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Abstract

Due to its ability to induce DNA damage in a space and time controlled manner, ionising

radiation is a unique tool for studying the mechanisms of DNA repair. The biological effec-

tiveness of ionising radiation is related to the ionisation density which is defined by the linear

energy transfer (LET). Alpha particles are characterised by high LET, while X-rays by low

LET values. An interesting question is how cells react when exposed to a mixed beam of

high and low LET radiation. In an earlier study carried out with human peripheral blood lym-

phocytes (PBL) we could demonstrate that alpha radiation X-rays interact in producing more

chromosomal aberrations than expected based on additivity. The aim of the present investi-

gation was to look at the mechanism of the interaction, especially with respect to the ques-

tion if it is due to an augmented level of initial damage or impaired DNA repair. PBL were

exposed to various doses of alpha particles, X-rays and mixed beams. DNA damage and

the kinetics of damage repair was quantified by the alkaline comet assay. The levels of

phosphorylated, key DNA damage response (DDR) proteins ATM, p53 and DNA-PK were

measured by Western blotting and mRNA levels of 6 damage-responsive genes were mea-

sured by qPCR. Alpha particles and X-rays interact in inducing DNA damage above the

level predicted by assuming additivity and that the repair of damage occurs with a delay.

The activation levels of DDR proteins and mRNA levels of the studied genes were highest

in cells exposed to mixed beams. The results substantiate the idea that exposure to mixed

beams presents a challenge for the cellular DDR system.

Introduction

While contemplating on the stability of hereditary properties, Erwin Schrödinger argued that

the stability of the genetic material must be “of the almost absolute” and that mutations are

due to rare quantum jumps in the gene molecule [1]. Today, it is well known that the DNA is
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labile and suffers constant damage both from endogenous and exogenous factors. Endogenous

DNA damage originates mainly from errors in DNA replication and oxidative stress, while

exogenous damage originates from environmental, occupational and medical exposure to

chemical and physical genotoxins [2]. Despite these attacks, the genome remains stable thanks

to efficient DNA repair mechanisms. However, the capacity and fidelity of DNA repair is criti-

cal in retarding the processes of aging and preventing a wide number of pathologies, including

cancer [3]. Indeed, disorders associated with deficient DNA repair are associated with a high

incidence of cancer and accelerated aging [4].

A wide range of DNA repair mechanisms has evolved to cope with the various forms of

DNA damage. Among the lesions, DNA double strand breaks (DSB) play a prominent role

because they disrupt the DNA molecule and their repair is often error prone, leading to chro-

mosomal rearrangements and possibly genomic instability [5]. DSBs can occur at different

levels of complexity, the degree of which is inversely correlated with the likelihood of their cor-

rect repair [6]. A complex DSB is defined as being composed of at least three single-strand

breaks within 10 base pairs and other DNA damage types nearby such as oxidised bases and

DNA-protein crosslinks [7].

Ionising radiation is a particularly potent inducer of DSB [8]. It evokes its detrimental effect

on cells by localized deposition of energy that is sufficiently large to eject orbital electrons

from atoms. For a given amount of energy that is deposited inside a cell, its spatial distribution

determines the biological effectiveness of the radiation. Gamma radiation or X-rays deposit

the energy in a scattered manner randomly inside a cell, while alpha particles and heavy ions

deposit the energy in a dense, clustered manner along the particle track [9]. The ionisation

density is described as linear energy transfer (LET, given in keV per μm) and while gamma

radiation and X-rays are characterized by low LET, alpha particles and heavy ions are charac-

terized by high LET values, especially at the end of their tracks when the particles are stopped

by matter [10]. An important consequence of the difference in ionisation density is that low

LET radiations mainly induce simple DSB while high LET radiations induce many complex

DSB [9].

