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Abstract

Can structural information of proteins generate essential features for predicting the deleteri-

ous effect of a single nucleotide variant (SNV) independent of the known existence of the

SNV in diseases? In this work, we answer the question by examining the performance of

features generated from prior knowledge with the goal towards determining the pathogenic

effect of rare variants in rare disease. We take the approach of prioritizing SNV loci focusing

on protein structure-based features. The proposed structure-based features are generated

from geometric, physical, chemical, and functional properties of the variant loci and struc-

tural neighbors of the loci utilizing multiple homologous structures. The performance of the

structure-based features alone, trained on 80% of HumVar-HumDiv combination (HumVD-

train) and tested on 20% of HumVar-HumDiv (HumVD-test), ClinVar and ClinVar rare vari-

ant rare disease (ClinVarRVRD) datasets, showed high levels of discernibility in determining

the SNV’s pathogenic or benign effects on patients. Combined structure- and sequence-

based features generated from prior knowledge on a random forest model further improved

the F scores to 0.84 (HumVD-test), 0.75 (ClinVar), and 0.75 (ClinVarRVRD). Including fea-

tures based on the difference between wild-type in addition to the features based on loci

information increased the F score slightly more to 0.90 (HumVD-test), 0.78 (ClinVar), and

0.76 (ClinVarRVRD). The empirical examination and high F scores of the results based on

loci information alone suggest that location of SNV plays a primary role in determining func-

tional impact of mutation and that structure-based features can help enhance the prediction

performance.

Introduction

Rare diseases have been known to affect over 350 million people worldwide. There are over

7,000 different rare diseases and around 80% are due to genetic factors [1]. Compared to com-

mon complex diseases, rare diseases are often heterogeneous, caused by rare variants (minor

allele frequency inferior to 1%), and are often hereditary [2, 3]. Many rare diseases can be
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cared for if diagnosed early and optimally managed. However, fast and accurate diagnosis is

difficult in rare disease cases due to the rarity of events. A quick and non-statistical method for

identifying a causal variant of rare diseases through variant prioritization forms the basis for

fast and accurate diagnosis as well as for providing alternative treatment suggestions [4, 5].

The informatics approach for prioritizing single nucleotide variation (SNV) considers two

factors: the importance of the SNV loci (prior) and the degree of difference between the wild-

type and the variant. The importance of the SNV loci can be computed as a prior knowledge

independent of the difference between wild-type and variant. This means that importance of

the loci, i.e., prioritizing SNV loci, can be trained and learned in the preprocessing step inde-

pendent of disease types, allowing for quick postprocessing when the variant type becomes

known. On the other hand, the severity of the SNV in diseases relies on the information of the

nucleotide variation compared to wild-type and often requires known cases of the variation in

diseased patients.

Features used for pathogenic SNV prediction methods are generally sequence-based only

or sequence and structure combined. Although there have been several extensive studies for

sequence-based features due to their abundance and ease of usage, there has not been a rigor-

ous and extensive examination of structure-based features in the causal mutation predictions.

Many structure focused methods are limited to specific disease type [6] or are more of an

annotator [7]. Ones that utilize protein structure in addition to sequence information consid-

ers the structure-based features as not essential [8–10]. However, structural features have a

high potential for discerning pathogenic effects.

Several works show that mutations on functional and structurally stabilizing sites are

strongly related to impaired protein function [11, 12] that results in diseases. Disease-causing

P53 structures contain amino acid alterations at key sites that are important for maintaining

structural integrity [13, 14]. Also, amino acid alterations that disrupt the thermodynamic and

kinetic stability of the TTR proteins, causing them to unfold and hence accumulate to form

amyloid fibrils [15], are known to cause many amyloid diseases. Mutations at binding sites in

proteins can disrupt the protein’s function as they lead to changes in binding affinity between

the protein and other biomolecules. The affected binding targets may be ions, ligands, other

proteins, DNAs or RNAs. P53 structures that contain amino acid alterations in the DNA bind-

ing region changes the binding affinity of the protein to DNA [16, 17]. A study of somatic

mutations in DNA methyltransferase gene DNMT3A in acute monocytic leukemia found

mutations in DNA binding, cofactor binding, protein-protein interaction sites and Histone

H3 peptide binding sites [18]. These mutations are crucial as they prevent protein complex for-

mation thereby leading to impaired gene function. Also, rare mutations in DNA-binding site

in POT1 protein have been identified as causal for cutaneous malignant melanoma as these

mutations changed protein folding and binding [19]. Another study identified SNV in the pre-

mRNA binding region in splicing factor SF3B1 gene which is known to cause chronic lympho-

cytic leukemia [20]. These studies highlight the importance of structure-based information in

causal mutation analysis in disease which we will focus on through structure-based features

extraction.

