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Abstract

Human induced eutrophication has strongly altered aquatic ecosystems. With increasing

eutrophication, plant nutrient concentrations increase, making them more attractive as food

for herbivores. However, most aquatic consumers are omnivorous. Ecological stoichiometry

theory predicts that animals prefer to consume food which has a similar nutrient (N and P)

composition or C:nutrient ratio compared to their own bodies, hence omnivorous animals

may prefer to eat animal prey instead of plants. We asked whether aquatic omnivores would

shift their diet towards more plant consumption when plants are more nutritious and their

stoichiometry becomes more similar to the stoichiometry of the omnivore. We hypothesized

that: (1) the omnivore increases plant consumption as the plant C:nutrient ratio decreases

when there is only plant material available; (2) the omnivore generally prefers animal food

over plant material; (3) the omnivore will increase its relative plant consumption as the plant

C:nutrient ratio decreases, in the presence of animal food. As a model system, we used the

pond snail Lymnaea stagnalis (omnivorous consumer), the aquatic plant Potamogeton

lucens (plant food to the consumer, cultured at different nutrient regimes to obtain different

plant C:nutrient ratios), and the crustacean Gammarus pulex (animal food to the consumer,

using freshly dead individuals). When there was only plant material available, the consum-

ers increased their relative consumption rate with decreasing plant C:nutrient ratio from no

measurable amount to about 102 mg g-1 day-1. When plant material was offered simulta-

neously with animal food, even though the omnivores always preferred animal food over

plant material, the omnivores still increased their relative intake of plant material as plant C:

nutrient ratio decreased, from virtually nothing at the highest to on average 16% of their diet

at the lowest plant C:nutrient ratio, with a maximum of 28%. Therefore, we conclude that as

nutrient loading increases in aquatic ecosystems, plant-eating omnivorous animals may

shift their trophic position towards increased plant consumption and alter the food web struc-

ture. As a result, we may observe increased top-down control on aquatic plants.
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Introduction

Nutrient loading caused by anthropogenic activities has strongly altered the structure and

functioning of aquatic ecosystems [1–3]. In shallow aquatic systems, aquatic plant communi-

ties are important components because they stabilise clear water states [4] and sustain high

biodiversity [5, 6]. Submerged aquatic plant communities have rapidly declined because of

eutrophication [7, 8]. The classical underlying mechanism for rapid plant declines is the fast

growth of algae that outcompete plants at high nutrient loadings [1, 9]. However, more recent

insights also point to increased herbivory on aquatic plants as a reason for their decline, as her-

bivores can have a large impact on aquatic plants [10, 11].

More specifically, it has been hypothesized that the impact of herbivores on aquatic plants

increases as plant quality increases [12, 13]. The underlying mechanism is that, when plant

nutrient concentration increases with nutrient loading to a water body, these plants would be

more attractive to herbivores, experience more grazing, resulting in enhanced top-down con-

trol under eutrophic conditions [13]. However, most aquatic plant-consuming animals are

omnivores [10, 14], which means that they feed on both plant and animal material. Omnivores

can actively select preferred food types if both types are available. There are many factors

which will govern the diet selection by omnivores, such as omnivorous nutrient demand, food

nutrient content, food availability and defence mechanisms (secondary metabolites in plants)

[15, 16]. Ecological stoichiometry theory predicts that animals prefer to consume food which

has similar nutrient (N and P) composition or C:nutrient ratio compared to their own bodies

[17, 18]. Animal prey has a more similar C:nutrient ratio with omnivores compared to plant

material, which generally has much higher C:nutrient ratio than its animal consumers [17, 19].

Hence, according to ecological stoichiometry theory, omnivorous animals would generally

prefer animal prey over plant material. In this scenario plant material would only be eaten,

when not enough animal material is available [20, 21]. However, we hypothesize that this may

change when the stoichiometry of plant material becomes more similar to the stoichiometry of

animal prey.

Whereas animal food has a more stable stoichiometric composition than plants [18, 22, 23],

plants are more flexible, meaning that their quality as food for consumers may increase as a

result of eutrophication. If plants become more nutrient rich under eutrophic conditions, this

could decrease the Carbon: nutrient ratio gap between plant material and animal food. This

could be an underlying mechanism explaining patterns of selective foraging such as previously

found in grazing experiments with ducks [12]. Indeed, aquatic animals prefer plants with a

higher nitrogen concentration and lower C:N ratio [21, 24]. Furthermore, studies have shown

that omnivorous animals shift their trophic position towards more plant consumption upon

eutrophication in terrestrial omnivores [25] and omnivorous marine plankton [26]. However,

there are no studies to date which have directly tested the effects of intraspecific variation in

plant quality on plant consumption by aquatic omnivores. The consequences of eutrophica-

tion for the impact of omnivorous animals on aquatic plants remain therefore largely

unknown for aquatic ecosystems.

Here we use an aquatic plant-animal prey-omnivore system to experimentally test the con-

sumption rates of omnivorous aquatic animals in response to changing plant quality,

expressed as nutrient concentration or C:nutrient ratio, in the presence and absence of animal

food. We hypothesise that: (1) the omnivore increases plant consumption as plant quality

increases when there is only plant material available; (2) the omnivore generally prefers animal

food over plant material; (3) the omnivore will increase its relative plant consumption as plant

quality increases, in the presence of animal food.