Ionising radiation is abundant on Earth so that it is a constant source of damage to the

DNA but the level of natural background radiation is strongly variable [11]. In certain situa-

tions people are exposed to a mixed field of high and low LET radiation, for example in areas

with high levels of both the alpha emitting radon-222 and the alpha plus gamma emitting

radium-226 [12] or during air travel, where gamma radiation occurs concomitantly with neu-

trons and protons [13]. Mix beam exposure also takes place during certain forms of cancer

radiotherapy. During intensity modulated radiotherapy (IMRT) and proton therapy, patients

to unwanted neutrons [14–16]. The neutron dose might be high enough [17, 18] to cause rele-

vant cancer effects. This is a concern because increasing rates of cure lead to the appearance of

such long term side effects like secondary cancers [19]. Neutrons interact with matter leading

to the production of charged particles which are characterised by high LET. Thus, patients are

exposed to a mixed beam of low (primary beam) and high (neutrons) LET radiation.

Despite the frequent mixed beam exposure scenario, its impact to DNA has not been stud-

ied extensively. Of special interest is the question how the cellular DNA repair machinery

copes with a simultaneous induction of dispersed simple and clustered, complex DSBs. Do the

complex DSBs engage the DNA damage response machinery to such a degree that the dis-

persed, simple DSB are not sensed or repaired properly? Or do cells primarily focus on repair-

ing the dispersed, simple DSBs so that the repair of complex DSBs is compromised?

We have constructed a dedicated mixed beam exposure facility, where cells can be simulta-

neously exposed to alpha particles and X-rays [20] and could demonstrate that the radiations

interact in producing synergistic cellular effects, meaning higher than expected based on
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additivity of the two radiation types [21–25]. The mode of interaction is not clear, but using

U2OS cells and live microscopy we recently showed that cells react to mixed beams by concen-

trating the DNA damage response (DDR) protein 53BP1 in selected foci, possibly preferen-

tially at sites of clustered DNA damage that are formed early during the irradiation process.

Moreover, mixed beam-induced foci showed a low degree of mobility, possibly contributing to

augmented misrepair of damage, especially of complex DSBs.

The synergistic effect of mixed beams was not seen with all cell types and end points [20],

but we consistently observed a higher than expected level of cytogenetic damage in human

peripheral blood lymphocytes (PBL) [21, 22]. The aim of the present investigation was to look

more closely at the mechanism of the synergistic effect in PBL, especially with respect to the

question if it is due to an augmented level of initial damage or impaired DNA repair. The level

of DNA damage and the kinetics of damage repair was quantified by the alkaline comet assay.

In addition, the levels of phosphorylated, key DDR proteins were measured by Western blot-

ting and the mRNA levels of 6 radiation-responsive genes were measured by qPCR.

Materials and methods

Blood donors, blood collection and irradiation

Experiments carried out in the framework of this study were approved by the regional ethical

committee in Stockholm (permit number 2010/27-31/1). Participation in the study was volun-

tary and participants gave their informed, verbal consent. Fresh peripheral blood was collected

shortly before irradiation by venepuncture from 3 healthy, non-smoking male donors aged 30,

34 and 55. A single experiment was always performed with blood from a single donor. For

the comet assay experiments, whole blood was diluted 1:1 with RPMI 1640 medium (Sigma-

Aldrich, R5886, Stockholm, Sweden), kept on ice for 10 min and exposed or sham exposed to

alpha particles, X-rays or a mixed beam of both radiations on pre-chilled, round polyamide

(PA) discs (155 mm in diameter, custom-constructed in the Institute for Energy-JRC, Petten,

Netherlands) as described earlier [21]. 250 μl of diluted blood was placed at the centre of a PA

disc, covered with a 2.5 μm thick Mylar foil lid and spread over the disk to form an even layer.

For analysing the expression of selected proteins by Western blotting, isolated peripheral

blood mononuclear cells (PBMC) were irradiated as described in a dedicated section below.

The exposures were performed with an irradiation facility consisting of an alpha irradiator

(241Am source, 50.0 ± 7.5 MBq, Eckert & Ziegler Isotope Products GmbH, Germany) and an

YXLON SMART 200 X-ray tube (operating at 190 kV, 4.0 mA, no filtering), which allows

exposure irradiation of cells with alpha particles and X-rays separately and simultaneously

[20]. A movable shelf in the alpha irradiator was used to position the cells on a PA disc at

defined distance from the alpha source. The cells were exposed to alpha particles when the

shelf was in the top position. The dose rate of alpha radiation was 0.223 Gy/min at the entrance

to the cell suspension and the average LET was 90.9 ± 8.5 keV μm-1. The dose rate of X-ray

was 0.052 Gy/min in the top position and 0.068 Gy/min in the bottom position of the movable

shelf. For studying the dose response relationship, cells were exposed to doses of 0 to 2 Gy.