The goal of this work is to show that well-curated structure-based features provide added

value when combined with sequence-based features in the prioritization of SNV loci. We aim

to show that loci at which the SNV occurred, even without the difference between wild-type

information, is useful in identifying deleterious SNVs in diseases. Also, we aim to provide evi-

dence that structure-based features act as an important determinant for deleteriousness of loci,

especially in rare disease. More specifically, the four contributions of the paper are as follows.

First, we have developed novel structural features, multi-structural features and structural-

neighborhood features. Second, we have extensively tested the performance of structure-based
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features in determining pathogenic effects of point mutations. Third, we have compared the

performance of loci specific features, using various machine learning methods, and state-of-

the-art methods. Finally, we have demonstrated the soundness of generated features for rare

variant rare disease causal mutation predictions.

Materials and methods

Data sets

We generated three data sets, i.e., HumVar-HumDiv (HumVD), ClinVar, ClinVar Rare Vari-

ant Rare Disease (ClinVarRVRD) dataset, to compare and test the performance of proposed

features. Initially, SNV information, including loci, along with the known functional impact of

the SNV was extracted from HumDiv, HumVar [8], and ClinVar databases [21], separately.

We combined the HumVar and HumDiv datasets, as suggested in the documents of

PolyPhen2 [8] and available at (http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads),

to generate our HumVD dataset. We used the same SNV classification as PolyPhen2

(Benign = Neutral and Pathogenic = Deleterious). Cases of conflicting labels between HumVar

and HumDiv were excluded. Also, we made sure that the protein names and mutation posi-

tions of the selected SNVs are unique to avoid bias. After feature generation, 10,140 cases out

of 10,583 cases remained, consisting of 3,256 Benign and 6,884 Pathogenic variants. We used

80% of this dataset (2591 Benign and 5521 Pathogenic) for training the model (HumVD-train)

and used remaining 20% (665 Benign and 1363 Pathogenic)for testing the model (HumVD-

test).

To test whether the model generalizes well, we selected separate set of test cases from Clin-

Var. The ClinVar database contains a more up-to-date and carefully curated archive of human

variations and phenotypes [21]. From the initial database of 93,946 SNV entries retrieved on

Jan. 2016, we selected 9,286 SNVs with high confidence review status (2 through 4). The review

status 2 is ‘SNV submitted with criteria provided, two or more submitters with no conflicts’;

status 3 is ‘reviewed by an expert panel’; status 4 is ‘practice guideline.’ From the 9,286 SNVs,

we selected 6,446 loci labeled as either likely benign or benign as Benign and likely pathogenic

or pathogenic as Pathogenic. Cases with conflicting labels and overlaps with the HumVD data-

set were removed. As the final step, SNVs without protein structure mapping was removed

resulting in a small set of 437 SNV loci, with 285 pathogenic and 152 benign labels in 101

genes.

We also constructed rare variant rare disease (ClinVarRVRD) dataset to test how well the

model performs on rare disease cases. ClinVarRVRD dataset is a subset of the ClinVar dataset

constructed by filtering out non-rare variants identified via Ensembl Variant Effect Predictor

tool [22] to exclude common variants with minor allele frequency (MAF) greater than 1% in

the 1000 genomes Phase 1 combined population. The ClinVar rare variants were further fil-

tered to make sure they are associated with rare diseases. That is, we considered SNV to be

associated with a rare disease if one or more of the diseases label in ClinVar belonged to the

Global Genes [1] rare diseases list (6,537 rare diseases as of August 6, 2017). After the two fil-

tering process, 280 rare variants rare disease associated SNVs consisting of 117 benign SNVs

and 163 pathogenic SNVs remained.

Table 1 summarizes the dataset. HumVD-train, HumVD-test, ClinVar, and ClinVarRVRD

are provided in S1, S2, S3 and S4 Files, respectively.

