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Abstract

Laplacian mixture models identify overlapping regions of influence in unlabeled graph and

network data in a scalable and computationally efficient way, yielding useful low-dimensional

representations. By combining Laplacian eigenspace and finite mixture modeling methods,

they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a

variety of input data types, including mixture distributions, feature vectors, and graphs or net-

works. Provable optimal recovery using the algorithm is analytically shown for a nontrivial

class of cluster graphs. Heuristic approximations for scalable high-performance implementa-

tions are described and empirically tested. Connections to PageRank and community detec-

tion in network analysis demonstrate the wide applicability of this approach. The origins of

fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics,

are reviewed and summarized. Comparisons to other dimensionality reduction and clustering

methods for challenging unsupervised machine learning problems are also discussed.

Introduction

Extracting meaningful knowledge from large and nonlinearly-connected data structures is of

primary importance for efficiently utilizing data. Big data problems (e.g. > 1 GB/s) often con-

tain superpositions of multiple distinct processes, sources, or latent factors. Estimating or

inferring the component distributions or statistical factors is called the mixture problem.

Methods for solving mixture problems are known as mixture models [1], and in machine

learning they are used to define Bayes classifiers [2]. Mixture models are a widely applicable

pattern recognition and dimensionality reduction approach for extracting meaningful content

from large and complex datasets. Only finite mixture models are described here, although

countably or uncountably infinite numbers of mixture components are also possible [3]. In

terms of dimensionality reduction methods, Laplacian mixture models provide global and

non-hierarchical analyses of massive datasets using scalable algorithms.

0.1 Laplacian eigenspace methods

Eigensystems of Laplacian matrices are widely used by spectral clustering methods [4]. Spectral

clustering methods typically use the eigenvectors with small-magnitude eigenvalues as a basis
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for projecting data onto before applying some other clustering method on the projected item

coordinates [5].

In addition to graph/network data, Laplacian eigenspace methods can be applied to both

discrete observation data and also continuous mixture density function data as shown in sec-

tion 0.6. As Fig 1 shows, feature vectors or item data are mapped to a graph via a distance or

similarity measure [6], and mixture density data are mapped to a graph by finite-difference

approximations of the differential operator on a discrete grid or mesh. Both feature vector data

and continuous mixture density data are mapped to graph data as a preprocessing step prior to

spectral graph cluster analysis. For such applications, simple graphs are sufficient, meaning no

self-loops or multiple edges of the same type are allowed.

When clustering data items, pairwise similarity or distance measures describe the regions

of data space or subgraphs that represent closely related items. In this context data are vectors,

e.g. feature vectors in machine learning applications. Laplacian eigenspace methods fall into

the class of pairwise distance based clustering methods when data vectors are input. It is the

choice of this pairwise similarity or distance measure that is of utmost importance in creating

accurate and useful results when generating Laplacian matrices from data items. One area of

active research is in optimizing or learning the distance function based on some training data

[7].

Negative Laplacian matrices are also known as transition rate matrices or (infinitesimal)

generators of continuous-time Markov chains (CTMCs), as first noted by [8]. Their exponen-

tials are also referred to as heat kernels by analogy to the continuous heat equations that

involve the continuous Laplace operator [9–11]. Heat kernels are also known as diffusion ker-

nels, and have the same eigenvectors as Laplacians for discrete state spaces, or eigenfunctions

for continuous state spaces [12, 13].

For many practical purposes, assuming that the chains are irreducible, meaning there is a

path connecting every pair of states or nodes in the corresponding graph, does not lose any

Fig 1. Laplacian mixture modeling flow, gray squares show input datatypes and their mapping to Laplacian matrices (black square). Circles show

processing steps, and the solid black square shows output model after globally optimizing the Laplacian eigenspace.

https://doi.org/10.1371/journal.pone.0204096.g001
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generality. Strongly connected graphs correspond to irreducible chains, and chains can be bro-

ken into subchains and analyzed independently. Finite-state CTMCs contain embedded dis-

crete time Markov chains with related stochastic or Markov transition probability matrices

with related properties to Laplacian matrices. Given the holding times for each state, the sto-

chastic matrix of the embedded chain is equivalent to the corresponding Laplacian for the

CTMC.

On simple strongly connected networks, these matrices share the same first eigenvector

(with different eigenvalues), called the Perron-Frobenius (PF) eigenvector or stationary proba-

bility distribution of the chain. For non-symmetric Laplacians, the PF eigenvector can be

either a right/column or a left/row eigenvector, depending on the matrix indexing convention

used (right/column eigenvectors are used here). In many cases of interest the Laplacians are

symmetric, making this distinction irrelevant. According to the Perron-Frobenius theorem,

the PF eigenvector is always nonnegative and can be interpreted as a probability distribution.

Laplacian matrices both define distributions by their PF eigenvectors, and can also can

be defined by distributions by constructing a matrix with a matching PF eigenvector. This

equivalence between distributions and Laplacian matrices provides a natural and useful bridge

between probability distributions and Laplacian eigenspaces. The duality between Laplacian

matrices and probability distributions can be used for the purposes of statistical analyses and

unsupervised machine learning. Their spectral decompositions provide data-dependent bases

for describing patterns that represent global, nonhierarchical structures in the underlying

graph.

Laplacian mixture models are one way of probabilistically solving the multiple Laplacian

eigenvector problem, as section 0.2 describes. They generate probabilistic mixture models

directly from Laplacian eigenspaces by optimally combining other eigenvectors with the

Perron-Frobenius eigenvector.

0.2 Mixture models

Distinct component processes generate superpositions of overlapping component distribu-

tions when observed in aggregate, creating a mixture distribution. The mixture problem is not

easy to generally solve in part because it is so open-ended and difficult to objectively define in

real-world contexts. In 1894, Karl Pearson stated that the analytical difficulties, even for the case
n = 2 are so considerable, that it may be questioned whether the general theory could ever be
applied in practice to any numerical case [14]. Current unmixing or separation algorithms still

cannot predict the number of components directly from observations of the mixture without

additional information, or else they are parametric approaches that restrict components to

fixed functional forms which are often unrealistic assumptions, especially in high dimensional

spaces [3].

Methods for separating the components of nonnegative mixtures of the form

f ðxÞ ¼
Xm

k¼1

akfkðxÞ ð1Þ

are called mixture models, where m 2 N is the number of mixture components and with

x 2 O an element of an index set e.g. O � Rn in the continuous variable case or O � N for

the discrete case. All of the results presented here for the continuous variable cases carry over

to the discrete cases by replacing integrals

Z

x2O

� dx with summations
X

x2O

� for numerical

accessibility.
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Since all continuous problems must be discretized for numerical applications, the focus is

on discrete variables x with continuous problems saved for the appendix. For all practical

problems, it is safe to assume f(x) is normalized as a probability distribution without loss of

generality.

The fk(x) are known as the mixture components or component probability distributions of

each independent process or signal source, and are also assumed to be normalized without loss

of generality. The ak 2 [0, 1] are the weights or mixing proportions summing to one and form-

ing a discrete probability distribution P(k) = ak, which is known as the class prior distribution

in the context of probabilistic or Bayes classifiers [2].

Finite mixture models can be used to define probabilistic classifiers and vice versa. From

exact knowledge of {f, f1, . . ., fm, a1, . . ., am}, the posterior conditional distribution of an opti-

mal Bayes classifier for any observed y 2 O can be expressed as

Pðk j yÞ ¼
Pðy j kÞPðkÞ

PðyÞ
ð2Þ

¼
akfkðyÞ
f ðyÞ

; ð3Þ

forming a partition of unity over the space of observations or data [15]. The component

distributions fk(x) can be understood as the class conditional distributions P(xjk) and f(x) as

the evidence P(x) in the context of Bayes classifiers and supervised machine learning. As prob-

abilistic/Bayes classifiers Pðk j xÞ ¼ akfkðyÞ
f ðyÞ form partitions of unity (2) from finite mixture mod-

els (1), so do finite mixture models form partitions of unity as well. In other words, partitions

of unity can be defined first, without any reference to finite mixture models (1), as

pkðxÞ �
a0kf

0
kðxÞP

kakf 0kðxÞ
ð4Þ

subject to the constraints

Xm

k¼1

a0k ¼ 1

Z

O

f 0kðxÞdx ¼ 1 k ¼ 1; . . . ;m:

8
>>>><

>>>>:

ð5Þ

To connect mixture models with partitions of unity, the mixture components ffkðxÞg
m
k¼1

and weights fakg
m
k¼1

from mixture models (1) can be related to (4) for k = 1, . . ., m according

to

akðxÞ ¼
Z

O

pkðxÞf ðxÞdx

fkðxÞ ¼ a� 1
k pkðxÞf ðxÞ

8
><

>:
ð6Þ

with
X

x2O

pkðxÞf ðxÞ for discrete O cases. This explicitly shows the formal equivalence of parti-

tions of unity (4) as discriminative versions of finite mixture models (1). In this case, the

partition of unity fpkðxÞg
m
k¼1

can be interpreted as fPðk j xÞgmk¼1
, the mixture component con-

ditional probabilities.