DNA repair kinetics and the expression levels of selected proteins were analysed following a

dose of 2 Gy. The mixed beam was composed of 50% alpha particles and 50% X-rays. Com-

bined exposure always started with both the X-ray machine on and the exposure dish in the

top position (alpha radiation “on”). After reaching the desired alpha dose, the dish was moved

to the bottom position (alpha radiation “off”) and X-irradiation continued until the desired X-

ray dose was reached.

After exposure, blood was transferred from the PA disc to an Eppendorf tube. For analysing

the dose response relationship, the blood was kept on ice. For analysing DNA repair, the blood
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was further diluted 1:5 with RPMI 1640 medium supplemented with 20% foetal bovine serum

(Gibco, Invitrogen, Stockholm, Sweden), 100 U/ml penicillin and 100 μg/ml streptomycin

(Sigma-Aldrich, P4333, Stockholm, Sweden) and incubated at 37˚C for 0, 15, 30, 60, 120 and

180 min. After incubation, blood was chilled on ice until further processing.

Alkaline comet assay

Alkaline comet assay was performed with whole blood as described by [26] with slight modifi-

cations. The irradiated, diluted blood was warmed up quickly in a 37 ˚C water bath and mixed

with 2% low melting point agarose (2-Hydroxyethylagarose, Type VII, Sigma-Aldrich, A4018)

at a final concentration of 1%, dropped on a microscopy slide pre-coated with 0.5% high melt-

ing point agarose (Type I-A, Sigma-Aldrich, A0169), covered with a coverslip and placed on

an ice-cold plate to solidify. Duplicate slides were made for each individual sample. After solid-

ification, coverslips were removed and slides were immersed in a cold lysis buffer (2.5 M NaCl,

100 mM Na2EDTA, 10 mM Tris, pH 10 and 1% Triton X-100) for 1 h at 4 ˚C under slight

shaking. Following a brief rinsing in cold distilled water, slides were randomly positioned in a

horizontal electrophoresis tank filled with fresh, cold electrophoretic buffer (1 mM Na2EDTA

and 300 mM NaOH, pH > 13) and kept for 40 min for DNA unwinding. After electrophoresis

(1 V/cm, 30 min, 4 ˚C), slides were washed with 0.4 M Tris (pH 7.5) 3 times and stained with

4’,6-diamidino-2-phenylindole (DAPI). Each slide was coded and analysed blindly. Per slide,

50 randomly selected comets (100 comets per sample) were captured at 200 × magnification

using a fluorescent Nikon Eclipse E600 (Tokyo, Japan) microscope. Images were analysed by

the Comet Assay II (Kinetic Imaging, Liverpool, UK) software. Percentage of DNA in the

comet tail was chosen as the measure of DNA damage and referred to as relative tail intensity

(RTI).

Western blot

Experiments were performed with isolated PBMCs. Whole blood was diluted 1:1 with Hank´s

Balanced Salt Solution (HBSS, Sigma Aldrich, H9394, UK) overlaid on Ficoll-Paque Premium

solution (GE Healthcare, 17-5442-02, Uppsala, Sweden) and centrifuged at 400 × g for 35 min.

The layer containing PBMCs was removed and washed twice with HBSS by centrifugation

with 100 × g for 10 min. After that PBMCs were suspended at a density of 8–10 x 106 cells/ml

in complete medium composed of RPMI 1640 medium (Sigma Aldrich, R5886, St Luis, MO,

USA) supplemented with 20% FBS (HyClone, Thermo Fisher Scientific, Waltham, MA, USA)

and 1% PenStrept (10.000 U penicillin and 10 mg streptomycin/ml, Sigma Aldrich).