Features to loci mapping

To extract loci specific features, we retrieved reference DNA, mRNA, and protein sequences of

the corresponding loci. To do this, we identified genes associated with the SNV in the DNA
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loci, represented as a chromosome number and offset value pair, and used biomaRt [23]

library to retrieve reference sequences for DNA (DNA-RefSeq), mRNA (NM-RefSeq) and pro-

tein amino acid sequence (NP-RefSeq) from Ensembl database [24] corresponding to genome

reference HG38 for each dataset. DNA, mRNA, and protein sequences are then aligned to

map the features back the SNV loci. Fig 1 shows the steps involved in the feature generation

process utilizing the retrieved sequences. Detailed steps are described in detail in the following

feature extraction process description.

Extracting structure-based features

Given an SNV locus, we extracted structure-based feature by first retrieving the protein struc-

tures for the locus. To do this, we retrieved a list of protein structures (PDBIDs) of correspond-

ing NP-RefSeq using protein BLAST [25] with homology threshold of 60% sequence identity.

If structures were found, the corresponding Protein Data Base (PDB) files were downloaded

Table 1. Dataset statistics. The number of benign and pathogenic variants for each dataset are listed.

Dataset Benign Pathogenic Total

HumVD (all) 3256 6884 10140

HumVD-train (80%) 2591 5521 8112

HumVD-test (20%) 665 1363 2028

ClinVar 152 285 437

CinVarRVRD 117 163 280

https://doi.org/10.1371/journal.pone.0204101.t001

Fig 1. Loci specific feature extraction pipeline.

https://doi.org/10.1371/journal.pone.0204101.g001
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from RSCB [26] database. From the PDB structures, PDB sequences were directly extracted

and pair-wise global aligned using dynamic programming based aligner, i.e., FASTA align

[27], to the protein reference sequence (NP-RefSeq). Corresponding reference mRNA

sequence (NM-RefSeq) of the NP-RefSeq were then aligned to reference DNA (NC-RefSeq)

using Splign [28], which allows alignment even in the presence of splice sites. Finally, the struc-

ture-based features were generated and mapped to the SNV locus.

Structural neighborhood. Introduction of features generated from structural neighbors

is one of the novel contributions of our proposed method. We defined the structural neighbor-

hood as the set of amino acid residues that lie within a specified radius of the physical structure

of the protein centered around the query SNV loci. Based on the relative Cartesian coordinates

of the amino acids in the PDB files, we considered the neighborhood as all the residues located

within the Euclidean distance of 9 Angstroms (Å), as shown in Fig 2. We have tested distance

between 5 to 15Å and 9Å provided adequated information without involving too many

amino-acids. We took summaries of the feature values calculated for neighboring amino acids

as the neighborhood features. Also, the number of residues in the neighborhood (nNum) was

also included as one of the neighborhood features. Since neighborhood information was

extracted from a structure, all the neighborhood features were considered as structure-based

features.

Fig 2. Structural neighborhood. Green sphere depicts a radius of 9Å centered at 116.A of PDBID:1IJN structure. All amino acids

residues found within this region are considered as neighbors of the query SNV loci, 116.A.

https://doi.org/10.1371/journal.pone.0204101.g002
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Structure-based features. Another novelty of our structure-based feature is the extraction

of information from multiple homologous structures. The reason why we have decided to take

information from multiple structures is that a PDB structure is only a static snapshot of the

actual protein and the functional information such as binding event may exist in one structure

while not on another depending on the experimental settings, thus examining all homologous

structures is important. Again, the eleven structure-based features depend on the location of

the SNV and not on the actual difference between wild-type and are considered prior knowl-

edge. The list of structural features are shown in Table 2 and the details of the structure-based

feature extraction process are provided in the S1 Appendix.

Extracting sequence-based features

We tested five sequence-based features that are specific to the prior loci-based information

about the SNV that are not dependent on the difference between wild-type and altered nucleo-

tide. The list of features is summarized in the second half of Table 2 and the details of the

sequence-based feature extraction process are provided in the S2 Appendix.

