by

considering weighted versions of all cases at each split

++++

Random Forest (RF) Classification Best out-of-the-box performance with no tuning. Variable importance suggests features that

contribute to prediction after considering interactions, but no directionality or explicit

interactions shown

++

Gradient Boosting Machine (GBM) Classification Best overall performance on structured data across real-world applications. Variable

importance similar to RF

++

Penalized Cox regression (Adaptive

Elastic Net)

Survival

Analysis

Allows Cox survival analysis with high dimensional, correlated data and building of

clinically-interpretable nomograms. As in classification, among highly correlated features,

some may be dropped from the model, even if predictive.

+++

https://doi.org/10.1371/journal.pone.0204161.t001
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Hierarchical clustering of meningioma features reveals correlations with

clinical outcomes

To explore the relationships among demographic, clinical and radiographic features and

meningioma outcomes, we constructed heatmaps based on pairwise Pearson correlations of

preoperative and postoperative features (Fig 2). As expected, LF was most closely related to

meningioma grade (r = 0.31) and setting (primary versus recurrent; r = 0.31), which were

Table 2. Patients, meningiomas, treatments and outcomes.

Patients 235

Median age (range) 58.6 years (13.7–86.5 years)

Male:Female (ratio) 85:150 (1:1.8)

History of head or neck radiotherapy 11 (5%)

Multiple meningiomas 54 (23%)

Race

Caucasian 157 (67%)

Hispanic 25 (11%)

Asian 22 (9%)

Black 12 (5%)

Other (not Hispanic/Latino) 6 (3%)

Pacific islander 5 (2%)

White; Hispanic/Latino 2 (1%)

Meningiomas 257

World Health Organization (WHO) grade I 128 (50%)

WHO grade II (atypical) 104 (40%)

WHO grade III (anaplastic) 25 (10%)

Primary:recurrent (ratio) 189:68 (2.8:1)

Median size (range) 33.4 cm3 (0.3–335.3 cm3)

Bone invasion 88 (34%)

Brain invasion 47 (18%)

Peri-meningioma edema 150 (58%)

Location

Anterior cranial fossa 54 (21%)

Middle cranial fossa 58 (23%)

Posterior cranial fossa 34 (13%)

Midline 118 (46%)

Convexity 157 (61%)

Skull base 109 (42%)

Treatment

Extent of resection

Gross total resection 147 (57%)

Subtotal resection 109 (42%)

Extent of resection unknown 1 (0.4%)

Adjuvant radiotherapy 61 (24%)

Outcomes

Median follow-up (range) 52 months (0–197 months)

Local failure 92 (36%)

Median local freedom from progression (range) 76 months (1.7–207 months)

Death 60 (27%)

Median overall survival (range) 80 months (0–191 months)

https://doi.org/10.1371/journal.pone.0204161.t002
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highly correlated with one another as well (r = 0.36). LF was also correlated with peri-meningi-

oma edema (r = 0.24), intra-meningioma necrosis (r = 0.22) and brain invasion (r = 0.21).

Similarly, overall survival was most closely related to meningioma grade (r = 0.34) and setting

(r = 0.31), but was also highly correlated with remote history of adjuvant radiotherapy

(r = 0.21) and increasing meningioma size (r = 0.20). In sum, our quantitative analysis of cor-

relations among meningioma features corroborates the qualitative clinical impressions held

amongst physicians regarding meningioma outcomes in terms features such as recurrent

meningioma and meningioma size, among others, correlating with worse LF [22]. Thus, the

dataset assembled for this study is representative of the larger population of meningioma

patients seen in tertiary care, and is suitable for ML analysis.

Preoperative features predict meningioma outcomes

A comprehensive ML analysis was applied to predict meningioma outcomes based on preop-

erative data, conventional prognostic features (patient age, race and sex; and meningioma

grade, extent of resection and adjuvant radiotherapy), or a combination of both preoperative

and conventional data. All models were trained and tested by nested resampling, using seven

algorithms: logistic regression (generalized linear model, GLM), logistic regression with elastic

net regularization (GLMNET), support vector machines (SVM) with a radial basis function,

Fig 1. Meningioma outcomes according to conventional predictive factors. Kaplan-Meier estimates for local freedom from recurrence (top) and overall survival

(bottom) following surgery for meningioma according to conventional predictive factors of meningioma grade (left) and extent of resection (right).

https://doi.org/10.1371/journal.pone.0204161.g001
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classification and regression trees (CART), MediBoost Tree-Structured Boosting, random for-

est (RF) and gradient boosting (gradient boosting machine, GBM). Area under the ROC curve

was estimated for each model and 95% confidence intervals were estimated using 2000 boot-

straps. On average, the top models based on preoperative data slightly outperformed the top

models based on conventional prognostic features in predicting LF (Fig 3A). In contrast, con-

ventional models outperformed preoperative models in the prediction of OS. In both cases,

integrated models were the top performers. Specifically, the top conventional model (RF) pre-

dicted LF with an average balanced accuracy of 0.68 (AUC = 0.73; 95%CI = 0.72–0.74), com-

pared to the top preoperative model (SVM) with an average balanced accuracy of 0.69