250 μl of a PBMC suspension was irradiated with 2 Gy X-rays, alpha particles or mixed

beams on a PA dish as described above. Control cells were kept on PA dish for 15 min. After

exposure, PBMCs were suspended in complete medium and cultured in a 5% CO2, humidified,

37˚C incubator for 1 h or 3 h. After incubation and subsequent centrifugation, PBMC pellets

were lysed using the RIPA buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.5% Igepal, 5

mM EDTA (pH 8.0), 0.1% SDS) supplemented with PhosStop and Protease inhibitor cocktail

tablets (Roche Diagnostics GmbH, Mannheim, Germany). Protein concentration was esti-

mated using DC™ Protein Assay kit (Bio-Rad Laboratories, Hercules, CA, USA).

Electrophoresis was carried out by loading 40 μg of protein per sample per well on NuPage

3–8% Tris-acetate gradient gels in NuPage Tris-acetate running buffer (Novex, Life technolo-

gies, CA, USA), at 150 V for 65 min. The proteins on the gel were then transferred to a nitro-

cellulose membrane (Thermo Scientific, Rockford, USA) and the membrane was blocked at

room temperature for 1 h using a blocking buffer (Odyssey Blocking Buffer (LI-COR, Cam-

bridge, UK) and Tris-buffered saline containing 0.05% Tween (TBST), 1:1). The following

DNA damage and repair in lymphocytes exposed to mixed beams
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primary antibodies were used: pDNA-PKcs (pSer2056; SAB4504169, Sigma-Aldrich, 1:300),

pATM (pSer1981; SAB4300100, Sigma-Aldrich, 1:500), phospho-p53 (pSer15; #9284, Cell Sig-

naling Technology, 1:500) and GAPDH (G8795, Sigma-Aldrich, 1:20 000). The membrane

was incubated overnight at 4˚C with primary antibodies diluted in the blocking buffer. Next

day it was washed with TBST and probed with secondary antibodies for 1 h at room tempera-

ture. The secondary antibodies were either infrared dye-conjugated goat anti-rabbit or donkey

anti-mouse secondary antibodies (LI-COR, Cambridge, UK, 1:15000 diluted in TBST), accord-

ing to the primary antibodies. The membrane was scanned and quantified using the Odyssey

Fc Infrared Imaging System (Li-COR). Three independent experiments were performed.

Gene expression analysis by qPCR

RNA was extracted using the E.Z.N.A. Total RNA Kit I (Omega Bio-tek) from isolated PBMCs

after 2 Gy irradiation of X-rays, alpha particles and mixed beams following different time

points incubation (4h, 24h and 48h). The method of PBMCs isolation was described above.

cDNA was synthesised from 250 ng RNA using the High-Capacity cDNA Reverse Transcrip-

tion Kit (Thermo Fisher Scientific) with random hexamer primers. Primers, cDNA and Pow-

erUp™ SYBR™ Green Master Mix (Thermo Fisher Scientific) were mixed and real time PCR

reactions were performed in duplicate on a LightCycler1 480, starting at 50˚C for 2 min and

95˚C for 2 min, followed by 40 cycles of 95˚C for 15 s, 60˚C for 15 s and 72˚C for 1 min. No

template control reactions were used to identify PCR contamination. The 2−ΔΔCt method was

used for calculation of relative expression and melting curve analysis was used for testing

primer specificity. Primers used were: BBC3 for: TACGAGCGGCGGAGACAAGA, BBC3 rev:

GCAGGAGTCCCATGATGAGATTGTAC; FDXR for: TGGATGTGCCAGGCCTCTAC, FDXR rev:

TGAGGAAGCTGTCAGTCATGGTT; GADD45a for: ACTGCGTGCTGGTGACGAAT, GADD45a

rev: GTTGACTTAAGGCAGGATCCTTCCA; XPC for: GCTTGGAGAAGTACCCTACAAGATGGT,

XPC rev: GGCTTTCCGAGCACGGTTAGA; MDM2 for: TATCAGGCAGGGGAGAGTGATACA,

MDM2 rev: CCAACATCTGTTGCAATGTGATGGAA; CDKN1A for: CCTGGAGACTCTCAGG
GTCGAAA, CDKN1A rev: GCGTTTGGAGTGGTAGAAATCTGTCA. For 18S, sequences are

given in [27].