Predicting effects of SNV via Weka

After generation of the features, we trained and tested the features using Weka [29, 30], a data-

mining software that contains multiple machine learning methods. Seven machine learning

algorithms in Weka were used: naive Bayes, support vector machine (SVM), logistic regres-

sion, multi-layer perceptron (MLP), k-nearest neighbors (KNN), decision table, and random

forest. For each of the algorithms and hyperparameter combinations, we feed Weka features

and labels of 80% of HumVD-train. The hyperparameters of each machine learning algorithms

were selected by validating on 20% of HumVD-Train (validation set). More specifically, we

Table 2. List of structure- and sequence-based features. The rank represents the importance of individual features

obtained by 5-fold cross validation on the HumVar-HumDiv training data (Size = 8,112) using Random Forest for

attribute evaluation using weighted F score as evaluation metric.

Name Description Rank

Structure-based features

KDmean mean KD hydrophobicity value 2

RSAmax maximum residual solvent accessibility value 4

nRSA mean residual solvent accessibility of structural neighbors 5

nNum number of amino acids whin structural neighborhood 6

Bstddev standard deviation of B factors 7

nB mean B factor of structural neighbors 8

nKD mean KD hydrophobicity of structural neighbors 10

nSC mean sequence conservation of structural neighbors 13

nBinding number of binding site types in neighborhoods 14

Binding number of binding site types 15

Mapreg whether SNV locus is within core region of phi-psi Ramachandran map (PolyPhen2) 16

Sequence-based features

PSIC PSIC score of wild type amino acid (PolyPhen2) 1

Nobs number of amino acid observed at the substitution position in the multiple alignment

(PolyPhen2)

3

MinDJxn distance of SNV locus from closest exon/ intron junction (PolyPhen2) 9

CodPos position of SNV locus within a codon (PolyPhen2) 11

SeqCons sequence conservation 12

https://doi.org/10.1371/journal.pone.0204101.t002
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selected the hyperparameters that resulted in highest weighted F-scores over the validation set.

Also, to accommodate for missing values of the test set, we used Weka’s unsupervised attribute

filter to replace missing values.

Performance comparison measures

We used weighted F-score to validate the performance of feature sets. The precision-recall

based scores are known to be a measurement of choice when there is a class imbalance as in

the case of our test sets. The weighted F-score is a weighted average of the precision and recalls

that account for both the correctly predicted positives as well as incorrectly predicted positives

and negatives. The value reaches its best value at 1 and worst at 0. Weighted F-score was also

used to compare our methods with existing SNV prediction methods.

Parameters used in comparative study

We compared the weighted F-scores of five features sets to nine SNV prediction methods as

shown in the Table 3. Most of the methods are web-server based and take mutation location as

input and output either numerical or categorical predictions. In the case of CADD, precom-

puted scores are provided. We tested on two threshold values 15 and 20, as suggested by the

authors [31], to label SNV as Benign or Pathogenic.

Results

Classification performance between machine learning methods

We first provide the classification results utilizing seven machine learning method listed in the

Method section 1.

Small difference in performance between learning algorithms. Classification accuracies

of seven machine learning algorithms were measured to validate the effectiveness of the pro-

posed loci-based features. The goal of the learning task was to classify an SNV site as patho-

genic or benign based on the features defined at the SNV locus.

Table 4 shows the weighted F scores for each of the machine learning algorithms on the val-

idation set (20% HumVD-train). The weighted F-scores on the validation set are used to

selected hyperparameters for each machine learning algorithms. We observed that perfor-

mance of algorithms was dependent more on the features and less on the algorithm used. That

is, the difference of F-scores for each feature sets were small among learning algorithms.

Although KNN had the highest F value of 0.91, the value of k varied for each feature sets. Thus

Table 3. SNV prediction methods used in the comparative study. ‘Type’ represents whether the features are generated on a web-server or pre-computed. ‘Benign labels’

and ‘Pathogenic labels’ represent how classification labels of each algorithm was interpreted to match to Benign and Pathogenic labels.

Algorithms Type Benign labels Pathogenic labels

PolyPhen2 [8] web-server benign probably damaging, possibly damaging

SIFT [32] code, precomput. tolerated, t. low confidence deleterious, d. low confidence

CADD [31] precomput. X< = threshold X> threshold

FATHMM [33] web-server tolerated damaging

LRT [34] web-server, precomput. neutral damaging

M-CAP [35] web-server neutral damaging

MutationAssessor [36] web-server low, neutral high, medium

MutationTaster [37] web-server polymorphism, p. automatic disease causing, d.c. automatic

PROVEAN [38] web-server neutral damaging

https://doi.org/10.1371/journal.pone.0204101.t003
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we chose Random Forest that performed well across all feature sets and that depended less on

the hyperparameters.