Laplacian mixture modeling
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Partitions of unity (4) do not explicitly involve f(x) the mixture distribution, or require it as

an input. In other words, the component conditional probabilities fpkðxÞ ¼ Pðk j xÞgmk¼1
can

still be computed even if knowledge of f(x) the underlying mixture distribution is not available

or is not required. This makes the partition of unity form of mixture models (4) very useful in

practice, since they apply even in cases where estimating f(x) is not relevant or available such

as cluster analysis, graph partitioning, and domain decomposition. Therefore, mixture models

can be considered as a special case of partitions of unity applied to the separation of mixture

probability distributions.

In applications such as cluster analysis or graph partitioning, unlabeled data are automati-

cally assigned to various groups known as clusters to distinguish them. Clusters can be under-

stood as unsupervised analogs of classes from supervised machine learning. In cluster analysis,

computing a partitions of unity of the form (4) provides a probabilistic or fuzzy clustering or

partition. The components of the partition of unity fpkðxÞg
m
k¼1

can be interpreted as condi-

tional probabilities over the clusters or partitions, analogous to the class conditional distribu-

tions (2) of Bayes classifiers.

For such problems the mixture components {fk(x)} are not relevant, and only the cluster

conditional probabilities {pk(x)} are needed. Formally, they can be viewed as mixture models

via (4) where f(x) = constant the uniform distribution over O the domain. Soft clusterings are

most useful when insights into the global structures of data spaces or networks are of interest.

Hard clustering algorithms, such as k-means, do not provide any information about the global,

nonhierarchical relationships between items or nodes in a graph. Rather than being dichoto-

mous as implied by their names, soft and hard clustering approaches are complementary, and

may be used together in one analysis to answer different questions about the same dataset.

Materials and methods

Finite mixture models of the form (1) are easy to understand and interpret due to their proba-

bilistic definition. This motivates hybridizing finite mixture models and Laplacian eigenspace

methods, as described in this section.

0.3 Notation

Let V� {1, . . ., N} be the set of ordered vertices of a simple strongly connected graph G with

weight function w: V × V! [0, 1], and w(i, j) = 0 if no edge between vertices i and j exists.

Let A 2 RN�N be the weighted adjacency matrix of G with aij = w(i, j), and let d� eT A and

D � diag ðd1 � � � dNÞ 2 R
N�N be the corresponding diagonals weighted degree matrix. e 2 RN

represents the column vector of all ones. The weighted Laplacian D 2 RN�N of graph G for

some fixed ordering on the vertices V is given by

Dðu; vÞ �

dv; if u ¼ v;

� wðu; vÞ; if u and v are adjacent;

0; otherwise;

8
>>><

>>>:

ð7Þ

where dv is the weighted vertex degree of the v-th vertex, and u = 1, . . ., N, v = 1, . . ., N. In

matrix notation this becomes Δ = D − A. Using this definition, the Perron-Frobenius vector

corresponds to the right column eigenvector of Δ with eigenvalue zero.

Let ϕi(x), i = 0, . . ., N − 1 denote the right eigenvectors of N × N Laplacian matrices Δ of

simple strongly connected weighted or unweighted graphs, and similarity for their continuous

eigenfunction analogs where N =1. Since the Laplacian matrices Δ are assumed to be normal,

Laplacian mixture modeling
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their right eigenvectors form a complete orthonormal basis over O, the discrete or continuous

domain. Assume that these eigenvectors are ordered according to ascending eigenvalue mag-

nitude. The Laplacian mixture modeling algorithm estimates the true finite mixture distribu-

tion components fk(x), k = 1, . . ., m from (1) directly from {ϕ0, . . ., ϕm − 1} the first m right

eigenvectors of normal Laplacian matrices. For now, assume that m is known or given as a

constant Laplacian mixture models are determined directly from the, with m� N in many

dimensionality reduction problems [16, 17]. Section 0.6 describes methods for estimating m
using existing model selection techniques in cases where it is not known.

Although the algorithm is defined for continuous domains, the scope is limited to discrete

problems here, to focus on the most practical situations. The discrete input is the set of eigen-

vectors 1, . . ., m of Δ, the weighted graph Laplacian. Unweighted graphs occur for binary

weights w: V × V! {0, 1} that are all zeros or ones, which can be considered a special case of

continuous weights on the unit interval. The assumption that w has a maximum value of 1 can

be made without loss of generality.

Three types of input data and their corresponding analysis problems are considered:

1. Graph or network data are converted to Laplacian matrices via their weighted adjacency

matrices, and the problem is to infer the optimal fuzzy assignments or soft partitioning for

community detection and centrality scoring.

2. Feature vector data, which are converted into Laplacian form using pairwise similarity or

distance measures, in which case the problem is to estimate fpkðxÞg
m
k¼1

the conditional mix-

ture probability estimates.

3. Sampled values of a mixture density function f(x), for which the resulting Laplacian is

designed so that f(x)� ϕ0(x), the Perron-Frobenius or first Laplacian eigenvector, and the

problem is to estimate ffkðxÞg
m
k¼1

the mixture components.

The vector of fuzzy spectral estimates p̂ for the true values pk(x) from (4) can be defined

in terms of a nonlinear optimization problem for M 2 GLðmÞ � Rm�m, the square invertible

m × m matrix of expansion coefficients.

Minimizing the error or nondeterminicity of the model from a Bayes classifier standpoint

(2) serves as an objective for determining the optimal matrix M� having the least total overlap

of the macrostate boundaries allowable by the subspace spanned by the selected right eigenvec-

tors. The sum of the expected values of the squares of the conditional probabilities

Xm

k¼1

hp2

kðxÞi�0
ð8Þ

equals one if and only if they are perfectly binary or deterministic. Therefore the deviation of

the expected squares of the conditional probabilities from unity 1 �
Xm

k¼1

hp2

kðxÞi�0
serves as a

measure of the squared error i.e. fuzziness, overlap, or nondeterminicity.

0.4 Definition

Let the loss function 0< L< 1 represent this expected error or nondeterminicity i.e. areas of

fuzziness or overlap where the conditional probabilities are non-binary,

L � 1 �
Xm

k¼1

hp̂2

kðxÞi�0
ð9Þ

Laplacian mixture modeling
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which is equivalent to the probabilistic classifier’s expected error using a quadratic loss func-

tion [2]. (
R

O • dx can be replaced by ∑x2O • in discrete cases.) This objective function definition

connects Laplacian eigenspace methods and probabilistic/Bayes classifiers (2) derived from

finite mixture models.

The minimum expected error condition

M� � argmin
M

LðMÞ ð10Þ

subject to the partition of unity constraints

p̂kðxÞ � 0; 8x 2 O; k ¼ 1; . . . ;m
X

k

p̂kðxÞ ¼ 1; 8x 2 O

8
><

>:
ð11Þ

selects maximally crisp (non-overlapping) or minimally fuzzy (overlapping) decision bound-

aries among classifiers formed by the span of the selected right eigenvectors. This objective

function attempts to minimize the expected overlap or model error between the component

distributions of the mixture distribution f(x)� ϕ0(x) defined by the PF eigenvector of the

input Laplacian. Minimizing the loss L(M) occurs over the matrix of expansion coefficients for

the eigenspace spanned by the selected right eigenvectors f�ig
m� 1

i¼0
which serve as an orthogo-

nal basis. The eigenbasis provides linear inequality constraints defining a feasible region in

terms of a convex hull over M 2 GL(m) the expansion coefficient parameter space.

Therefore

f̂ kðx;M�Þ � â � 1
k ðM

�Þp̂kðx;M�Þf ðxÞ ð12Þ

provides the following definition of a Laplacian mixture model via (6):

f ðxÞ ¼
Xm

k¼1

âkðM
�Þf̂ kðx;M

�Þ; ð13Þ

where M� solves (10) and (11), a linear-constrained concave quadratic optimization problem.

0.5 Global optimization

In terms of probabilistic classifiers, the loss function L(M) represents the mean squared error

of the probabilistic classifier derived from the mixture model specified by each value of M. By

minimizing L(M), Laplacian mixture models provide spectrally regularized minimum mean

squared error separations for a variety of input data types, as shown in Fig 1.

For any viable value for m the number of mixture components, the column vector valued

function

p̂ � p̂1ðx;MÞ � � � p̂mðx;MÞð Þ
T ð14Þ

is numerically optimized over M to compute the Laplacian mixture model. The optimal p̂ is

determined via global optimization of L(M) over the set of coordinate transformation matrices

M satisfying the partition of unity constraints (11) to compute M� the globally-optimized

model parameters.

Laplacian mixture modeling
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In matrix notation, any feasible p̂ can be written in terms of M and the column vector of

basis functions

o �

�0ðxÞffiffiffiffiffiffiffiffiffiffiffi
�0ðxÞ

p

�1ðxÞffiffiffiffiffiffiffiffiffiffiffi
�0ðxÞ

p

..

.

�m� 1ðxÞffiffiffiffiffiffiffiffiffiffiffi
�0ðxÞ

p

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð15Þ

as

p̂ ¼ Mo ð16Þ

subject to

( MTe ¼ e1

MoðxÞ � 0 8x;
ð17Þ

where e = (1 1 . . . 1)T and e1 = (1 0 . . . 0)T are m × 1 column vectors.