(AUC = 0.74; 95% CI = 0.73–0.75) and the top integrated model (SVM) with an average bal-

anced accuracy of 0.71 (AUC = 0.78; 95% CI = 0.77–0.79) (Fig 3B). In the prediction of OS, the

top conventional model achieved an average balanced accuracy of 0.69 (AUC = 0.72; 95%

CI = 0.71–0.74), the top preoperative model achieved an average balanced accuracy of 0.64

(AUC = 0.68; 95% CI = 0.67–0.70), and the integrated model achieved an average balanced

accuracy of 0.69 (AUC = 0.74; 95% CI = 0.73–0.76) (Fig 3B). These results indicate that the

risk of meningioma recurrence, and to a lesser extent, overall survival, can be estimated using

information that is available before a patient is ever taken to the operating room.

Variable importance, decision trees and nomograms illustrate the clinical

utility of machine learning algorithms for individualized meningioma

treatment

Random forest (RF) offers built-in estimation of each feature’s variable importance [21]. This

is an estimate of each variable’s contribution to the final prediction after considering potential

Fig 2. Meningioma feature correlation heatmaps. Heatmaps based on features’ pairwise Pearson correlation. Rows and columns have been arranged by hierarchical

clustering to reveal each feature’s relationship to the outcome of interest. Orange denotes positive correlations, and teal indicates negative correlations.

https://doi.org/10.1371/journal.pone.0204161.g002
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high-level interactions. Mean variable importance of preoperative, conventional and inte-

grated meningioma features in predicting LF and OS after averaging across our 100 subsam-

ples is shown in Fig 4A. To facilitate rapid visual stratification of meningioma patients in a

clinical setting according to ML models, we explored decision tree-based algorithms to predict

LF and OS. Random forest (RF) was trained with 500 trees, and gradient boosting (GBM)

resulted in more than 5,000 trees after tuning, neither of which can be explicitly interpreted.

Drawbacks of RF- and GBM-derived variable importance scores include that they do not sug-

gest directionality and do not reveal the nature of variable interactions. These are both

addressed by single decision trees. CART and MediBoost both build a single tree, which makes

each of these models highly interpretable. Between them, MediBoost had the highest balanced

accuracy and even surpassed random forest in 2 out of 6 cases: conventional and integrated

models of OS (Fig 4B). MediBoost uses a procedure where, in contrast to CART and similarly

to GBM, weighted versions of all cases are used to derive splits at each point in the tree, which

can be advantageous particularly in relatively small datasets like the current one. In that regard,

MediBoost is superior to traditional decision trees estimated using recursive partitioning inso-

far as the latter suffer from exponential decrease of available data at each level.

Additionally, we used the adaptive elastic net trained with 10-fold cross validation on inte-

grated preoperative and conventional feature sets to perform multivariate survival analysis of

LF and OS. These models were used to construct a pair of nomograms, which were internally

validated on 100 bootstrap resamples (Fig 5). Finally, an online interactive risk calculator for

LF was created based on a random forest model trained on the full sample of preoperative data

and can be accessed at https://egenn.shinyapps.io/Meningioma_LF_Risk_Calculator/.

Discussion

Meningioma outcomes are influenced by myriad patient, tumor and treatment-specific fac-

tors, but clinical decisions regarding meningioma patients are often dominated by tumor

grade and extent of resection [22]. Here, we perform a comprehensive ML analysis using mul-

tiple algorithms (commonly used statistical methods and modern ML algorithms), each with

their respective advantages (Table 1), to predict meningioma outcomes of LF and OS from

demographic, clinical, radiographic and pathologic data. To do so, we developed an integrated

database containing information from 235 patients who underwent surgery for 257 meningio-

mas at a single institution over a 25-year period. Our results reveal that models restricted to

preoperative information, such as patient demographics and radiographic features, have simi-

lar accuracy for predicting LF or OS as models based on meningioma grade and extent of

resection. RF models of LF and OS produced a similar ranking of feature importance, with

larger meningioma size and greater patient age (continuous variables) occupying the top two

positions in both preoperative and integrated models. Consistent with prior investigations,

meningioma setting (primary or recurrent) and meningioma grade had high variable impor-

tance in preoperative and integrated models, respectively [22]. Conventional models featured

age and grade as the dominant features in predicting both LF and OS. Our variable importance

analysis of predictive models for meningioma outcomes corroborates clinical and empiric

experience with meningioma treatment, further supporting the suitability of ML as a valuable

adjunct to clinical decision making.