Structure-based features improve performance. After selection of learning algorithm,

Random Forest, we retrained the model using HumVD-train and tested the feature sets on

three test datasets. Fig 3 shows the ROC curves for all test set and the performance comparison

between features follows the same order. Also, the best-weighted F scores obtained by varying

threshold in ROC for different feature types are shown in Table 5.

On HumVD-test dataset, sequence features performed better than structure features. Inter-

estingly the difference was minor for the ClinVar dataset with weighted F scores of 0.71 and

0.70 for sequence and structure, respectively. ClinVarRVRD’s structure features were slightly

better than sequence features with F scores 0.67 and 0.66, respectively. However, prior

sequence- and structure-based features performed better for all test datasets. Regarding indi-

vidual features, six out top 50% ranked features are structure-based features as shown in the

third column of Table 2. The result shows that, although the performance of structure-based

features is similar or even lower, they are contributing regarding predicting the importance of

loci in disease.

Neighborhood features improve predictions. We next tested the contribution of the

neighborhood features in improving the classification performance. The performance of

Table 4. Validation results for five features sets. Weighted F scores are reported on the validation set (20% HumVD-train) for all algorithms. ‘Sequence’ refer to

sequence-based features (PSIC, Nobs, MinDJxn, CodPos and SeqCons); ‘Structure’ refers to structure-based features (KDmean, RSAmax, nRSA, nNum, Bstddev, nB,

nKD, nSC, nBinding, Binding, Mapreg); ‘Str no Neigh’ refers to structure-based features without neighbour information (KDmean, RSAmax, Bstddev, Binding, Mapreg);

‘Seq + Str’ refers to all sixteen sequence and structure features listed above; ‘All + mutation’ refers to all prior features listed above and features based on difference between

wild-type listed in S1 Table. The boldface numbers highlights top two weighed F scores for each feature sets.

Algorithm Feature sets

Sequence Structure Str. noNeigh Seq + Str All + mutation

Naive Bayes 0.84 0.71 0.69 0.82 0.89

SVM 0.81 0.67 0.64 0.82 0.90

Logistic Regression 0.81 0.68 0.65 0.82 0.90

KNN 0.84 0.73 0.73 0.82 0.91

MLP 0.82 0.69 0.68 0.83 0.89

Decision Table 0.83 0.71 0.72 0.83 0.89

Random Forest 0.83 0.74 0.71 0.85 0.90

https://doi.org/10.1371/journal.pone.0204101.t004

Fig 3. ROC curves for three datasets. A. HumVD, B. ClinVar, and C. ClinVarRVRD.

https://doi.org/10.1371/journal.pone.0204101.g003
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structure-based features with and without the neighborhood information was compared using

ROC and weighted F scores. Neighborhood information improved the weighted F scores of

learning algorithms for all test datasets (Table 5) and for all algorithms (Table 4). Regarding

individual features, three out top 50% ranked features are structure-based features as shown in

the third column of Table 2.

Structure-based features generalizes better. Compared to HumVD-test, weighted F

scores decreased overall for ClinVar and ClinVarRVRD with the highest value being 0.78

compared to 0.90 for HumVD-test. The decrease was expected since ClinVar labeling and

HumVD labeling criterion and the selection of benign cases are slightly different. With the dif-

ference in the distribution of training set and testing set in mind, we focused on the stability or

generalization of the features across the datasets.

We observed that, although the model was trained on HumVD-train dataset, the differences

in weighted F-scores of structure-based features were smaller within a difference of 0.09 (rang-

ing 0.67 to 0.76) while differences in weighted F-scores of the sequence-based features were

larger (ranging 0.66 to 0.83) when tested on new datasets, ClinVar and ClinVarRVRD.

Performance comparison with existing methods

To compare the performance of our method with other algorithms, we performed a test on

ClinVar and ClinVarRVRD dataset using weighted F-scores. Many of the existing methods

listed in Table 6 includes the HumDiv and HumVar in their training. We did not test on

HumDV-test, a subset of HumDiv and HumVar, since the methods will output biased results.

Furthermore, since the existing algorithms utilized the difference between wild-type and vari-

ant in addition to the loci information, we compared our proposed features with or without

selected features that utilize the difference between wild-type information. The difference

between wild-type information used is listed in S1 Table.