Aquatic omnivores increase herbivory as plant quality increases
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Methods and materials

Model omnivore

We used the generalist omnivore Lymnaea stagnalis L., the great pond snail, because it repre-

sents a common, generalist omnivorous consumer in aquatic systems and aquatic molluscs

can have large impacts on aquatic plant abundance [11, 27, 28]. L. stagnalis has been previously

used for plant feeding trials in aquatic settings [24, 29–31]. L. stagnalis feeds on vascular plants

[32, 33] as well as carrion, such as dead insects, crayfish, frog tadpoles, fish and even other

dead snails [34]. It can distinguish high and low quality food by perception of volatile organic

compounds released by the food [35].

Egg clusters from captive L. stagnalis were collected in a pond on the terrain of NIOO--

KNAW, Wageningen, The Netherlands (51˚59’14.8"N, 5˚40’14.8"E) and hatched, after two

weeks the juveniles were transferred to square plastic buckets (0.38 × 0.26 × 0.27 m, L × W ×
H), each filled with 15 liters of groundwater, and exposed to a 16 : 8 h day : night cycle at a con-

stant temperature of 20˚C. Snails were reared on a diet of butterhead lettuce five days per

week, and fish food pellets (Velda, Gold Sticks Basic Food) and chalk (ensured sufficient cal-

cium for shell development) were supplied once a week to provide other nutrients. Culturing

water was replaced weekly and constantly aerated. All snails were cultured for over 100 days

before performing the feeding trial. Snails used in the trials had an average shell length of

30.2 ± 2.4 mm (mean ± SD, n = 94).

Plant food

Potamogeton lucens L. was chosen as the plant material, as it is a common native plant in The

Netherlands and one of the most preferred submerged aquatic plants by L. stagnalis [24, 33]. P.

lucens rhizomes were collected from a ditch to the west of Wageningen, The Netherlands

(51.966484˚N, 5.620158˚E). To obtain plant material of varying nutrient contents, 76 individ-

ual rhizomes were planted individually in 76 square bins (20.5 × 19 × 27cm) and placed in 19

blocks in a single climate-controlled room. Four different nutrient loadings (Table 1) were

applied to each block of 4 bins to create plant material with a wide range of nutrient contents.

Nutrient solutions were made by dissolving NH4NO3 and KH2PO4 in deionized water and

added to the bins to reach the targeted nutrient loading. Nutrients were added once every two

weeks.

Each bin was filled with 4 cm sand and filled up with 7 L of tap water. Deionized water was

added during the culturing to compensate for evaporation. The climate-controlled room was

kept at a constant temperature of 20˚C, a day:night cycle of 16:8 h, and light intensity at the

water surface was approximately 100 μmol•m-2•s-1. Daphnia magna were introduced to con-

trol phytoplankton growth in the water, and a single pulmonate snail Planorbarius corneus was

added to each bin to control periphyton growth. The snail species does not consume our target

plant as determined in pre-trials. The plants were cultured from July 16th to October 1st 2015,

after which plant material was harvested from 38 bins that had enough material for feeding

Table 1. Nutrient addition treatments in the plant culture. Each block had four nutrient addition treatments (N+P

+; N-P-; N+P-; N-P+) to maximize differences in plant nutrient composition.

Treatment N adding (mg L-1) P adding (mg L-1)

N+P+ 1 0.14

N-P- 0.1 0.014

N+P- 1 0.014

N-P+ 0.1 0.14

https://doi.org/10.1371/journal.pone.0204116.t001
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trials (at least 0.3 g of fresh leaves was needed for each pair of feeding tests). To increase the

power of the experiment, several plants (n = 6) of the treatments which produced a limited

amount of plant material provided leaf material for multiple feeding trials.

Animal food

We chose the crustacean Gammarus pulex L. as our animal food source. G. pulex is one of the

most important invertebrate species in temperate streams, and widely distributed throughout

Europe [36]. Populations can reach a density of 10000 m-2 and it has a continued mortality

throughout the year [37]. G. pulex feeds on a variety of debris, such as oak and elm leaves [38].

Ditches with oak trees along the banks are common in The Netherlands, providing suitable

habitat, and there are also plenty of macrophytes and L. stagnalis in many of these ditches. The

habitat of G. pulex largely overlaps with suitable habitat for L. stagnalis, as both thrive in mac-

rophyte-dominated ditches and other shallow waters. Therefore, L. stagnalis can be expected

to frequently encounter G. pulex carrion as possible food source in its natural habitat.

G. pulex were procured three days before the start of the feeding trial from a ditch close to

Wageningen University, The Netherlands (51.989674˚N, 5.648653˚E). Individuals were placed

in continuously aerated groundwater in a plastic tank (0.38 × 0.26 × 0.27 m, L × W × H) and

fed detritus from the same ditch. For the experiment, only G. pulex exceeding 1.4 cm in body

size were selected for the feeding trials. Shortly before the feeding trials, G. pulex were killed in

45˚C water before being offered to the snails as snails cannot capture the living G. pulex, and

the G. pulex would not structurally degrade when killed at this temperature, as was shown

from pilot trials.