Fig 3. Machine learning model accuracy. (A) Mean balanced accuracy across 100 subsamples of models predicting local failure (top) and overall survival

(bottom). Error bars indicate standard deviation. (B) Receiver-operator characteristic curves for local failure (left) and overall survival (right) for the best

preoperative (SVM and GLMNET, respectively), conventional (RF and GLMNET, respectively) and integrated models (SVM and GBM, respectively) as

defined in (A). 95% confidence intervals were estimated using 2000 bootstraps. All results are reported on left-out test sets not used for model training.

https://doi.org/10.1371/journal.pone.0204161.g003
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Integrating demographic, clinical, radiographic and pathologic data, we develop easy to use

decision trees and nomograms to readily identify patients with different underlying risks of LF

or OS. These tools may serve as a guide to select meningioma patients who are most likely to

benefit from close clinical surveillance versus adjuvant treatment after resection, and may also

provide a framework for ML analysis of other central nervous system tumors. With respect to

the former, delaying or omitting adjuvant radiotherapy obviates the risks of neurocognitive

decline and secondary malignancies, and the models we report may minimize overtreatment

of meningioma patients. In sum, our predictive models can be used as a decision support tool

in combination with clinical experience and patient preference to determine the best manage-

ment strategy for each individual. Nevertheless, additional analyses with a higher number of

patients and multiple institution validation should be performed to increase the reliability of

our results.

Clinical research studies commonly depend on a single algorithm for data analysis [10]. In

the present study, we used seven algorithms, which provided a better estimate of the perfor-

mance of our three sets of models (preoperative, conventional and integrated) in predicting LF

or OS than any single algorithm. Moreover, we were able to extract clinically significant infor-

mation from our data by capitalizing on the strengths of each algorithm used. In that regard,

we used random forests to investigate variable importance, and MediBoost to plot decision

trees for all feature sets and outcomes. Each of these analyses were facilitated by the robust

database containing a relatively large number of patients and features with both internal and

external validity that was developed for this study. Importantly, all of the meningiomas

included in this study were re-evaluated according current diagnostic criteria, which increases

the generalizability of our results [3]. Indeed, the lack of large meningioma databases orga-

nized by contemporary World Health Organization standards has been a major barrier to

meningioma research [22], but we were able to overcome this obstacle through multidisciplin-

ary collaboration within our institution which included histopathologic re-review of all the

cases included in this work.

A main limitation of this study is that our database was retrospectively assembled from

patients treated at a single institution. Thus, our results and conclusions should be interpreted

with potential selection and information biases in mind. It should also be noted that the accu-

racy of the predictive models we develop are not perfect, and would be improved by increasing

the number of patients in the study and the addition of radiomic or biologic features, as has

been demonstrated by other investigators for prediction of meningioma grade [10,23]. Indeed,

the magnetic resonance characteristics of meningiomas have high sensitivity and specificity

for meningioma grade and histopathologic subtype [24,25]. Crucially, training and testing of

ML algorithms on larger and more diverse data sets would allow better model estimation, with

less institutional bias and better estimates of model generalizability. It should be noted that, as

is common in clinical modeling, race is likely serving as a proxy to multiple demographic,

genetic, and environmental features not present in our database and should be cautiously

interpreted as such. Our nomograms were trained on the full sample to produce a single

model, and although 10-fold cross-validation was used for training and 100 bootstraps were

Fig 4. Variable importance and decision trees. (A) Mean variable importance derived from 100 random forest models predicting local

failure (top) and overall survival (bottom) for preoperative (left), conventional (middle) and integrated (right) models. Error bars

indicate standard deviation. (B) Decision trees built using MediBoost Tree-Structured Boosting predicting local failure (top) and overall

survival (bottom) corresponding to preoperative (left), conventional (middle) and integrated models (right). N indicates number of

meningiomas (LF) and number of patients (OS) that fall into each branch and percentage indicates proportion of those with local failure

or deceased, respectively. Unlike tradition decision trees, MediBoost chooses splits based on weighted versions of the full sample at each

node, making splits more reliable even as tree depth increases. PCF: posterior cranial fossa; 1, Caucasian; 2, Black; 3, Asian; 4, Hispanic;

5, Pacific Islander; 6, Other; not Hispanic/Latino; 7, White; Hispanic/Latino.

https://doi.org/10.1371/journal.pone.0204161.g004
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used to test its stability, proper validation requires an external dataset. The aforementioned

barriers to accurate meningioma diagnosis across different histopathologic eras have pre-

cluded our efforts to assemble larger data sets thus far, but we are hopeful that modern

Fig 5. Machine learning nomograms for meningioma outcomes. Nomograms built using a penalized Cox model (adaptive elastic net) to predict 5-year freedom from

LF (left) and 5-year survival (right) on the full sample. This procedure provides accurate survival estimates even in the presence of correlated features, which are not

allowed in the original Cox regression model. Scatter plots show observed versus predicted probabilities obtained by training on 100 bootstrap samples and testing on

the left-out set.

https://doi.org/10.1371/journal.pone.0204161.g005
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prospective meningioma trials will yield valuable and accurate data sets for future predictive

model refinement [8,9].
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