Now the objective function L(M) can be expressed in terms of ω and f(x)� ϕ0(x) as

L ¼ 1 �
Xm

k¼1

hp̂2

kðxÞi�0
ð18Þ

¼ 1 � hoTMTMoi�0
ð19Þ

¼ 1 �
Xm� 1

i;j¼0

ðMTMÞij

Z

O

�iðxÞ�jðxÞdx
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

dij

ð20Þ

¼ 1 � trMTM; ð21Þ

a concave quadratic function where tr MTM is equal to kMk2
F , the squared Frobenius norm of

M the eigenbasis transformation matrix.

Weighted graph Laplacians may not always be normal matrices, in which case the eigen-

vectors may not be orthogonal. In many cases, the Laplacian can be symmetrized prior to

running the Laplacian mixture modeling algorithm. Directed weighted graphs with combi-

natorially symmetric adjacency matrices correspond to finite ergodic (i.e. irreducible and

aperiodic) Markov chains satisfying detailed balance. Combinatorially symmetric graph

Laplacians can be symmetrized by conjugation with diagonal matrices, analogous to a

change of variables in the corresponding heat equation [18, 19]. Reversing the change of

variables after computing the Laplacian mixture model allows the same form as above to

be used in this more general context. This type of symmetrized Laplacian has the same

Laplacian mixture modeling
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eigenvalues as the original unnormalized graph Laplacian, unlike the standard symmetric

normalized graph Laplacian [20].

These results allow the linearly constrained global optimization problem for M� to be stated

as

minimize
M

1� kMk2
F

subject to
MTe ¼ e1

ðM�ÞðxÞ � 0 8x
M 2 GLðmÞ:

ð22Þ

The linear inequality constraints Mϕ� 0 encode all of the problem-dependent data from

the input Laplacian via

� ¼ �0ðxÞ �1ðxÞ � � � �m� 1ðxÞð Þ
T
: ð23Þ

This linearly constrained concave quadratic problem is an archetypal example of an NP-

hard problem because of the combinatorial number of vertex solutions defined by the convex

polytope formed by the constraints. Statistically useful solutions are not guaranteed to exist

and even then they do, approximating the solution to 22 requires specialized numerical

algorithms. Simple yet nontrivial problems where this optimization problem can be solved

analytically, yielding optimal models, are shown next. This provides evidence for the useful-

ness of Laplacian mixture models, and highlights some of their spectral graph theoretic prop-

erties.

0.6 Interpolating cluster graphs

In this section, Laplacian mixture models are shown to perform optimally on a type of graph

that can be called interpolating cluster graphs. Cluster graphs are unions of complete graphs,

and have block diagonal adjacency matrices, corresponding to disjoint subgraphs. Complete

graphs have adjacency matrices whose off-diagonal elements are all equal to one, correspond-

ing to fully interconnected vertices. Cluster and complete graphs are both well studied and

understood from the perspective of spectral graph theory [21].

Interpolating them allows spectral graph theoretic results for cluster and complete

unweighted graphs to be extended to cluster-weighted complete graphs. Suppose that K 2 N�2

is the number of blocks, Nk 2 N�2, k = 1, . . ., K, are the vertex counts for each cluster, and

N� ∑k Nk is the total vertex count. Let the family of interpolating cluster graphs B 2 RN�N be

defined by their adjacency matrix form:

B � Acluster þ ð1 � εÞ ½eNeTN � Acluster� ð24Þ

Acluster �
MK

k¼1

½eNke
T
Nk
� INk �: ð25Þ

The matrix In 2 R
n�n denotes the n-by-n identity matrix and eneTn 2 R

n�n, n 2 N�2, denotes

the outer product of the real vector of all ones with itself, i.e. the rank-one n-by-n matrix of all

ones.

Laplacian mixture modeling
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Although the term “interpolating graph” was introduced here for the specific case of inter-

polating between cluster graphs and complete graphs, the concept can be defined for any two

arbitrary graphs with the same nodes. In general, given two N × N graph adjacency matrices

A0 and A1, an interpolating graph adjacency matrix Ainterp = (1 − ε)A0 + εA1 can be defined as

their convex sum. Using this form, interpolating cluster graphs 24 can be written B = (1 − ε)

Acomplete + εAcluster, where Acomplete and Acluster are the respective N × N adjacency matrices for a

complete graph and a cluster graph. This shows that interpolating cluster graphs form a con-

nection between complete and cluster graphs.

Therefore, interpolating graphs can be seen as a specific type of graph perturbation. Graph

perturbations such as those involving mass-spring networks have been studied in [22–24].

Studying the properties interpolating graphs in more depth may be of theoretical interest, but

that is not the focus of this article.

The adjacency matrices of interpolating cluster graphs interpolate between the adjacency

matrices of cluster graphs and the adjacency matrices of complete graphs via ε 2 [0, 1], a

separation parameter. Interpolating cluster graphs are complete graphs when the separation

parameter ε equals zero, and they are cluster graphs for ε = 1. In between, for 0< ε< 1, inter-

polating cluster graphs provide models of highly similar of vertices representing homogeneous

network communities.

When ε = 1, B = A, a block diagonal adjacency matrix corresponding to a cluster graph that

is a union of K smaller complete Nk-vertex graphs. Results from spectral graph theory show

that for cluster graphs, the zero eigenvalue has multiplicity K and that the connected compo-

nents of the graph can be directly identified from the position of their nonzero elements. All of

the information about the structure of cluster graphs is contained in the K-dimensional Lapla-

cian eigenspace associated with the zero eigenvalue.

With ε = 0, B ¼ eNeTN � IN , the adjacency matrix of a complete N-vertex graph with uniform

edge weights. Spectral graph theory shows that the multiplicity of the 2nd eigenvalue of a com-

plete graph is N − 1, and its value is N.

The 2nd Laplacian eigenvalue, called the Fiedler value, measures the connectivity of the

graph and can be used to find optimal partitions [25]. When the Fiedler value has multiplicity

one, its corresponding eigenvector is known as the Fiedler vector. The eigendecomposition of

interpolating cluster graphs was found to have a simple analytically solvable form.

Interpolating cluster graphs have a 2nd Laplacian eigenvalue with multiplicity K − 1, so in

some sense, they have K − 1 Fiedler vectors. This makes using the Fiedler vector to identify the

corresponding cluster partitions a more challenging problem. In this section, Laplacian mix-

ture models are shown to optimally solve it.

For any 0� ε< 1, the graph is connected, the zero eigenvalue of B has multiplicity one,

and the eigenvector with eigenvalue zero is the constant vector. The one-dimensional Lapla-

cian eigenspace associated with the zero eigenvalue no longer contains any information about

the cluster structure of the graph. In addition, the 2nd eigenvalue equals N(1 − ε) with multi-

plicity K − 1, and the eigenvectors associated with this eigenvalue are not uniquely determined.

It is no longer obvious how to infer the cluster assignments of each vertex directly from the

eigenvectors associated with the first K eigenvalues.

For interpolating cluster graphs, the Laplacian mixture modeling optimization problem

(22) can be analytically solved, as shown below. Laplacian mixture models recover the struc-

ture of interpolating cluster graphs exactly, converting the first K eigenvectors into binary

conditional probabilities for belonging to each cluster. Although the eigenvectors associated

with the 2nd eigenvalue are not uniquely determined, expressions for them can be defined to

encode the transition rates of conserved quantities between blocks.
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Choosing the first cluster as a reference for concreteness, the analytic expressions for these

K − 1 eigenvectors, ϕij, where i = 1, . . ., N, and j = 0, . . ., K − 1, are given by:

�ij ¼

1; if vertex i is in cluster 1;

�
N1

Nk
; if vertices i and j are in the same cluster;

0 otherwise:

8
><

>:
ð26Þ

The corresponding 2nd eigenvalue with multiplicity K − 1 equals N(1 − ε). These expres-

sions can be easily verified e.g. by direct substitution or using symbolic manipulation tools for

specific choices of K.

Although the eigenvectors listed above are not mutually orthogonal, they are orthogonal to

the constant vector, since they sum to zero. They are also linearly independent, and can there-

fore be used to prove the optimality of the Laplacian mixture model for this graph. Putting

p1 ¼
1

N

XK

i¼1

Ni�i� 1 ð27Þ

pj ¼
Nj

N1

ðp1 � �j� 1Þ; 8j ¼ 0; . . . ;K � 1; ð28Þ

solves the Laplacian mixture modeling problem explicitly, in closed-form for any finite K<1
number of blocks.

These binary conditional probabilities form an indicator matrix p 2 RN�m for the cluster

assignments of each vertex. I.e., pij = 1 if vertex i is in cluster j and 0 otherwise, providing an

exact solution to the cluster weighted complete graph analysis problem. This corresponds to

an ideal solution with no fuzziness in the assignments of each vertex to a single cluster. The

objective function value L from (9) reaches its lower bound of zero for such binary mixture

component conditional probabilities. Laplacian mixture models therefore have provable opti-

mality properties on cluster interpolating graph types.