Feeding trials

The feeding trials followed standard protocols developed for snails [24, 29, 30]. To test our first

hypothesis, we performed feeding trials in which snails were fed plant material of varying

nutrient status (the no-choice experiment). To test our second and third hypotheses, we per-

formed feeding trials in which snails were offered both plant and animal food simultaneously

(the choice experiment). In total for both experiments, 94 snails were randomly divided into

two groups: snails that were to be fed only P. lucens of varying nutrient status (no-choice plant

group, n = 47, replicates for each plant nutrient treatments are: N+P+, n = 12; N-P-, n = 11; N

+P-, n = 14; and N-P+, n = 10.), and snails which were offered a choice between P. lucens and

G. pulex (choice group, n = 47). Additionally, for each plant a portion of the leaves was intro-

duced to a cup without snail, to act as a control (plant control, n = 47). The same was done

with G. pulex (animal food control, n = 12).

Pilot trials demonstrated that a snail consumed a maximum of 0.15g (wet weight) plant

food per 24 hours. Leaf portions were sampled as follows: for every plant, all leaves were cut

from the stem, including their petiole but excluding stipules. Every leaf had its midrib

removed, as this part is not preferred by the snail, and the remaining two halves of lamina

were further cut into 6 equally sized pieces, 3 portions for the no-choice plant feeding trial, 2

portions for the choice feeding trial, and 1 portion as plant control. This distribution was

expected to minimize or at least randomize the possible differences between leaves within a

plant. For the no-choice feeding trials, we therefore weighed approximately 0.15g wet weight

plant material from one bin for each snail. For the choice experiments, we combined 0.10g wet

weight plant material (from the same bin as the no-choice feeding trial) with 0.19g wet weight

animal material for each snail. This is the maximum animal food one snail could eat during 24

h as was tested by pre-trials. For the choice experiment, the amount of plant material and ani-

mal food were different, but both were always present in excess amounts for snails to choose

Aquatic omnivores increase herbivory as plant quality increases
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from, and the different amounts of food did not affect the selection by pond snails based on

pre-trials. We weighed 0.05g plant material and 0.19g animal food for the controls to monitor

weight change over 24 h in water without snails. All snails were starved for 48 h before the

start of the trials and the feeding lasted for 24 h at 20˚C and a dim condition (< 10 μmol m-2 s-

1) with a day:night cycle of 16:8 h. Each snail was fed individually in a plastic cup (top diameter

9 cm, and height 11.5 cm) filled with 375 ml groundwater, covered with a mesh at the top to

prevent snail escape.

After all feeding trials, the dry weights of all remaining food as well as uneaten plant mate-

rial was collected, measured, and dried in an oven at 60˚C for over 48 h. All snails were first

frozen to death at -20˚C, the soft body of the snail was separated from its shell, and then the

snail was dried in an oven at 60˚C for over 48 h. We measured carbon (C), nitrogen (N), and

phosphorus (P) contents of random samples of G. pulex, n = 12, and L. stagnalis bodies, n = 13,

as well as all 47 plant control portions. Dried samples were ground into fine powders in a 2ml

tube on a Tissuelyser II (QIAGEN, Hilden, Germany). C and N contents were determined by

an auto elemental analyser (FLASH 2000, Thermo Scientific, Waltham, MA, USA). P content

was determined by first incinerating, digesting, and analyzing in an Auto Analyzer (QuAAtro

method, Seal Analytical, Fareham, UK).

Data analyses

Food palatability, represented by food Relative Consumption Rate by the snails (RCR)

(mg g-1 d-1) was calculated by the following formula (after Elger & Barrat-Segretain, 2002):

RCR ¼ ðFid � FfdÞ=Sd=1Day

Where Fid is the initial dry weight of the offered food, Ffd is the final dry weight of the

retrieved food, and Sd is the dry weight of the snail body without shell. To back-calculate the

initial dry weight that was offered to the snails from the wet material that was offered, we used

extra G. pulex and P. lucens leaves to establish dry weight–wet weight regression lines. The

regression line for G. pulex was y = 0.2107�x (r2 = 0.99, p< 0.001, n = 27). For P. lucens the

regression line was y = 0.2477�x (r2 = 0.97, p< 0.001, n = 25), with y giving dry weight in mg,

and x being wet weight in mg. Pairwise t-tests showed that the control portion of plant and

animal food lost some weight after soaking in the water for 24 h. Plant material average wet

weight loss was 0.0019 g (3.8% loss, t46 = 5.05, p< 0.001), and animal food average wet weight

loss was 0.021 g (11% loss, t11 = 7.76, p< 0.001). We used this to calibrate the food consump-

tion in the feeding trials by accounting for the lost weight of the control portions of food.

Three snails (2.8%) died during the feeding trials and were excluded from the dataset. Dur-

ing feeding trials in which snails ingested very little material, measurement errors on the wet

weight of the offered food can explain why we occasionally report negative plant palatability

values. The nutrient treatments in plant culturing were designed for a one-way Anova test,

whereas plants did not produce enough leaf biomass for the feeding trials in multiple bins,

therefore we decided to analyse the relation between the resulting plant nutrient contents with

plant consumption rates using a regression approach. Differences in consumption rates

between plant and animal matter were calculated by Students t-tests. Pearson’s correlation was

used to test the relation between plant N and P content. One-way ANOVA and Kruskal-Wallis

tests were used to test nutrient level differences among the three organisms. Prior to the one-

way ANOVA and Student t-tests, Shapiro-Wilk tests were used to confirm the normality of

the data. Levene’s tests were used to confirm the homoscedasticity of the data. Non-parametric

Kruskal-Wallis tests were used to compare organisms for C content, P content, C:N ratio, C:P

ratio and N:P ratio, because not all the assumptions were met. For the linear regressions, we

Aquatic omnivores increase herbivory as plant quality increases
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ensured the normality and homoscedasticity of model residuals by plotting quantile-quantile

plots and model residuals versus fitted values plots. To test whether plant palatability was

affected by plant nutrient status (hypothesis 1), we used linear regressions to relate plant palat-

ability to plant nutrient content and carbon:nutrient ratios of the food. To test for snail diet

selection in the choice feeding trials (hypotheses 2 and 3), we calculated the plant material :

animal food consumption ratio and used this in linear regression analyses. All statistics were

performed in R (R version 3.4.2).