Statistical analysis

The dose response relationships and repair kinetic curves were fitted with the help of CurveEx-

pert Professional version 2.6 (https://www.curveexpert.net). The functions of best fits to the

data are shown in Eqs 1 and 2.

Dose response:

y ¼ að1 � e� bxÞ ð1Þ

Where y is the percent DNA in the comet tail, x is the dose and a and b are the fit coefficients.

Repair kinetics:

y ¼ ða � bxÞ�
1
c ð2Þ

Where y is the relative percent DNA in the comet tail, x is the time point and a, b and c are the

fit coefficients. The values of the fit coefficients are given in the S1 Table.

The distributions of cells according to percent DNA in the tail were fitted by the Gnuplot

5.0 (www.gnuplot.info) with a Weibull distribution described as:

y ¼ a
ba

� �
xa� 1exp � x

b

� �a� �
ð3Þ
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where: x represents the percent DNA in the comet tail, a is the shape parameter and b is the

scale parameter. The values of the fit coefficients are given in the S2 Table.

The significance of interaction between alpha particles and X-rays in inducing DNA

damage was tested by constructing envelopes of additivity [28]. An envelope of additivity is

constructed from iso-effect plots which are calculated based on assuming isoadditivity or het-

eroadditivity of the damage levels induced by the components of a combined exposure [29].

Whether the components of a combined exposure interact or not is judged by analysing the

position of an observed effect with respect to an envelope: the position inside the envelope

indicates additivity, below the envelope—synergism, and above the envelope—subadditivity.

Envelopes are constructed for three levels of effect: low, median and high.

Differences between the levels of phosphorylated proteins were tested by the unpaired,

2-tailed Student’s t-test. Differences between levels of initial damage were tested by one-way

ANOVA Tukey test.

Results

Comet assay was used to assay the damage induction and repair following mixed beam radia-

tion. Percentage of DNA in the comet tail was chosen as the measure of DNA damage and

referred to as relative tail intensity (RTI) as suggested by [30]. Mean control levels of initial

damage from 3 repeats per radiation type were 3.67 ± 1.01 for alpha particle experiments,

2.11 ± 0.55 for X-rays and 2.58 ± 0.63 for mixed beams (± symbolises standard deviations).

Control RTI were subtracted from respective radiation-induced RTI and the relationships

between the net DNA damage, measured immediately after radiation exposure, are shown in

Fig 1 together with exemplary images of observed comets.

X-rays and mixed beams induced very similar levels of damage, while alpha particles

showed the weakest dose response. For all radiation types, the dose response relationship

showed a tendency to saturate with increasing dose. The effect was strongest for alpha particles

leading to a significantly lower level of damage as compared to X-rays and mixed beams at

doses of 1.5 and 2 Gy. The fitting parameters to the data (S1 Table) allowed calculating the rel-

ative biological effectiveness (RBE) of alpha radiation and of mixed beams. The values for net

tail intensity of 1 and 3 are, respectively, 0.18; 0.34 for alpha radiation and 1.0; 0.98 for mixed

beams.

Envelopes of additivity were constructed in order to verify whether the initial level of dam-

age after mixed beam exposure is different than expected by assuming an additive action of

alpha particles and X-rays [28]. To this end two isobolograms were plotted, one assuming iso-

addition and the other assuming heteroaddition [29]. The isobolograms form an envelope and

the location of the measured event inside the envelope indicates additivity, below the envelope

—synergism and above—subadditivity. In general, envelopes of additivity are constructed for

a dose inducing a low, medium and high level of the measured event [29]. In the present inves-

tigation, envelopes were constructed for RTI of 1, 2 and 3.5.

The results are shown in Fig 2. Irrespective of the level of damage, the mixed beam of alpha

particles and X-rays always induced a higher than expected level of RTI, indicating an interac-

tion (synergism) of alpha particles and X-rays in inducing DNA damage. The level of interac-

tion was inversely related to the level of damage, with the strongest interaction at a low level of

damage (panel A) and the weakest at the highest level of damage (panel C). This result is an

outcome of the saturating dose response curves shown in Fig 1.