For this analytically solvable case, Laplacian mixture models exactly recover the block diag-

onal structure of Bðε;K; fNkg
K
k¼1
Þ the interpolating cluster graphs, for all cluster numbers K,

cluster sizes fNkg
K
k¼1

, and separation parameters ε 2 (0, 1). For any fixed K, This can be easily

verified directly or via symbolic manipulation tools. Rigorous proofs, using mathematical

induction, are beyond the scope of this article. Having solutions to Laplacian mixture model-

ing problems for any Bðε;K; fNkg
K
k¼1
Þ on arbitrarily large graphs and cluster numbers allows

validation of numerical solvers.

In the limit of vanishing separation parameter ε, the graph approaches a complete graph

without any cluster structure. When ε becomes arbitrarily close to zero, the 2nd eigenvalue

becomes arbitrarily close to the higher eigenvalues, and the gap between the 2nd and higher

eigenvalues becomes arbitrarily small. Laplacian mixture models remain exact for this class of

graphs regardless of the magnitude of the spectral gap, i.e. even when there are no sparse cuts.

These analytic results show that there are cases where Laplacian spectral gap presence is suffi-

cient but not necessary for the first K eigenvectors to be useful in identifying graph structure.

Theoretical worst-case analysis suggests that exact solutions to the NP-hard global optimi-

zation problem involved are not possible. Nevertheless, useful approximate solutions have

been developed for density function estimate, feature/vector, and graph data during the course

of numerical testing. Numerical examples are presented next to demonstrate the flexibility,

versatility, and other features of Laplacian mixture modeling approaches.
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Results and discussion

The NP-hard nature of the linearly-constrained concave quadratic global optimization prob-

lem makes exhaustively computing all possible models is impractical, due to the geometric

growth with increasing model dimension in the number of vertices in the convex hull defined

by the linear inequality-constraints. Empirical testing suggests that for most applications, this

theoretical obstacle can be avoided in practice, and accurate solutions sampling strategies can

be scalably implemented for approximating the global optimizer on large datasets. In part, this

is due to the detailed information contained in each of the factors or mixture components

identified due to their fuzzy/overlapping/probabilistic form.

Laplacian mixture model components identify large-scale regions of the graph in such a

way that each region covers the entire graph. Each mixture component, factor, or dimension

provides information about the entire graph whose weighting favors the region it corresponds

to. As demonstrated in this section, it is possible to efficiently compute a reasonable range of

components or dimensions even on relatively large graphs, making the NP-hard aspects of the

global optimization problem circumventable.

Optimizing the sampling strategy for approximately solving the linearly-constrained

concave quadratic global optimization problem is an open problem not discussed here.

These parameters are used as inputs for the modified Frank-Wolfe heuristic, which involves

solving a set of linear programming problems. The details of the modified Frank-Wolfe heu-

ristic are described in more detail in [26]. Since they are not data-dependent, and for the

sake of consistency when comparing different runs, the global optimization search parame-

ters were precomputed and stored in a lookup table. By using a lookup table, computing

these parameters does not contribute any significant overhead to the optimization runtimes.

The current strategy is to gain confidence in the reliability of the approximant by locating

the same one multiple times using different search parameters by slightly oversampling the

solution space.

Because of numerical limits of finite-precision arithmetic, it is impossible to perfectly

enforce the constraint that the transformation matrix M� be invertible. One way of dealing

with this issue is to apply an even stricter constraint that often makes sense for data analysis

applications. This constraint requires that all factors contain at least one item whose probabil-

ity for that factor is larger than all other factors.

This means that hard-thresholding the conditional factor probabilities must not create any

degenerate clusters with zero items assigned to them. It’s a reasonable criterion for applica-

tions where each factor represents an independent observable signal generating process.

Therefore, the optimal solution is chosen by minimizing the loss function L(M) over all non-

degenerate models. Many of the computed solutions are degenerate, an aspect of the NP-hard

optimization problem that is partially circumvented in practical situations using heuristics to

accurately approximate the solution.

Algorithm 1 lists the pseudocode describing the actual operations performed for all of

the numerical results presented here. The details of the modified Frank-Wolfe heuristic are

described in [26]. In this section, several numerical examples are presented to illustrate some

Laplacian mixture model sampling strategies and demonstrate their efficacy on both synthetic

and real-world problems. The results show high levels of performance across a range of prob-

lem types without encountering problems such as numerical instability or sensitivity to small

variations of tunable parameters. All model computation run-times were less than 24 hours

using MATLAB on a dual 2.40 GHz INTEL XEON E5-2640 CPU running the 64-bit WINDOWS 10

operating system with 128GB of RAM.
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Algorithm 1 Compute p for N × m Laplacian eigenvector matrix ϕ
1: procedure LAPLACIANMIXTUREMODEL (�, S)
2: Initialize scalar Lmin  1
3: Initialize m × m array M�

4: for s 2 S do ⊳ Run the modified Frank-Wolfe heuristic
5: Ms  argmin

M
LPðM;�; sÞ

6: pT  Ms �T

7: Initialize 1 × m array c  0
8: for i = 1, . . ., N do ⊳ Run the degeneracy check
9: j argmax

k¼1;...;m
ðpTi Þk

10: cj  cj + 1
11: end for
12: if min

k¼1;...;m
ck > 0 then

13: LðMsÞ  1� kMsk
2
F

14: else
15: L(Ms)  1
16: end if
17: if L(Ms) < Lmin then
18: Lmin  L(Ms)
19: M�  Ms
20: end if
21: end for
22: pT  M��T

23: Return {p, M�}
24: end procedure

Data are cleared from memory after the sparse similarity matrix is computed to conserve

resources. Small-magnitude eigenvector estimates for f�iðxÞg
mmax
i¼0

are computed using the

Matlab function eigs, a sparse iterative solver. The similarity matrix may be cleared from mem-

ory after computing the firstm eigenvectors, before the spectral mixture models are computed.

Noisy interpolating cluster graphs

The analytic solution of the spectral mixture modeling problem for interpolating cluster

graphs provides provable optimality results for these class of idealized noise-free graphs. Per-

formance evaluation in the presence of noise is also necessary in order for these theoretical

results to be meaningful on real graph datasets, which contain noise.

It is not possible to test every possible combination of cluster number, cluster size distri-

bution, noise level, and noise type. Nevertheless, testing with a few varied noise levels and

combinations is sufficient to provide evidence for the stability and robustness of the algo-

rithm performance.

To demonstrate the algorithm’s multiscale pattern recognition capabilities, five log-linearly

spaced cluster sizes were chosen, ranging from 2 to 10,000 vertices. Six varied noise levels cor-

responding to choices of the α uniform noise parameter were also tested. Uniform noise was

symmetrically added to noise-free interpolating cluster graph adjacency matrices B(ε) accord-

ing to

~bij ¼ bji � ð1 � aÞbij þ au ð29Þ

to generate noisy adjacency matrices ~BðεÞ, where u is a sample from the uniform distribution

over the unit interval. This form ensures that all elements of ~B lie between zero and one.

(Matlab code implementing the generation of these noisy interpolating cluster graphs is avail-

able upon request.)
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Sparsifying the graph prior to analysis by using a cutoff parameter on the nearest neighbors

of each vertex is common in practice. See [27] for details on the intuition and justification for

this sparsification parameter. Five different values of the kNN nearest neighbor parameter and

three different values of the kmin outlier removal parameter were applied to validate the meth-

odology subsequently used for real world data. The entire test was repeated for Nout = 0 and

Nout = 1 choices of Nout, the outlier noise parameter.

For each of the resulting 180 {α, kNN, kmin, Nout} parameter combinations, ten randomized

samples were drawn using the same pseudorandom seed to allow direct comparisons to be

made. Panels of Fig 2 show the number of errors vs. kNN as errorbar overlay plots, representing

a total of 1800 runs. Markers represent average labeling errors after assigning each vertex to

one of the 5 mixture components identified. Error bar lengths indicate one sample standard

deviation, and colors correspond to the different cluster sizes as labeled.

In the absence of outliers (Nout = 0), perfect accuracy was achieved for all noise levels on

cluster sizes larger than 100. For some choices of kNN, for any choice of kmin, perfect accuracy

was obtained for all cluster sizes over all samples, showing that setting kmin > 0 does not intro-

duce algorithm errors. In fact, perfect accuracy was achieved at Nout = 1 for all cluster sizes and

noise levels using kmin = 1 for several values of kNN.

For one outlier (Nout = 1), the accuracy of the algorithm on the smallest cluster size of 2 suf-

fers significantly at all noise levels, as shown in the lower section of Fig 2. In this case, setting

kmin = 1 significantly improved the accuracy of the smallest cluster size with 2 vertices and low

noise levels (top panel, middle column), reducing the average errors count to 0.1.

Fig 2 shows that although high levels of noise make small cluster sizes difficult to recover,

overall, the best accuracy occurs with kmin = 1 and kNN = 100. The improvements in accuracy

shown for Nout = 1 using kmin = 1 were also verified using higher values of Nout (data not

shown). This indicates that the algorithm’s optimal recovery property for cluster graphs is

highly robust to noise and is not overly sensitive to the choice of kNN and kmin parameters. It

also supports the methodology of using kmin > 0 and kNN< N for real data, as described in

subsequent sections.