Results

Plant leaf N content varied from 10.4 mg g-1 to 35.7 mg g-1, P content varied from 0.6 mg g-1

to 4.4 mg g-1 and C content varied from 347.7 mg g-1 to 407.3 mg g-1. Pearson’s correlations

showed significant correlations between plant N content and P content (t45 = 3.55, r = 0.48,

p< 0.001). The C:N ratio of plant leaves varied over 3-fold (Fig 1A), and the C:P ratio varied

over 7-fold (Fig 1B). In contrast, the C:N and C:P ratios of the animal food and the omnivore

all varied less than 1.5-fold (Fig 1, Table 2). Organism stoichiometry properties differed

among the species, such that the omnivore had a C:N and C:P ratio of its body similar to the

animal food. The maximum plant material C:N and C:P ratios were 7-fold higher than the

ratios measured for the omnivore and animal prey, whereas the minimum plant material C:N

and C:P ratios were only 1.5-fold higher than the ratios measured for the omnivore and animal

prey (Fig 1, Table 2).

Plant material consumption rates were higher in the no-choice trial than in choice trial (in

the no-choice trial, 43.4 ± 40.7 mg g-1 d-1; in the choice trial, 11.0 ± 18 mg g-1 d-1, mean ± SD,

t-test, t60 = 4.89, p< 0.001, Fig 2). However, animal food consumption rates were lower in the

no-choice trial than in the choice trial (in no-choice, 151.7 ± 32.5 mg g-1 d-1; in choice,

Fig 1. Stoichiometry properties of the organisms used in the study. (a) C:N and (b) C:P stoichiometry for respectively leaves

of the plant food Potamogeton lucens (n = 47), the animal food Gammarus pulex (n = 12) and the omnivorous consumer

Lymnaea stagnalis (n = 13). Dots in the graph reflect the values measured in the experiment. The plants have been cultured at

different nutrient loadings to create a range of plant nutrient contents (see main text).

https://doi.org/10.1371/journal.pone.0204116.g001

Aquatic omnivores increase herbivory as plant quality increases

PLOS ONE | https://doi.org/10.1371/journal.pone.0204116 September 20, 2018 6 / 13

https://doi.org/10.1371/journal.pone.0204116.g001
https://doi.org/10.1371/journal.pone.0204116


180.4 ± 47.7 mg g-1 d-1, mean ± SD, t-test, t25 = -2.44, p = 0.02, Fig 2). In the no-choice feeding

trial, plant relative consumption rates by snails increased with increasing plant N content

(F1,42 = 19.93, p< 0.001) and plant P content (F1,42 = 11.77, p< 0.01), and decreased with

increasing of C:N ratio (F1,42 = 16.76, p< 0.001, Fig 3A) and C:P ratio (F1,42 = 8.101, p< 0.01,

Fig 3B). In the choice feeding trials with both plant and animal matter present, animal material

was consumed in much larger quantities than plant material (pairwise t-test, t45 = -26.56,

p< 0.001, Fig 2). Animal consumption rate was not affected by plant N content (F1,44 = 0.44,

p = 0.53), plant P content (F1,44 = 0.66, p = 0.42), plant C:N ratio (F1,44 = 0.92, p = 0.36, Fig 3),

nor plant C:P ratio (F1,44 = 1.21, p = 0.28, Fig 3). In the choice trials, plant consumption rate

shows a strong increasing trend as plant N content increased (F1,44 = 3.90, p = 0.06) and as P

content increased (F1,44 = 3.60, p = 0.06), as C:N ratio decreased (F1,44 = 3.97, p = 0.057, Fig

3C) and as C:P ratio decreased (F1,44 = 3.93, p = 0.054, Fig 3D). The plant:animal food con-

sumption ratio in the choice feeding trials increased as plant N content increased (F1,44 = 4.72,

p = 0.035) and as plant C:N ratio decreased (F1,44 = 4.58, p = 0.038, Fig 3E). The plant:animal

food consumption ratio also showed an increasing trend as plant P content increased (F1,44 =

3.38, p = 0.071) and as plant C:P ratio decreased (F1,44 = 3.09, p = 0.086, Fig 3F).

Table 2. Elemental composition and stoichiometry of the study organisms. Different letters in the same column indicate that there is a significant difference among the

three organisms. Ratios are presented by first calculating the ratio for each individual data point, and thereafter calculating the means. All numbers are presented as

means ± SD.