Our comparisons found that existing algorithm’s performance varies with test data. They

were able to perform well on ClinVar tests and our mutant features were marginally better.

However, for Rare Variants (ClinVarRVRD), our prior features and mutant features per-

formed better than existing algorithms.

Table 5. Test results for different features. Summary of results for multiple feature types on optimal weighted F scores. (FNR = False Negative Rate, TPR = True Positive

Rate, FPR = False Positive Rate, TNR = True Negative Rate).

Dataset Feature set FNR TPR FPR TNR Weighted F

HumVD test Sequence 0.12 0.88 0.29 0.71 0.83

Structure 0.21 0.79 0.29 0.71 0.76

Structure (noNeigh) 0.17 0.83 0.50 0.50 0.72

Prior (Seq + Str) 0.13 0.87 0.22 0.78 0.84

All + mutation 0.04 0.96 0.22 0.78 0.90

ClinVar Sequence 0.10 0.90 0.59 0.41 0.71

Structure 0.18 0.82 0.50 0.50 0.70

Structure (noNeigh) 0.21 0.79 0.62 0.38 0.64

Prior (Seq + Str) 0.20 0.80 0.34 0.66 0.75

All + mutation 0.08 0.92 0.45 0.55 0.78

ClinVarRVRD Sequence 0.28 0.72 0.42 0.58 0.66

Structure 0.18 0.82 0.52 0.48 0.67

Structure (noNeigh) 0.41 0.59 0.36 0.64 0.61

Prior (Seq + Str) 0.19 0.81 0.32 0.68 0.75

All + mutation 0.20 0.80 0.29 0.71 0.76

https://doi.org/10.1371/journal.pone.0204101.t005
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Structural examination of rare variants in rare disease cases

To understand the contribution of structure-based features, we took a detailed look at cases in

the ClinVarRVRD dataset where structure-based features correctly determined the benign and

pathogenic effects of SNV while sequence features failed. Examining cases that structure fea-

tures correctly predicted as pathogenic while sequence features did not, we found many SNVs

located at the binding regions or part of structurally stabilizing regions which are essential for

maintaining overall structure of the protein. For the cases that structure-based features cor-

rectly predicted as benign while sequence features did not, we observed that SNV were located

at regions that are relatively unstable or solvent accessible.

We found in many cases if the SNV is at a binding site, the effect of the variant is patho-

genic. Fig 4 shows four representative pathogenic SNVs at or near a binding site. SNV locus in

Fig 4A is both an ATP binding site and a protein-protein binding site that is known to be asso-

ciated with Cystic fibrosis. SNV locus in Fig 4B is near a lead (compound 5e) binding site that

is known to be associated with the SHORT syndrome. SNV locus in Fig 4C is near DNA

Table 6. Performance comparison with existing methods.

Algorithm Weighted F scores

ClinVar ClinVarRVRD

PolyPhen2 [8] 0.73 0.69

SIFT [32] 0.77 0.70

CADD [31] (thresh = 15) 0.70 0.65

CADD [31] (thresh = 20) 0.75 0.70

FATHMM [33] 0.69 0.66

LRT [34] 0.73 0.71

M-CAP [35] 0.69 0.58

MutationAssessor [36] 0.68 0.64

MutationTaster [37] 0.55 0.44

PROVEAN [38] 0.71 0.69

Prior (Seq + Str) 0.75 0.75

All + mutation 0.78 0.76

https://doi.org/10.1371/journal.pone.0204101.t006

Fig 4. Pathogenic rare variants in binding sites. A. SNV at chr7:117590378 (Residue N1303) associated with a rare

disease, Cystic fibrosis. The SNV locus is near the binding site of N6-Phenylethyl-ATP. B. SNV at chr5:68296301

(Residue H1940) associated with the SHORT syndrome. The SNV locus is a binding site compound 5e C. SNV at

chrX:154031373 (Residue P153) associated with Rett syndrome. The SNV locus is near DNA binding site. D. SNV at

chr15:48468527 (Residue N1489) associated with the Marfan syndrome. The SNV locus is at the calcium bind site.

https://doi.org/10.1371/journal.pone.0204101.g004

Impact of structural prior knowledge in SNV prioritization

PLOS ONE | https://doi.org/10.1371/journal.pone.0204101 September 28, 2018 10 / 15

https://doi.org/10.1371/journal.pone.0204101.t006
https://doi.org/10.1371/journal.pone.0204101.g004
https://doi.org/10.1371/journal.pone.0204101


binding site that is known to be associated with Rett Syndrome. SNV locus in Fig 4D is directly

at a calcium binding site.