Data clustering/fusion

Only the eigenvectors with small magnitude eigenvalues are necessary to compute Laplacian

mixture models, which are of lower dimensionality than the original data. The original data

are not used as direct inputs to the algorithm, allowing efficient use of memory resources and

storage after the initial preprocessing steps are completed. The maximum number of eigenvec-

tors to compute is data and application dependent, and there are almost as many different con-

ceptions and definitions of communities in network analysis as there are problem areas. All of

the steps of the algorithm are listed in Algorithm 1 for the sake of clarity and reproducibility.

Once computed, the resulting Laplacian mixture models can be used as lower-dimensional

or reduced representations of the original data. This type of dimensionality reduction occurs

as part of a larger machine learning system, e.g. for supervised machine learning algorithm

training problems such as classification. It can also be used for low-rank approximations in lin-

ear and multilinear (tensor) regression problems. In these cases, it is the details of the larger

system that this dimensionality reduction step is embedded within that determine the amount

of information loss that occurs.

This example involves single-cell expression profile data using a technique known as Drop-

seq that can easily generate over 10,000 measurements per 50,000-cell tissue sample [28]. Cell

contents are suspended within droplets, and the mRNAs are captured on microbeads with

unique DNA barcodes that allow single-cell analyses to be done in parallel without losing the
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Fig 2. Overlay plot matrix of number of errors vs. kNN, representing a total of 1800 Laplacian mixture modeling

algorithm runs. Noisy interpolating cluster graph matrices ~Bðε ¼ 1=2Þ were randomly generated for each run.

Markers represent sample averages of labeling error numbers, after assigning each vertex to one of the 5 mixture

components identified. Marker sizes correspond to uniform noise level α as indicated by the marker key on top of the

plot matrix. Error bar lengths indicate one sample standard deviation. Colors correspond to the different log-linearly

spaced cluster sizes (2, 17, 142, 1190, 104) as labeled. Columns correspond to different values of kmin, the minimum

strongly-connected neighbor number. Outlier noise level indicated byNout parameter separating upper and lower

sections of the plot matrix.

https://doi.org/10.1371/journal.pone.0204096.g002
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association to the individual cells captured [29]. Tissues such as the retina have specialized

and differentiated cell types that have been identified as histologically distinct, and single-cell

expression data potentially provides a means of matching cell types with unique gene expres-

sion features. One of the issues in the field is its exploratory nature, requiring unsupervised

machine learning approaches since there are no “ground truth” data or labels available (E.Z.

Macosko, personal communication).

Probabilistic models can infer whether some set of low-dimensional factors can explain the

various expression profiles measured. This example represents one of the first nonhierarchical

analyses of single-cell expression and potentially paves the way for useful biological insights

into the structure of cellular expression patterns.

To tune the structures recognized by the first m Laplacian eigenvectors, a minimum weight

parameter was introduced. This parameter adjusts the minimum similarity value. I.e., if an

item’s max similarity is less than this value, it was set to it, connecting all of the items with at

least one other item to prevent weakly-connected graphs. The minimum weight parameter

was set to the 99-th percentile value over all pairs for the purpose of illustrating the method.

According to [30], this parameter should be varied across some range of interest and consen-

sus information extracted from the ensemble.

In addition to the minimum weight parameter, there are many possible choices of normali-

zation for the measurements prior to fitting or learning the model in an unsupervised manner.

Euclidean distances are well tested, but in multidimensional spaces they are sensitive to the

choice of normalization. To identify unpredicted biological information, ensemble clustering

approaches are recommended, where multiple perturbations of the cluster analysis are made,

including the parameters of clustering [30]. The denoised normalization developed for the

example shown below is suggested as an additional perturbation that may be used for future

ensemble clustering setting, not as a general improvement for all cases.

The motivation for developing a denoised normalization is provided by the histogram

Fig 3, which shows the distribution of un-denoised median-centered and max-scaled data.

After subtracting the median value, 9 cells were all zeros, i.e. these cells probably contained no

useful data and were not included in the subsequent analyses to avoid spurious clusters. (The

indices of these all-zero cells in the dataset are: 4583, 6148, 13026, 15439, 17395, 24267, 26655,

28148, and 43383.)

The bulk of the data (> 95%) occurs in the region containing the broad peak shown in the

blue colored bins, lying between the orange colored bins containing negative values and the

bin containing a value of one. Bins containing negative values, and the bin containing the

value of one, in orange, do not match the shape of the portion shown in blue containing most

of the data, and appear to belong to other distributions that should be analyzed separately or

treated as measurement artifacts or noise. For the purposes of the example shown here, the

points indicated by orange bins in Fig 3 are treated as outliers and removed as a denoising

step, prior to performing any data clustering. Since this denoising step removes less than 5% of

the total data, it is reasonable to assume it does not affect the biological relevance of the results,

when the goal is to obtain a view of global patterns contained in the entire dataset as whole.

The saturated values indicated by the orange bin on the right cannot be distinguished from

artifacts due to contamination or sensor malfunction. Removing them is a conservative choice

in order to focus on the dominant mode of the distribution and to make the analysis less sensi-

tive to potential outliers.

Another reason for using the denoised normalization developed here is because the nor-

malization used in [28] contains features that may adversely affect statistical analyses that

involve Euclidean distances. Fig 4 compares the denoised unit-max and unit-median normali-

zations for the 49299 cells (columns) and 24657 genes (rows) used here to the normalization in
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Fig 3. Histogram of 10,900,036 nonzero Drop-seq datapoints after subtracting median and dividing by max value for each cell. Bins containing

negative values on the left and the bin containing one on the right are colored orange to indicate outlier distributions and contain< 5% of the data.

Bins containing values between 0 and 0.995 are colored in blue and capture> 95% of the data. Only the data from the bins shown in blue was used for

subsequent data clustering steps.

https://doi.org/10.1371/journal.pone.0204096.g003

Fig 4. Comparison of normalization in [28] (left column) to the denoised unit normalization used here (right

column). The bottom row c shows the median of the same unnormalized columns that were input into both

normalization procedures. The middle row b shows the median of the normalized values for each column of data,

where columns correspond to retina cell types. Row a shows the maximum normalized value for each column of data.

https://doi.org/10.1371/journal.pone.0204096.g004
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[28]. The bottom row c shows the median of the unnormalized data columns, corresponding

to retina cell types, for reference to line up the relevant features in the top two rows. Rows a

and b show the max and median of each cell type, respectively. The left column shows the

Drop-seq normalization and the middle and right columns respectively show the denoised

unit-max and unit-median normalizations used here.

Note the alignment of the local minima of the unnormalized medians shown in row c with

the artificial trends shown in rows a and b of the left column. In particular, the median shows

a value of 1 except at the instabilities whenever the local minima in the bottom row occur.

These spikes in the median shown in the middle row are enhanced by quantization noise,

which can also adversely affect Euclidean distance based analyses. This shows that the Drop-

seq normalization may be overly and contains outliers whenever the unnormalized median

reaches a local minimum.

The top row of the left column shows that the trend in the max of the normalized values

creates outliers around the local minima shown in the bottom row. This suggests that their

normalization may potentially be amplifying noise to accentuate the nonlinear trend shown

row a of the left column. Dividing by small values is well known to increase numerical instabil-

ities using finite-precision arithmetic. Rows a and b of the middle and right columns show the

denoised normalizations used here. The same denoising step was used for both unit-max and

unit-median normalizations.

Additive offset noise was removed by subtracting the median value, and multiplicative gain

noise was removed by scaling max values to one, after correcting the offset. After gain and off-

set correction, outlier noise was then identified as negative and unity values and removed. The

unit-median normalization was obtained from the denoised unit-max normalization by divid-

ing all columns by the median of their nonzero values. As the left and right columns if the top

row of Fig 4 show, this makes the distribution more similar compared to the original Drop-seq

normalization. The top row of Fig 4 shows that the unit-max or unit-median normalizations

(middle and right columns, respectively) are distributed within a smaller range than the Drop-

seq normalization (left column).

Unlike the Drop-seq normalization, the denoised unit-max and unit-median normaliza-

tions are unquantized and cannot be interpreted as representing physical molecular copy

numbers. Denoising makes the data more appropriate for Euclidean distance based data analy-

sis because of its sensitivity to outliers. This makes the denoised normalizations potentially bet-

ter for statistical analyses involving Euclidean distances such as k-means, which become more

sensitive to outliers as the dimensionality of the embedding space increases. Prior to analysis

using pairwise Euclidean distance driven approaches, future studies may also convert these off-

set and gain corrected and denoised values to Z-scores, providing an additional clustering per-

turbation for use in ensemble approaches as described in [30].

Fig 4 suggests that the denoised unit max normalization may provide better results when

using Euclidean distances for pattern recognition because the resulting distribution is more

compact. This justifies using the unquantized denoised normalization shown on the middle

and right columns for the Laplacian mixture model examples shown here, although more thor-

ough studies are needed using ensemble clustering approaches to validate these results in the

future. In order to compare between the denoised unit-max and denoised unit-median nor-

malizations, the residuals of a linear fit to the plot of silhouette score vs. objective value were

compared. Fig 5 shows the silhouette scores for the 2-through-8 factor Laplacian mixture mod-

els generated for the (denoised) unit-max (a) and (denoised) unit-median (b) normalizations.