Type Species C (mg g-1) N (mg g-1) P (mg g-1) C:N (g g-1) C:P (g g-1) N:P (g g-1)

Omnivore L. stagnalis (n = 13) 440.6 ± 6.4a 100.6 ± 5.1a 8.8 ± 0.8a 4.4 ± 0.2a 50.2 ± 4.3a 11.5 ± 1.0a

Animal food G. pulex (n = 12) 340.0 ± 8.0b 68.4 ± 2.4b 12.2 ± 0.5b 5.0 ± 0.2a 27.8 ± 1.4b 5.6 ± 0.3b

Plant material P. lucens (n = 47) 390.4 ± 11.6c 22.9 ± 5.1c 1.9 ± 0.9c 18.0 ± 4.8b 247.2 ± 120.3c 14.0 ± 6.5a

Plants in four nutrient treatments N+P+ (n = 12) 393.6 ± 5.8 24.9 ± 4.9 2.7 ± 0.7 16.5 ± 4.3 159.6 ± 47.2 9.7 ± 1.7

N-P- (n = 11) 388.2 ± 8.9 20.4 ± 3.9 1.6 ± 0.3 19.5 ± 3.0 247.9 ± 57.1 12.9 ± 3.3

N+P- (n = 14) 396.7 ± 5.1 24.2 ± 2.5 1.2 ± 0.4 16.5 ± 1.6 374.7 ± 125.4 22.3 ± 5.5

N-P+ (n = 10) 380.3 ± 18 21.6 ± 7.7 2.5 ± 0.9 20.0 ± 8.1 177.0 ± 84.1 8.8 ± 1.6

https://doi.org/10.1371/journal.pone.0204116.t002

Fig 2. Relative consumption rates of plant material and animal food by the omnivore L. stagnalis in both choice

and no-choice trials. RCR indicates relative consumption rates in mg dry weight consumed per gram dry weight snail

body mass per day. � indicates p< 0.05, and ��� indicates p< 0.001.

https://doi.org/10.1371/journal.pone.0204116.g002
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Discussion

In this study we experimentally tested whether aquatic omnivores increase plant consumption

as plant quality, expressed as nutrient content and C:nutrient stoichiometry, increases. We

found that when there was only plant material available, the omnivores increased plant

Fig 3. Plant relative consumption rates (RCR) correlations with plant C:N and C:P ratios in both choice and no-choice

feeding trials. Plant relative consumption rate in no-choice trials decreased with the increase of the plant C:N ratio (a) and

plant C:P ratio (b). Plant relative consumption rates in choice trials decreased with the increase of the plant C:N ratio (c) and

C:P ratio (d). Plant material : Animal food consumption ratio in choice trials decreased with the increase of the plant C:N ratio

(e) and C:P ratio (f). Solid regression lines indicate p< 0.05 and dotted lines indicate 0.05< p< 0.1.

https://doi.org/10.1371/journal.pone.0204116.g003
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consumption as plant quality increased from no measurable amount to about 102 mg g-1 day-1.

When plant material was offered simultaneously with animal food, the omnivores strongly pre-

ferred animal food, a result which mirrored the intake rates of plant and animal food in the no-

choice tests. Despite this preference for animal food, the omnivores increased their relative intake

of plant material from virtually nothing at the lowest plant quality to on average 16% (maximum

28%) of their diet at the highest plant quality. We conclude that as plants increase nutrient content

during increasingly frequent nutrient loading in aquatic systems, omnivorous animals may shift

their trophic position resulting in increased top-down control on aquatic plants.

When there was only plant material available, the omnivore consumed more plant material as

the plant C:nutrient ratio decreased. Hence, this supports our first hypothesis. Generally, this is a

classic observation that herbivore removal of plant standing biomass increases as plant N content

increases [22, 39, 40]. The increased consumption might be more than the re-growth of the plant,

leading to enhanced top-down control on plant standing biomass. This has been demonstrated by

fertilization experiments with mallard duck [12], and is also supported by modelling studies [13,

41]. Higher consumption rates in no-choice feeding trials have also been interpreted as compensa-

tory feeding, where the consumer needs to feed more on a poor quality resource to meet its nutri-

ent or energy demands [42, 43]. However, by comparing our no-choice and choice feeding trials

we can demonstrate that this is not the case in our experiment. The snails ate 4-fold more animal

food compared to plant food in 24 hour no-choice feeding trials, whereas plants were of lesser

quality than animal food. Hence for compensatory feeding they should have eaten much more

plant food to compensate for the low nutrient levels in plant food. Furthermore, the outcome of

the no-choice tests reflected those of the choice tests very well, where the snails similarly con-

sumed much more animal food. When there was animal food available, the omnivore always

showed a much stronger preference for animal food, thus confirming our second hypothesis. Yet,

the snails showed an increased preference for plant material as the plant C:nutrient ratio

decreased, supporting our third hypothesis.

As the plant nutrient content increased and the C:nutrient ratio decreased, the quality differ-

ence compared to animal food decreased, thus making plant food relatively more attractive. In

our study plant consumption increased from about zero at low plant quality to a maximum of

28%. This indicates that the snail was still highly omnivorous, with a preference for animal food,

but does include a substantial amount of plant food in its diet. These results are in line with the

notion that most of the generalist feeders try to consume a mixed diet to balance their nutrition

intake [31, 44–46]. Food searching is a very cost-intensive process for the snails due to their low

motility. In order to maximize the fitness of the feeding [47], the snails include relatively more

plant material in their diet as plant quality is getting closer to their nutrient demand. Similarly,

omnivorous fish [48, 49] and mallard duck [12], increased plant consumption with increasing

plant quality, or shifted their diet to alternative prey when aquatic plants were not palatable. Fur-

thermore, the no-choice feeding trials demonstrate that when the snails have no animal food avail-

able they ingest even more plant material. Therefore, with eutrophication, aquatic plants are likely

to have more top-down pressure, from both aquatic herbivores and omnivores.