Also, many SNVs in structurally stable regions were pathogenic. Fig 5 shows three such

cases. SNV locus in Fig 5A and 5C are parts of a stable α-helix structure. Where Fig 5A is also a

domain binding region that forms a homo tetramer. Also, SNV locus in Fig 5B at a is in the

middle of a stable triple-stranded parallel β-sheet of a homo 10-mer transmembrane structure

near membrane binding area.

For benign cases, we looked at four benign SNVs on BRCA2 gene as shown in Fig 6. All of

the four loci are predicted to be pathogenic by sequence-based features alone. However, struc-

ture-based features predicted them as benign, following the ClinVar annotation. We observed

that these locations were mostly solvent accessible and inconsistent secondary structure assign-

ments were observed in the positions among homologous structures.

Discussions and conclusions

Considering that the number of rare variants in rare diseases cases is inherently limited, it is

important to be able to extract information that is less dependent on the number of known

Fig 5. Pathogenic rare variants in structurally stable sites. A. SNV at chr9:130480398 (Residue V263) associated with a rare

disease, Citrullinemia type I. The SNV locus is on a stable α-helix structure near domain binding site. B.SNV at chr7:117590378

(Residue Y569) associated with a rare disease, Cystic fibrosis. The SNV locus is in the middle of a stable triple-stranded parallel β-

sheet. C.SNV at chr3:10149822 (Residue R167) associated with a rare disease, Pheochromocytoma. The SNV locus is part of a stable

α-helix structure.

https://doi.org/10.1371/journal.pone.0204101.g005

Fig 6. Four benign SNV on BRCA2 gene. A. Multiple alignment of PDBIDs:1IYJ,1MIU, and 1MJE marked with four benign SNV loci. B.

SNV at chr13:32356536 (Residue S2445) tip of a short α-helix. C. SNV at chr13:32380124 (Residue V3007) tip of unstable β-sheet. D. SNV at

chr13:32379467 (Residue V2898) middle of unstable β-sheet. E. SNV at chr13:32371035 (Residue E2777) middle of unstable α-helix where

one of the structure, PDBID:1IYJ, terminates.

https://doi.org/10.1371/journal.pone.0204101.g006
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cases. Protein structure provides direct information about the functional importance of loci

and does not rely heavily on statistical means for prioritizing the importance of mutation

loci. These structure-based features need to be extensively tested, especially when several

lines of empirical evidence demonstrate the presence of causal mutations at critical structural

positions.

Loci based prior features performed comparably with features based on the difference

between wild-type and variant, which suggests the importance of SNV loci. Amongst the prior

features, our results show that sequence-based features perform slightly better than structure-

based features in classifying pathogenic SNVs. However, structure-based features, when com-

bined with sequence-based features, improved the weighted F scores in all three test datasets.

Regarding structure-based features, we made two novel contributions that have been shown to

improve the prediction performance: use of multiple homologous structures and use of fea-

tures from the structural neighborhood. The structural neighborhood improved the overall

prediction in all test datasets. Also, empirical structure-based features of a rare variant in rare

disease cases showed that structure-based features play an important role in correctly classify-

ing benign versus pathogenic cases by identifying binding site information and structurally

stable information. We also compared our proposed features with numerous existing methods

and showed increased performance. All of the methods, PolyPhen2 [8], SIFT [32], CADD

[31], FATHMM [33], LRT [34], M-CAP [35], MutationAssessor [36], MutationTaster [37],

and PROVEAN [38], although most use structure-based features, do not focus on the careful

generation of structural features. We believed that generation of better structure-based features

will be able to improve theses methods as well.