The dotted line shows the robust linear fit identified from the silhouette scores, indicating a

negatively sloping trend suggesting that higher factor models may be overfitting. Linear fit

residuals for the unit-max normalization (a) are noticeably smaller in magnitude than those
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for the unit-median normalization suggesting it may be more stable for Euclidean-distance

based network analyses. Therefore all subsequent results shown here made use of the denoised

unit-max normalization. After computing the denoised unit-max normalization, 66 columns

were found to have constant values and were removed prior to clustering, and 8653 (35%) of

denoised rows were found to be duplicates and removed. An input data matrix of 49,233-by-

16,004 values was left for computing the Laplacian that was input into the global optimization

algorithm determining the corresponding Laplacian mixture model.

The k-nearest neighbor method with corresponding parameter kNN was used to set the

maximum number of nonzero entries in any row or column of the resulting pairwise similarity

matrix. This ensures sparsity and prevents instabilities in the Laplacian eigenvector structure.

Empirically when a useful model can be computed, it is typically part of a sequence of mod-

els beyond which an acceptable (nondegenerate) solutions cannot be found. The rigorous

mathematical explanation for this has not been fully understood yet but is discussed in more

detail in section 0.6. Since no 9-factor solutions were found, the search was truncated at m = 8.

Fig 6 shows the optimized 2-through-8 factor models for the unit-max normalization. Since

the 7-factor solution showed the highest dimensionality with positive residual, it was chosen to

visualize in more detail.

Fig 7 shows a zoom in on the scatterplot matrix for the m = 7 solution shown in the top

row of Fig 6. Subsequent hierarchical or other hard-clustering algorithms can be applied using

these 7-dimensional conditional probabilities as feature vectors in order to generate non-over-

lapping clusters or communities if needed.

Colors indicate hard cluster assignments generated by thresholding appear visually reason-

able, suggesting that potentially informative overlapping communities were detected. Unlike

many other community detection algorithms based on global optimization, Laplacian mixture

models can identify communities with sizes that are different orders of magnitude.

The grouped scatterplots for the 1st-vs-2nd conditional probabilities from the top row of

Fig 7 are plotted separately in Fig 8. These highlight the differences between the models in

terms of their ability to separate the data into potentially informative structures identified in

the Drop-seq retinal cell profiles. From a signal processing and graph partitioning standpoint,

higher factor numbers provide more fidelity and parallelization at the expense of compression

Fig 5. 2-through-8 factor model silhouette score estimates computed by averaging over 10 sets of randomly subsampled

cells (2000 cells per sample) vs. optimal objective value for (a) unit-max and (b) unit-median denoised normalizations.

Dashed lines indicates robust linear fit computed using iteratively reweighted least squares. The 3-factor silhouette scores

(yellow) were consistently outlying above the linear trend shown by the dashed line for both normalizations, and the 7-factor

solution (blue) is the highest dimensional model with positive residual.

https://doi.org/10.1371/journal.pone.0204096.g005
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ratio. Once such a sequence of models has been computed, standard model selection tech-

niques from machine learning and statistics are directly applicable. The problem of model

selection will not be dealt with in detail here since the focus is to demonstrate the basic

approach. Once ground-truth data are available, these models can be selected for biological

usefulness.

Graph/Network analysis

Unlike data clustering using symmetric item pairwise-similarity matrices as input, graph clus-

tering accepts weighted adjacency matrices that are often not symmetric but can be symme-

trized. Biological networks, social patterns, and the World Wide Web are just a few of the

many real world problems that can be mathematically represented and topologically studied in

terms of community detection [31].

Generally, network community detection tries to infer functional communities from their

distinct structural patterns [32]. Functional definitions of network communities are based on

common function or role that the community members share. Examples of functional com-

munities are interacting proteins that form a complex, or a group of people belonging to the

same social circle.

Modularity is one quantity that, when maximized, provides a measure of communities

potentially having different properties such as node degree, clustering coefficient, betweenness,

centrality, etc., from that of the average network. Because modules of many different sizes

often occur, the potential limits of multiresolution modularity and all other methods using

global optimization have been suggested by [33]. In particular, methods based on global opti-

mization have been suspected of being incapable of finding communities at many different

sizes or scales simultaneously.

Although Laplacian mixture models are a global optimization type method, they are inher-

ently multiscale since higher dimensional eigenspaces encode multiresolution dynamics from

a Markov process interpretation. In order to illustrate the promise of using Laplacian mixture

Fig 6. Sequence of models for the unit-max normalized Drop-seq retina cell profiles published on GEO (ID GSE63472). Top row shows scatterplot

matrices colored by thresholded cluster assignment index for 2-8 factor models. Middle row shows corresponding factor conditional probability line

plots sorted by max assignment index. Diagonal blocks on images in the bottom row show the corresponding sorted input similarity matrix revealing

hidden structure in the unlabeled data.

https://doi.org/10.1371/journal.pone.0204096.g006
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Fig 7. Grouped scatterplot matrix of conditional probabilities for the 7-dimensional unit-max normalized Drop-

seq retina cell Laplacian mixture model. Axes are autoscaled inside the interval [0, 1] for all panels. Horizontal axes

are aligned by columns, and vertical axes are aligned by rows. Colors indicate max probability assignment index

showing the corresponding hard clustering generated by thresholding. Hard clustering assignment counts were for the

overlapping modules detected.

https://doi.org/10.1371/journal.pone.0204096.g007

Fig 8. Grouped scatterplots of conditional probabilities for components 1 vs. 2 from the 3-through-8 factor unit-

max normalized Drop-seq retina cell Laplacian mixture models. Plots are in order of ascending model dimension (3

through 8) from left-to-right, top-to-bottom. Colors indicate max probability assignment index showing the

corresponding hard clustering generated by thresholding. Axes are autoscaled inside the interval [0, 1] for all panels.

https://doi.org/10.1371/journal.pone.0204096.g008
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models to provide useful global, nonhierarchical views of large graphs, the E. coli genome was

analyzed as a test problem.

E. coli is a bacterial model organism in biology that has a relatively small genome but (like

all genomes) one that still contains many transcribed regions with unknown functions. Using

interactome data provided by the HitPredict protein-protein interaction database [34], one

large connected component was identified for analysis, containing 3257 out of 3351 total

genes/proteins.

In order to prepare the weighted adjacency matrix for the analysis, the top kmin connections

were strengthened using the .99th quantile over all weights, and then a nearest-neighbor cutoff

of kNN = 125 was applied. Next, rows of the weighted adjacency matrix were normalized to

sum to one, to reduce the influence of proteins with stronger connections on average. Finally,

because protein-protein interactions are mutual by nature, the matrix was symmetrized by tak-

ing the elementwise maximum between it and its transpose.

To select appropriate values of kmin and kNN, a grid search was performed by computing

all five-factor models over the ranges kmin = 3, . . ., 5 and kNN = 1, . . ., 192, where 192 is the

maximum degree for the entire graph. The largest cluster size after hard thresholding by maxi-

mum conditional probabilities was plotted as shown in Fig 9. For this dataset, a sequence of

2-through-7 factor solutions was found using kmin = 4 and kNN =1, keeping all of the edges

from the original dataset. Fig 10 provides the same three views of the sequence of models as

for the Drop-seq analysis above. Since the primary input was interaction data and no pairwise

distances were computed, the silhouette scores are not available. Standard model selection

techniques can be applied at this point, but are not performed here since the focus is on dem-

onstrating Laplacian mixture modeling approaches. It is possible to gain some insight into

model quality by examining the contributions of the individual model components to the

squared loss or uncertainty score. Table 1 lists the component contributions to the loss func-

tion, with lower values being more favorable. The 6-factor model was the only one having two

components less than 0.5 and all components less than 0.95. Its hard-thresholded sizes for this

Fig 9. Max cluster size of 5-factor models vs. kNN for E. coli protein protein interaction data. Colors correspond to different values of kmin. The plot

shows that kmin = 4 was the lowest value to show a reasonably large size for the 2nd-largest cluster after hard thresholding the conditional probabilities.

https://doi.org/10.1371/journal.pone.0204096.g009
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model’s components were 1869, 1362, 11, 7, 6, and 2. Different orders of magnitude compo-

nent sizes suggest the ability to detect multiscale communities despite belonging to the class of

global optimization type methods. The next steps in developing this method could include

delving into the possible biological significance of the patterns identified by Laplacian mixture

models in an unsupervised way by analyzing the Homo sapiens interactome.

Density estimation

Nonparametric mixture density separation is a challenging problems in statistics. In the con-

text of mixture density function separation or unmixing problems, Laplacian mixture models

fall into the class of partial differential equation (PDE)-based methods. The connections of

Laplacian mixture models to PDE “coarse-graining” methods are described in more detail in

the appendix.

These differential equations allow Laplacian eigenspaces to be defined from input mixture

density estimates as described below. The resulting Laplacian mixture models define globally

optimized mixture component estimates directly from the spectral information contained in

the discretized PDE.