In this study, we employed nutrient contents and C:nutrient stoichiometry as a proxy for

plant quality for omnivores. The C:nutrient stoichiometry of food has been shown to be a

good indicator of food quality to aquatic animals, where a lower C:nutrient ratio represents

higher quality [10, 17, 21]. Even though plant secondary metabolites might deter animals from

feeding on the plant [21, 50], this is not the case for P. lucens, as it contains very low total phe-

nolic concentrations compared to other aquatic plants [24]. Furthermore, the concentration of

plant phenolic compounds might decrease as plant nutrient content increases, as has been

shown in seagrass [51]. P. lucens is a moderately palatable aquatic plant species based on palat-

ability rankings among a wide range of species from Elger et al. [33] and Grutters et al. [24],

Aquatic omnivores increase herbivory as plant quality increases

PLOS ONE | https://doi.org/10.1371/journal.pone.0204116 September 20, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0204116


which indicates that this species can well represent many other aquatic plant species. In our

study, the variation in plant C:nutrient ratios was much larger than the variation in C:nutrient

ratio of the animal food and the omnivore. The reason might be that the sample size was larger

for plants than the animals that we tested and the plants received different nutrient addition

treatments. However, generally, plants do have a much broader range of C:nutrient ratios than

animals [17, 19]. Recent studies show that the C:nutrient stoichiometry of aquatic inverte-

brates can also vary in eutrophic conditions [52]. However, with C:N ratios varying from 3.8

to 7.7 g g-1 [52], the variation is still much smaller than the C:N ratio of the plants in our study

and the C:N ratio in other aquatic plants [10]. Therefore, our study still has implications for

aquatic plant-omnivore interactions in general.

Implication for ecosystems

In shallow aquatic ecosystems, the growth of aquatic plants is also inhibited by shading of

phytoplankton and periphyton [1, 41, 53]. There is a pervasive top-down pathway through

which omnivores can influence aquatic plants from omnivores (fish and birds) to inverte-

brates (both zooplankton and macroinvertebrates) to algae (both phytoplankton and

periphyton) to aquatic plants. The omnivores can inhibit the growth of aquatic plants

indirectly by feeding on invertebrates, which graze on algae, thereby releasing the algae

from grazing pressure and subsequently, the algae can inhibit the growth of aquatic plants

[1, 41, 53–55]. With eutrophication, positive feedback exists where increased primary pro-

ducer abundance leads to increased omnivore abundance and pressure on invertebrates,

which results in less grazing pressure on algae and more shading of aquatic plants [41,

56]. A similar phenomenon has also been observed in terrestrial ecosystems where

increased plant quality can stabilize an omnivore population, and keep the pest animal

prey at a low level [25]. On the other hand, some aquatic omnivores can also directly affect

aquatic plants by consuming them [12, 41, 56]. Here, plant quality can increase with

eutrophication and the omnivores increase their consumption of aquatic plants. In addi-

tion, if the animal prey is not available, the omnivore might feed more on aquatic plants.

Therefore, under eutrophication, omnivores are expected to impose a stronger top-down

control on aquatic plant standing biomass both indirectly by increasing the shading pres-

sure by algae and directly by increased plant consumption [41]. While the former mecha-

nism has been well documented, the latter has largely been overlooked. With this study,

we demonstrate that omnivores increase their impact on aquatic plants under eutrophica-

tion by shifting their trophic position towards enhanced plant consumption. The com-

bined stress of shading by algae and grazing pressure by omnivores and herbivores under

eutrophication can lead to disappearance of submerged aquatic vegetation and a shift to a

turbid state dominated by phytoplankton [13, 41].

Acknowledgments

We would like to acknowledge Cong Chen, Gregor Disveld, Nico Helmsing, Haikun Ma,

Antonella Petruzzella, Dennis Waasdorp, Wei Zhang, and Libin Zhou for their help in the exe-

cution of the experiment as well as Michaela Brehm, Bart Grutters, Sven Teurlincx, Mandy

Velthuis, Michiel Verhofstad, and Suzanne Wiezer for their technical expertise.

Author Contributions

Conceptualization: Peiyu Zhang, Reinier F. van den Berg, Brigitte A. Blonk, Elisabeth S.

Bakker.

Aquatic omnivores increase herbivory as plant quality increases

PLOS ONE | https://doi.org/10.1371/journal.pone.0204116 September 20, 2018 10 / 13

https://doi.org/10.1371/journal.pone.0204116


Data curation: Peiyu Zhang, Reinier F. van den Berg, Casper H. A. van Leeuwen, Brigitte A.

Blonk.

Formal analysis: Peiyu Zhang, Reinier F. van den Berg, Casper H. A. van Leeuwen, Elisabeth

S. Bakker.

Funding acquisition: Elisabeth S. Bakker.

Investigation: Peiyu Zhang, Reinier F. van den Berg, Brigitte A. Blonk, Elisabeth S. Bakker.

Methodology: Peiyu Zhang, Reinier F. van den Berg, Brigitte A. Blonk.