We do recognize the limitation of structure-based features, such as limited coverage. How-

ever, we believe that the limitations can be addressed via various computational prediction

methods, such as structure prediction in the presence of mutation [39], reconstruction of pro-

tein-protein interactions [40], ligand binding site predictions [41], and stability predictions

[42]. In the future, we would like to include more structure-based features utilizing computa-

tional methods such as binding site predictions, and stability predictions and also increase cov-

erage by including structure prediction methods.
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7. Gress A, Ramensky V, Büch J, Keller A, Kalinina OV. StructMAn: annotation of single-nucleotide poly-

morphisms in the structural context. Nucleic acids research. 2016; 44(18):W463–W468. https://doi.org/

10.1093/nar/gkw364 PMID: 27150811

8. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server

for predicting damaging missense mutations. Nature methods. 2010; 7(4):248–249. https://doi.org/10.

1038/nmeth0410-248 PMID: 20354512

9. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using

PolyPhen-2. Current protocols in human genetics. 2013; p. 7–20.

10. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids

Research. 2003; 31(13):3812–3814. https://doi.org/10.1093/nar/gkg509 PMID: 12824425

11. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a

tool for Mendelian disease gene discovery. Nature reviews Genetics. 2011; 12(11):745. https://doi.org/

10.1038/nrg3031 PMID: 21946919

12. Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional

impact of rare coding variation from deep sequencing of human exomes. science. 2012; 337(6090):64–

69. https://doi.org/10.1126/science.1219240 PMID: 22604720

Impact of structural prior knowledge in SNV prioritization

PLOS ONE | https://doi.org/10.1371/journal.pone.0204101 September 28, 2018 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204101.s007
https://globalgenes.org/rare-diseases-facts-statistics/
https://globalgenes.org/rare-diseases-facts-statistics/
https://doi.org/10.1038/ng.499
http://www.ncbi.nlm.nih.gov/pubmed/19915526
https://doi.org/10.1038/nrg3555
https://doi.org/10.1038/nrg3555
http://www.ncbi.nlm.nih.gov/pubmed/23999272
https://doi.org/10.1158/0008-5472.CAN-09-1133
http://www.ncbi.nlm.nih.gov/pubmed/19654296
https://doi.org/10.1093/nar/gkw364
https://doi.org/10.1093/nar/gkw364
http://www.ncbi.nlm.nih.gov/pubmed/27150811
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nmeth0410-248
http://www.ncbi.nlm.nih.gov/pubmed/20354512
https://doi.org/10.1093/nar/gkg509
http://www.ncbi.nlm.nih.gov/pubmed/12824425
https://doi.org/10.1038/nrg3031
https://doi.org/10.1038/nrg3031
http://www.ncbi.nlm.nih.gov/pubmed/21946919
https://doi.org/10.1126/science.1219240
http://www.ncbi.nlm.nih.gov/pubmed/22604720
https://doi.org/10.1371/journal.pone.0204101


13. Bullock aN, Henckel J, Fersht aR. Quantitative analysis of residual folding and DNA binding in mutant

p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene. 2000; 19

(10):1245–1256. https://doi.org/10.1038/sj.onc.1203434 PMID: 10713666

14. Joerger AC, Ang HC, Fersht AR. Structural basis for understanding oncogenic p53 mutations and

designing rescue drugs. Proceedings of the National Academy of Sciences of the United States of

America. 2006; 103(41):15056–61. https://doi.org/10.1073/pnas.0607286103 PMID: 17015838

15. Zhang F, Hu C, Dong Y, Lin MS, Liu J, Jiang X, et al. The impact of V30A mutation on transthyretin pro-

tein structural stability and cytotoxicity against neuroblastoma cells. Archives of biochemistry and bio-

physics. 2013; 535(2):120–127. https://doi.org/10.1016/j.abb.2013.03.005 PMID: 23523753

16. Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes & development. 2012; 26

(12):1268–1286. https://doi.org/10.1101/gad.190678.112

17. Lwin TZ, Durant JJ, Bashford D. A fluid salt-bridging cluster and the stabilization of p53. Journal of

Molecular Biology. 2007; 373(5):1334–1347. https://doi.org/10.1016/j.jmb.2007.07.080 PMID:

17900613

18. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, et al. Exome sequencing identifies somatic mutations of

DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nature genetics. 2011; 43(4):309.

https://doi.org/10.1038/ng.788 PMID: 21399634

19. Shi J, Yang XR, Ballew B, Rotunno M, Calista D, Fargnoli MC, et al. Rare missense variants in POT1

predispose to familial cutaneous malignant melanoma. Nature genetics. 2014; 46(5):482–486. https://

doi.org/10.1038/ng.2941 PMID: 24686846
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