This synthetic mixture density separation example allows unambiguous evaluation of the

performances of different tuning parameter choices. For the first example, a randomized

Fig 10. E. coli interactome analysis (3257 proteins with 20239 pairwise interactions) showing 2-through-7 factor

models. Top panel shows grouped scatterplot matrices, middle row shows conditional probability line plots, and

bottom panel shows corresponding graph adjacency matrices sorted by max conditional probability value.

https://doi.org/10.1371/journal.pone.0204096.g010

Table 1. Component losses of Laplacian mixture models for the E. coli interactome network dataset.

dimensionality component index

1 2 3 4 5 6 7

2 0.912 0.016

3 0.840 0.355 0.576

4 0.824 0.510 0.904 0.431

5 0.473 0.519 0.901 0.823 0.895

6 0.478 0.943 0.489 0.824 0.924 0.890

7 0.864 0.924 0.907 0.935 0.673 0.956 0.361

https://doi.org/10.1371/journal.pone.0204096.t001
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three-component mixture f(x)/ f1(x) + f2(x) + f3(x) was constructed, consisting of one com-

ponent made from a mixture of three radial basis functions with randomized covariance

transforms: Gaussians, Laplace distributions, and hyperbolic-secant functions. Since these

components do not share any common parametrizations, using any one class of distribution

to compute the unmixing will result in errors. This simple yet nontrivial example provides

a test of the accuracy of the nonparametric Laplacian mixture modeling approach for non-

parametric density function unmixing. that include additional smoothness or regularity

assumptions.

Discretized density function values are taken as input for Laplacian mixture model compu-

tation via direct approximation of a class of heat equations known as Smoluchowski equations

in physics as described in 0.6. As explained in [35], the input mixture density estimate f(x) is

uniformly sampled on a discrete grid or lattice of points using neighbor indices Ii, i = 1, . . ., N.

where β 2 (0,1) acts as a scaling parameter with the interpretation of inverse absolute tem-

perature in statistical physics. Non-boundary off-diagonal Laplacian matrix values are then set

according to

qij ¼

exp b

2
log f ðxiÞ

f ðxjÞ

h i
; i < j 2 Ii

exp b

2
log f ðxjÞ

f ðxiÞ

h i
; i > j 2 Ii

0; otherwise:

8
>>>>><

>>>>>:

ð30Þ

Fig 11 shows an image of f(x) evaluated at 40, 000 Cartesian gridpoints

fxi : xi 2 ½� 10; 10�
2
g

200

i¼1
in two dimensions with colors indicating the value of f(x) at each

Fig 11. Gaussian/Laplace/hyperbolic-secant mixture density function surface plot colored by probability density.

Each of the three separable components were constructed by adding randomly generated anisotropic radial functions

with either Gaussian, Laplacian, or hyperbolic-secant radial profiles. Finally, these randomized components were

superimposed to generate the final mixture distribution shown here.

https://doi.org/10.1371/journal.pone.0204096.g011
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point. Algorithm performance can be improved by tuning the β parameter. The topological

structure of macrostate splitting as β increases from sufficiently small nonzero value towards

1 has been useful for solving challenging global optimization problems [36]. Such homo-

topy-related aspects of macrostate theory are not explored here for the sake of brevity.

Since the true solution was known for this test problem, the relative error vs. β was opti-

mized with a one-dimensional grid search as shown in Fig 12. Fig 13 shows the optimized

Laplacian mixture model for this test problem. Rows a and b of Fig 13 appear acceptable with

no visible mixing across components. Column 2 of Table 2 shows the relative errors for the

Fig 12. Relative error of the m = 3 Laplacian mixture model for the Gaussian/Laplace/hyperbolic-secant mixture

test problem vs. β. Minimum value of β = 2.6 indicated by flanking by datatips.

https://doi.org/10.1371/journal.pone.0204096.g012

Fig 13. Optimally-scaled β = 2.6 Laplacian mixture model components for the Laplace (red)/hyperbolic-secant

(green)/Gaussian (blue) 2-D test problem. Row a: unthresholded Laplacian mixture model components, Row b:

hard-thresholded components, Row c: original (unmixed) components. Column 2 of Table 1 lists the corresponding

mean squared errors.

https://doi.org/10.1371/journal.pone.0204096.g013
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probabilistic/unthresholded and hard-thresholded optimal β = 2.6 solutions. Notice that hard-

thresholding these components along their decision boundaries increases their error value

compared to the original soft/probabilistic/fuzzy model.

Conclusion

Laplacian mixture models are a new tool for probabilistic/fuzzy spectral clustering and graph/

network analysis because they nonhierarchically identify large separable regions and their

interconnections. This provides high level soft partitions or dissections of big/massive data in

their entirety without using any iterative/localized seed points. Their versatility and flexibility

come at the cost of their computational and model selection challenges. Since their original

formulation in [37], many implementation challenges have been overcome and their connec-

tions to other Laplacian eigenspace methods have been developed, leading to the current refor-

mulation including new loss functions and notation.

Many possible models can be computed and model selection is an important consideration

in order to select the subset of models that are most appropriate for a given application. In

some applications such as compression or denoising, minimizing the number of components,

partitions, clusters, or factors is more important than perfect reproduction of the original sig-

nal. Other applications such as recovery of a reference signal might benefit from choosing the

largest number of factors that are computationally feasible. The optimal choice model may

also be constrained by relative to available resources for a given application. Model selection is

application dependent and the examples presented here may not provide the best results for

every problem but may be useful as a guide for future studies.

Laplacian eigenspaces impose constraints on the space of possible models that can be

defined, providing a form of spectral regularization. In the context of data clustering, eigen-

space structures are determined by the choice of distance or similarity measure and the

choice of parameters used for this measure. For graph/network analysis, the process of com-

puting a weighted adjacency matrix can be adjusted to fine-tune the corresponding Laplacian

eigenspace structure. Applications involving unmixing mixture distribution function estimates

can tune a parameter in the corresponding partial differential equation used to define the

Laplacian.

Another potential application not demonstrated in the examples section includes more

accurate information retrieval, search, and recommender systems. The PageRank or Google

algorithm and its personalized or localized variants have become standard methods in these

application areas [38]. Originally, PageRank was used for ranking search results according to

overall graph centrality score as given by the Perron-Frobenius eigenvector. The original

PageRank algorithm provided a scalable and practical method for large graph datasets such as

the World Wide Web, but nodes with similar centrality scores might not belong to the same

location in the graph. Later, personalized and localized variants of the original PageRank algo-

rithm were developed to address this issue, but introduce bias from the choice of seed nodes or

locations and lose the global breadth of the original PageRank method. Laplacian mixture

Table 2. Relative errors of Laplacian mixture models for the Gaussian/Laplace/hyperbolic-secant mixture density

function separation/unmixing test problem.

β

1 2.6

no threshold 0.2078 0.0541

hard threshold 0.1803 0.0718

https://doi.org/10.1371/journal.pone.0204096.t002
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models may provide a regional PageRank variant, refining the original PageRank centrality

scores according to the regions of the graph encoded by the mixture components, a possibility

left for future work.

Regardless of the application or type of input data structure, optimizing the structure of

Laplacian eigenspaces can be challenging to do manually and may be difficult to fully automate.

While Laplacian mixture models are nonparametric in terms of the data-dependent functions

their eigenspaces support, in practice there are tuning parameters involved for processing raw

input data. Several strategies for semi-automatically optimizing the Laplacian eigenspace struc-

ture were presented here, and more work in this area will be done in the future.

Laplacian eigenspaces explain all of the nonequilibrium dynamics defined by the Markov

chain generated by the corresponding Laplacian, and hence have dynamic interpretations.

They also have physical interpretations, where the PF eigenvector represents a fixed point of

the differential equation from a dynamic systems perspective. The physical and dynamic sys-

tems interpretations of Laplacian eigenpaces complement their statistical and algebraic inter-

pretations, revealing new connections between ideas from previously separate fields. Laplacian

mixture models are an example of how combining ideas from physics, and statistics provides

valuable new data analysis algorithms, where many connections remain to be found.

During the global optimization step, many more models are computed and then only a sub-

set (often one) is selected from these samples. Different loss functions can affect which solu-

tion(s) are accepted from the output of the global optimization algorithm, and the quadratic

loss function used here can be modified freely depending on the application details. The

squared loss function has been empirically verified to provide reasonably good models for a

wide variety of data inputs, and similarly validating other loss functions would be of value. It

also generates a linearly-constrained concave quadratic global optimization problem which

has been well-studied in the literature and can be approximately solved with high accuracy for

certain convex hull geometries.

The provably optimal recovery results for noise-free interpolating cluster graphs provides

an absolute mathematical reference for the algorithm’s performance in ideal settings. Perfor-

mance comparison to other community detection and spectral graph partitioning algorithms

are needed, with a wider variety of test datasets. Subsequent studies will focus on thorough

evaluation of various performance metrics to establish the pros and cons of this algorithm

compared to other algorithms empirically.