Resources: Peiyu Zhang, Brigitte A. Blonk.

Supervision: Casper H. A. van Leeuwen, Elisabeth S. Bakker.

Validation: Peiyu Zhang.

Writing – original draft: Peiyu Zhang, Reinier F. van den Berg, Casper H. A. van Leeuwen,

Brigitte A. Blonk, Elisabeth S. Bakker.

Writing – review & editing: Peiyu Zhang, Reinier F. van den Berg, Casper H. A. van Leeuwen,

Elisabeth S. Bakker.

References
1. Scheffer M, Hosper S, Meijer M, Moss B, Jeppesen E. Alternative equilibria in shallow lakes. Trends

Ecol Evol. 1993; 8(8):275–279. https://doi.org/10.1016/0169-5347(93)90254-M PMID: 21236168

2. Carpenter SR, Stanley EH, Vander Zanden MJ. State of the world’s freshwater ecosystems: physical,

chemical, and biological changes. Annual review of Environment and Resources. 2011; 36:75–99.

https://doi.org/10.1146/annurev-environ-021810-094524

3. Hilt S, Brothers S, Jeppesen E, Veraart AJ, Kosten S. Translating regime shifts in shallow lakes into

changes in ecosystem functions and services. Bioscience. 2017; 67(10):928–936. https://doi.org/10.

1093/biosci/bix106

4. Bakker ES, Van Donk E, Declerck SAJ, Helmsing NR, Hidding B, Nolet BA. Effect of macrophyte com-

munity composition and nutrient enrichment on plant biomass and algal blooms. Basic Appl Ecol. 2010;

11(5):432–439. https://doi.org/10.1016/j.baae.2010.06.005

5. Cronin G, Lewis WM Jr, Schiehser MA. Influence of freshwater macrophytes on the littoral ecosystem

structure and function of a young Colorado reservoir. Aquat Bot. 2006; 85(1):37–43. https://doi.org/10.

1016/j.aquabot.2006.01.011

6. Declerck S, Vandekerkhove J, Johansson L, Muylaert K, Conde-Porcuna J, Van Der Gucht K, et al.

Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology.

2005; 86(7):1905–1915. https://doi.org/10.1890/04-0373

7. Sand-Jensen K, Riis T, Vestergaard O, Larsen SE. Macrophyte decline in Danish lakes and streams over

the past 100 years. J Ecol. 2000; 88(6):1030–1040. https://doi.org/10.1046/j.1365-2745.2000.00519.x

8. Zhang Y, Jeppesen E, Liu X, Qin B, Shi K, Zhou Y, et al. Global loss of aquatic vegetation in lakes.

Earth-Sci Rev. 2017; 173:259–265. https://doi.org/10.1016/j.earscirev.2017.08.013

9. Sayer CD, Burgess AMY, Kari K, Davidson TA, Peglar S, Yang H, et al. Long-term dynamics of sub-

merged macrophytes and algae in a small and shallow, eutrophic lake: implications for the stability of

macrophyte-dominance. Freshwat Biol. 2010; 55(3):565–583. https://doi.org/10.1111/j.1365-2427.

2009.02353.x

10. Bakker ES, Wood KA, Pagès JF, Veen GF, Christianen MJA, Santamarı́a L, et al. Herbivory on fresh-

water and marine macrophytes: A review and perspective. Aquat Bot. 2016; 135:18–36. https://doi.org/

10.1016/j.aquabot.2016.04.008

11. Wood KA, O’Hare MT, McDonald C, Searle KR, Daunt F, Stillman RA. Herbivore regulation of plant

abundance in aquatic ecosystems. Biological Reviews. 2017; 92(2):1128–1141. https://doi.org/10.

1111/brv.12272 PMID: 27062094

12. Bakker ES, Nolet BA. Experimental evidence for enhanced top-down control of freshwater macrophytes

with nutrient enrichment. Oecologia. 2014; 176(3):825–836. https://doi.org/10.1007/s00442-014-3047-

y PMID: 25194349

Aquatic omnivores increase herbivory as plant quality increases

PLOS ONE | https://doi.org/10.1371/journal.pone.0204116 September 20, 2018 11 / 13

https://doi.org/10.1016/0169-5347(93)90254-M
http://www.ncbi.nlm.nih.gov/pubmed/21236168
https://doi.org/10.1146/annurev-environ-021810-094524
https://doi.org/10.1093/biosci/bix106
https://doi.org/10.1093/biosci/bix106
https://doi.org/10.1016/j.baae.2010.06.005
https://doi.org/10.1016/j.aquabot.2006.01.011
https://doi.org/10.1016/j.aquabot.2006.01.011
https://doi.org/10.1890/04-0373
https://doi.org/10.1046/j.1365-2745.2000.00519.x
https://doi.org/10.1016/j.earscirev.2017.08.013
https://doi.org/10.1111/j.1365-2427.2009.02353.x
https://doi.org/10.1111/j.1365-2427.2009.02353.x
https://doi.org/10.1016/j.aquabot.2016.04.008
https://doi.org/10.1016/j.aquabot.2016.04.008
https://doi.org/10.1111/brv.12272
https://doi.org/10.1111/brv.12272
http://www.ncbi.nlm.nih.gov/pubmed/27062094
https://doi.org/10.1007/s00442-014-3047-y
https://doi.org/10.1007/s00442-014-3047-y
http://www.ncbi.nlm.nih.gov/pubmed/25194349
https://doi.org/10.1371/journal.pone.0204116