DNA repair kinetics were analysed following a dose of 2 Gy. RTI was estimated 15, 30, 60,

120 and 180 min post exposure. In view of the fact that the level of RTI was significantly lower

in cells exposed to alpha particles as compared to X-rays and mixed beams, the results were

DNA damage and repair in lymphocytes exposed to mixed beams
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normalised to the initial level of damage, allowing a comparative analysis of the decline of

DNA damage with time. The results are shown in Fig 3A. No significant differences in the

repair curves were observed between the treatments, although cells exposed to mixed beams

appeared to repair DNA damage less efficiently than cells exposed to X-rays and alpha parti-

cles. This result is supported by the RTI distributions which are shown in Fig 3B which dem-

onstrates that the repair of DNA damage in cells exposed to mixed beams occurred with a

delay. The RTI values in Fig 3B are gross values (controls not subtracted).

Fig 1. Dose response relationships for initial DNA damage. Net relative tail intensity: percent DNA in the tail minus control. Symbols represent

mean results from 3 independent experiments. Error bars represent standard deviations. �: significant (p<0.05) difference to alpha particles (one way

ANOVA). Symbols are nudged for transparency. Exemplary images of comets following exposure to 0 Gy (control) and 2 Gy of alpha particles, X-rays

and mixed beam are shown to the side of the graph.

https://doi.org/10.1371/journal.pone.0204068.g001

Fig 2. Envelopes of additivity (circles and lines) for different levels of relative tail intensity (RTI), calculated for initial damage. Squares represent

the observed RTI in cells exposed to both alpha particles and X-rays at dose levels indicated, respectively, on the X and Y axes. The isobolograms and

the observed RTI were derived from fits to dose-response relationships.

https://doi.org/10.1371/journal.pone.0204068.g002
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Western blot analysis was carried out to verify whether the results obtained with the comet

assay were related to the activity of key proteins involved in DDR. The levels of phosphorylated

proteins DNA-PKcs (pSer2056), ATM (pSer1981) and p53 (pSer15) were analysed 1h and 3h

post exposure. The results are shown in Fig 4. Exposure to mixed beams resulted in the highest

activation of ATM and p53 at both time points. A somewhat different result was obtained with

DNA-PKcs which, 1h post exposure, was most strongly activated following exposure to alpha

particles. However, 3h post exposure its level following exposure to mixed beams was signifi-

cantly higher than after alpha particles.

In order to verify how the high activation by mixed beams of DNA-PKcs, ATM and p53

was reflected in the expression of DNA damage responsive genes, the mRNA levels of the fol-

lowing genes were measured 4, 24 and 48h post irradiation: GADD45A, CDKN1A, MDM2,

XPC, BBC3 and FDXR. The results are shown in Fig 5. Generally, the levels of mRNA mea-

sured were lowest 4h post exposure, highest at 24h post exposure and intermediate at 48h post

exposure. Although not significant in the case of every analysed gene, the mRNA level of all

genes was highest in cells exposed to mixed beams, especially at 48h post exposure. No clear

general pattern of difference was observed between cells exposed to X-rays and alpha particles.

Discussion

The results of the investigation demonstrate that alpha particles and X-rays interact in induc-

ing DNA damage above the level predicted by assuming additivity and that the repair of dam-

age occurs with a delay. Moreover, the activation levels of the key DDR proteins ATM (a DNA

damage sensor [31]), p53 (the master switch in damaged cells [32]) and DNA-PK (the key pro-

tein in non-homologous end joining [33]) were highest in cells exposed to mixed beams (albeit

only at 3h post exposure for DNA-PK). Also the mRNA levels of 6 radiation-responsive genes,

the transcription of which is regulated by p53 [34, 35], were highest in cells exposed to mixed

beams up to 48 h post exposure, supporting the above results. The outcome of the study cor-

roborates our earlier findings which show that alpha particles and X-rays interact in producing

micronuclei [21] and chromosomal aberrations [22] in PBL above the level expected by assum-

ing an additive action of both radiation types.