Future studies will focus on empirically developing a better understanding of how the

geometry of the convex hull formed by the linear inequality constraints relates to the statistical

qualities of the resulting models. The next step will be a detailed experimental analysis of the

pros and cons of Laplacian mixture models for item data, graph/network data, and density/

distribution function data using a thorough set of benchmarks. Perhaps one day this story will

circle back to its mathematical origins in Perron-Frobenius theory and create a picture con-

necting mathematics, physics, statistics, and machine learning. An intuitive formal theory to

guide the development has been presented here, but the rigorous theory is incomplete.

Appendix

Macrostates

The original formulation of Laplacian mixture models comes from the definition of macro-

states of classical stochastic systems, in equation (24) of [39, page 9990], restated as

c0ðxÞ ¼
Xm

k¼1

pkFkðxÞ: ð31Þ
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where the coordinate vector R from the original statement has been replaced by x and k replaces

the index α, to match the notation used here. The ciðxÞ � �iðxÞ=
ffiffiffiffiffiffiffiffiffiffiffi
�0ðxÞ

p
; i ¼ 0; . . . ;N are

equivalent to the Laplacian eigenfunctions. The mixture components Fk(x) were originally

defined by equation (26) of [39], after substituting α k as in (31), as

Fkðx;MÞ ¼
Xm� 1

i¼0

MkiciðxÞ: ð32Þ

Multiplying both sides by ψ0(x) to match the definition

f̂ kðxÞ � c0ðxÞFkðxÞ ð33Þ

recovers the form of (1), a finite mixture model, in terms of the Laplacian eigenspace f�ðxÞig
m
i¼0

.

Macrostates were originally created to rigorously define both the concept of metastability

and also the physical mixture component distributions based on slow and fast time scales in

the relaxation dynamics of nonequilibrium distributions to stationary states [39]. Mixture

models are used for linearly separating these stationary or Boltzmann distributions in systems

with nonconvex potential energy landscapes where minima on multiple size scales occur, e.g.

high-dimensional overdamped drift-diffusions, such as macromolecules in solution. Proteins

folding, unfolding, and aggregating in aqueous solution are one type of biological macromole-

cule that can be described in terms of overdamped drift-diffusions [39].

Transitions between states belonging to different components of a mixture occur on rela-

tively slow timescales in such systems, making them appear as the distinct discrete states of a

finite-state continuous time Markov process when measured over appropriate timescales.

Such systems are called metastable [39, 40].

In the macrostate definition, the variable x is continuous and the Markov process is a con-

tinuous-state, continuous-time type known as a drift-diffusion in physics. Mathematically,

drift-diffusions are described as a type of continuous-time Markov process analogous to

CTMCs, and samples or stochastic realizations of drift-diffusions are described by systems of

stochastic differential equations known as Langevin equations [40]. For the purposes of using

Laplacian mixture models, it is sufficient to know that the eigenvectors of the Laplacian are

analogous to the eigenfunctions of Smoluchowski or heat/diffusion operators [10–12].

Smoluchowski equations

The Laplacian mixture component estimates f̂ kðxÞ are defined as expansions of f�iðxÞg
m� 1

i¼0
the

Laplacian eigenvectors. For continuous mixture density functions, there is a continuous-space

partial differential equation (PDE) analog of Laplacian matrices known as drift-diffusion or

Smoluchowski operators [40], a type of heat equation.

Smoluchowski equations have the form

@Pðx; t; bÞ

@t
¼ Dr � e� bVðxÞrebVðxÞPðx; t; bÞ ð34Þ

and belong to a class of reversible continuous-time, continuous-state Markov processes used

to describe multiscale and multidimensional physical systems that can exhibit metastability

[40].

The potential energy function V(x) determines the deterministic drift forces acting on

ensemble members i.e. sample paths or realizations of this stochastic process and can often be

viewed as a fixed parameter that defines the system structure. The drift forces bias the temporal

Laplacian mixture modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0204096 October 1, 2018 28 / 33

https://doi.org/10.1371/journal.pone.0204096


evolution of initial distributions P(x, 0) to flow towards regions of lower energy as t increases

compared to free diffusion (Brownian motion).

Technically there is a different Smoluchowski-type heat equation for each distinct choice of

V(x). Hence the plural form should be used generally although this is often overlooked in the

literature.

Smoluchowski operators

The elliptic differential operator

L0 � Dr � e� bVðxÞrebVðxÞ ð35Þ

has e−βV(x) as an eigenfunction with eigenvalue zero, also called the stationary state or unnor-

malized Boltzmann distribution. It is easy to evaluate L0[e−βV(x)] directly to verify that it equals

zero, satisfying the eigenvalue equation.

L0 is a normal operator and therefore a similarity transform S−1 L0 S to a self adjoint form L
exists [40]. S has the simple form of a multiplication operator with kernel e� 1

2
bVðxÞ, giving

L � De 1
2

bVðxÞr � e� bVðxÞre 1
2

bVðxÞ ¼
ffiffiffiffi
D
p

r �
b

2
rV

� �� �

�
ffiffiffiffi
D
p

rþ
b

2
rV

� �� �

: ð36Þ

The stationary state of L from Eq (36) is denoted

c0ðxÞ � e�
b
2
VðxÞ ð37Þ

and is used along with other eigenfunctions of L in the separation/unmixing of the Boltzmann

distribution into m macrostates, analogous to the Perron-Frobenius eigenvector in Laplacian

mixture models. Adapting the notation slightly from [39], the eigenfunctions of L are denoted

fcig
1

i¼0
and the eigenvalues are denoted as flig

1

i¼0
.

Discrete approximation

For sufficiently low dimensional nonnegative functions evaluated on evenly-spaced grids, the dis-

crete approximation of (34) can be used via a nearest-neighbor Laplacian approximation to con-

struct a sparse approximation of L in (36) with reflecting boundary conditions as described in

[35]. The discrete approximation approach is useful for applications where the mixture function

f(x) can be evaluated on a grid such as density estimates generated by histograms or kernel den-

sity estimation. This was the method used for the numerical example described in Section 0.6.

Discrete approximations can also be applied to nonnegative signals such as spectral density

estimates and 2 and 3 dimensional images sampled on evenly-spaced nodes after preprocess-

ing to remove random noise. Since discrete approximations of Smoluchowski or heat equa-

tions are microscopically reversible continuous-time Markov chains (CTMCs), macrostate

models can also be constructed by embedding input data into Markov chains.

Just like in the continuous case for (35), discrete transition rate matrices for time reversible

processes are similar to symmetric matrices. Similarly their eigenvalues and eigenvectors are

real and the eigenvectors corresponding to distinct eigenvalues are orthogonal.

Previous formulations

The macrostate data clustering algorithm is an earlier formulation developed in [37, 41].

Detailed comparisons between the two formulations are not included here because the previ-

ous methods required customized algorithm implementations that limited their practicality.

These earlier papers did not explicitly mention that macrostates are a type of finite mixture
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model of the form (1), nor did they mention the Bayes classifier posterior form and probabilis-

tic interpretations of (2).

Previous formulations used a different objective function and a different global optimiza-

tion solver. The objective function was a logarithm of the geometric mean uncertainty which

led to a nonlinear optimization problem that was not as well-studied as quadratic programs.

Here, the original the objective function from [39] is used, providing a more standard

concave quadratic programming (QP) problem that can be more easily solved. Linearly con-

strained concave QPs can be solved using established heuristics such as modified Frank-Wolfe

type procedures [26].

Another difference is that in [37, 41] only unbounded inverse quadratic similarity measures

and soft Gaussian thresholds that do not directly control sparsity were tested. Here, other choices

of similarity/distance measures are tested and the use of hard thresholding is examined to directly

control sparsity of the resulting Laplacian matrix used as the primary input into the algorithm.

The previous formulation defined in [37] did not mention the applications to density func-

tion unmixing/separation via (13) and the connection to discrete approximations of Smolu-

chowski equations as described in section 0.6.

Data spectroscopy

In some examples tested (data not shown), hard-thresholded Laplacian mixture model results

were found to agree perfectly with the output of another algorithm, called Data Spectroscopy

[42]. Data spectroscopy does not provide a full probabilistic model including the soft/fuzzy

cluster assignment probabilities and involves kernel-specific heuristics for choosing the appro-

priate cluster number. But, at the level of the hard/crisp cluster labels, Data Spectroscopy is an

algorithm can provide accurate estimates of hard thresholded Laplacian mixture model solu-

tions when the same Laplacian matrices are used.

This was an unexpected outcome worthy of better understanding and more study. The

Data Spectroscopy software (DaSpec) was obtained online from the original author’s website.

The mathematical arguments used to prove the accuracy of data spectroscopy in [42] and

other kernelized spectral clustering methods described more recently in [43] may yield better

understanding of the assumptions used in Laplacian mixture models as well. Likewise, the

physical interpretations of macrostates in terms of drift-diffusions and the relationship of the

kernel scaling parameter to the temperature or energy of the Brownian motion of generating

stochastic processes may provide additional insight into the accuracy of the approximations

used by data spectroscopy. It may be possible to hybridize Laplacian mixture models and data

spectroscopic methods so that they can be used consistently on different analyses within the

same project. For example, data spectroscopy could be used during the distance/similarity/ker-

nel function learning step.
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