13. van Altena C, Bakker ES, Kuiper JJ, Mooij WM. The impact of bird herbivory on macrophytes and the

resilience of the clear-water state in shallow lakes: a model study. Hydrobiologia. 2016; 777(1):197–

207. https://doi.org/10.1007/s10750-016-2779-6

14. Wootton K. Omnivory and stability in freshwater habitats: Does theory match reality? Freshwat Biol.

2017; 62(5):821–832. https://doi.org/10.1111/fwb.12908

15. Chubaty AM, Ma BO, Stein RW, Gillespie DR, Henry LM, Phelan C, et al. On the evolution of omnivory

in a community context. Ecology and evolution. 2014; 4(3):251–265. https://doi.org/10.1002/ece3.923

PMID: 24558581

16. Vankosky MA, VanLaerhoven SL. Plant and prey quality interact to influence the foraging behaviour of

an omnivorous insect, Dicyphus hesperus. Anim Behav. 2015; 108:109–116. https://doi.org/10.1016/j.

anbehav.2015.07.019

17. Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, et al. Nutritional constraints in ter-

restrial and freshwater food webs. Nature. 2000; 408(6812):578–580. https://doi.org/10.1038/

35046058 PMID: 11117743

18. Sterner RW, Elser JJ. Ecological stoichiometry: the biology of elements from molecules to the bio-

sphere: Princeton University Press; 2002.

19. Van de Waal DB, Verschoor AM, Verspagen JM, van Donk E, Huisman J. Climate-driven changes in

the ecological stoichiometry of aquatic ecosystems. Front Ecol Environ. 2010; 8(3):145–152. https://

doi.org/10.1890/080178

20. Guinan ME Jr, Kapuscinski KL, Teece MA. Seasonal diet shifts and trophic position of an invasive cypri-

nid, the rudd Scardinius erythrophthalmus (Linnaeus, 1758), in the upper Niagara River. Aquatic Inva-

sions. 2015; 10(2):217–225.

21. Dorenbosch M, Bakker ES. Herbivory in omnivorous fishes: effect of plant secondary metabolites and

prey stoichiometry. Freshwat Biol. 2011; 56(9):1783–1797. https://doi.org/10.1111/j.1365-2427.2011.

02618.x

22. Mattson WJ. Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst. 1980; 11:119–161.

https://doi.org/10.1146/annurev.es.11.110180.001003

23. Andersen T, Elser JJ, Hessen DO. Stoichiometry and population dynamics. Ecol Lett. 2004; 7(9):884–

900. https://doi.org/10.1111/j.1461-0248.2004.00646.x

24. Grutters BMC, Roijendijk YOA, Verberk WCEP, Bakker ES. Plant traits and plant biogeography control

the biotic resistance provided by generalist herbivores. Funct Ecol. 2017; 31:1184–1192. https://doi.

org/10.1111/1365-2435.12835

25. Liman AS, Dalin P, Bjorkman C. Enhanced leaf nitrogen status stabilizes omnivore population density.

Oecologia. 2017; 183(1):57–65. https://doi.org/10.1007/s00442-016-3742-y PMID: 27718064

26. Siuda AN, Dam HG. Effects of omnivory and predator-prey elemental stoichiometry on planktonic tro-

phic interactions. Limnol Oceanogr. 2010; 55(5):2107–2116. https://doi.org/10.4319/lo.2010.55.5.2107

27. Lodge DM. Herbivory on freshwater macrophytes. Aquat Bot. 1991; 41(1–3):195–224. https://doi.org/

10.1016/0304-3770(91)90044-6

28. Newman RM. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J N Am

Benthol Soc. 1991; 10(2):89–114. https://doi.org/10.2307/1467571

29. Elger A, Barrat-Segretain M-H. Use of the pond snail Lymnaea stagnalis (L.) in laboratory experiments

for evaluating macrophyte palatability. Archiv für Hydrobiologie. 2002; 153(4):669–683. https://doi.org/

10.1127/archiv-hydrobiol/153/2002/669

30. Elger A, Barrat-Segretain M-H. Plant palatability can be inferred from a single-date feeding trial. Funct

Ecol. 2004; 18(3):483–488. https://doi.org/10.1111/j.0269-8463.2004.00846.x

31. Zhang P, Blonk BA, van den Berg RF, Bakker ES. The effect of temperature on herbivory by the omniv-

orous ectotherm snail Lymnaea stagnalis. Hydrobiologia. 2018; 812(1):147–155. https://doi.org/10.

1007/s10750-016-2891-7

32. Reavell PE. A study of the diets of some British freshwater gastropods. Journal of Conchology. 1980;

30:253–271.

33. Elger A, Bornette G, Barrat-Segretain M-H, Amoros C. Disturbances as a structuring factor of plant pal-

atability in aquatic communities. Ecology. 2004; 85(2):304–311. https://doi.org/10.1890/02-0752

34. Bovbjerg RV. Responses to food in lymnaeid snails. Physiol Zool. 1968; 41(4):412–423. https://doi.org/

10.1086/physzool.41.4.30155476

35. Moelzner J, Fink P. The smell of good food: volatile infochemicals as resource quality indicators. J Anim

Ecol. 2014; 83(5):1007–14. https://doi.org/10.1111/1365-2656.12220 PMID: 24666400
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