The significance of interaction between alpha particles and X-rays in inducing DNA dam-

age was tested by constructing envelopes of additivity [28]. This approach must be used

Fig 3. A: Repair kinetics following a dose of 2 Gy. Symbols represent mean results from 3 independent experiments. Relative tail intensity (percent):

RTI normalized to initial level of damage. Error bars represent standard deviations. Symbols are nudged for transparency. B: Distributions of relative

tail intensities at various time points post exposure.

https://doi.org/10.1371/journal.pone.0204068.g003
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whenever the dose response curves of the single radiation components of a mixed beam are

not linear. The reason for this is that nonlinearity of a dose response implies interaction of

damage induced by a single agent [29]. Hence, a possible interaction of two agents is impossi-

ble to predict. The problem is solved by constructing two isobolograms under the assumption

that both agents do interact (isoaddition) or they do not (heteroaddition). Both isobolograms

are plotted together with an experimentally derived data point and the significance of interac-

tion is assessed based on the position of the data point with respect to the isobolograms [28,

29]. However, the observation of a significant interaction does not provide any information

regarding its mechanism.

As suggested earlier [24], the interaction of alpha particles and X-rays can occur via various

mechanisms. Firstly, it is possible that the action of both radiation types will lead to an increase

of LET and, consequently, of DNA damage complexity. Secondly, it is possible that exposure

to high LET radiation will engage the DDR machinery to such a degree that the additional

damage induced by the low LET radiation will not be repaired properly. The results of the

current study do not give a decisive answer as to which mechanism is most likely responsible

for the synergistic action of alpha particles and X-rays. However, in our opinion, arguments

which are described below, favour the second mechanism.

Fig 4. Levels of phosphorylated proteins DNA-PKcs, ATM and p53 1h and 3h post exposure. The relative level was calculated as fold increase in

relation to GADPH and the average of each protein intensity of all samples. Mean results from 3 independent experiments for 1h and 5 independent

experiments for 3h. Error bars represent standard errors. Asterisks represent significant differences at the level of � < 0.05, ��<0.01 and ���<0.001

(Students t-test).

https://doi.org/10.1371/journal.pone.0204068.g004
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We used the alkaline comet assay to study the induction and repair of DNA damage. The

advantage of the comet assay is its high sensitivity and the possibility to analyse individual cells

[30]. The assay measures relaxation of DNA supercoiling and is, in its standard alkaline ver-

sion, not able to detect clustering of DNA damage. Alpha particles are known to induce a high

level of clustered and complex damage [36, 37] and if the comet assay was able to detect them,

then the dose response curve for alpha particles should be steeper than that for X-rays. Such

relationships was observed for chromosomal aberrations [22]. In contrast, we observed a shal-

lower dose response curve for alpha particles than X-rays resulting in RBE values lower than 1.

This is in good agreement with results obtained by analysing gamma-H2AX foci [23, 38] and

53BP1 foci [25] and can be explained by the lower number of cells per unit dose hit by alpha

particles as compared to X-rays: while a dose of 1 Gy alpha radiation corresponds on average

to 5 alpha tracks per cell nucleus, 1 Gy of X-rays corresponds on average to 2000 photon tracks

per cell nucleus [Brzozowska et al, unpublished). If mixed beams induced a level of DNA clus-

tering beyond that of alpha particles, then the RTI values should be lower or, given the X-ray

component which made 50% of the total dose, similar to RTI induced by alpha particles. This

was not the case: the initial level of mixed beam-induced DNA damage was the same as follow-

ing exposure to X-rays alone and significantly higher than that induced by alpha particles.

Also the levels of phosphorylated DDR proteins were highest in cells exposed to mixed beams,

while, with the exception of DNA-PKcs, they were similar in cells exposed to alpha particles

and X-rays. A similar result was observed for the levels of mRNA of radiation-responsive

genes. So taken together, the results do not suggest that exposure to mixed beams leads to an

increase of LET and, consequently, of DNA damage complexity.

In order to verify if exposure to high LET radiation in a mixed beam scenario engages the

DDR machinery to such a degree that the additional damage induced by the low LET radiation

Fig 5. mRNA levels of DNA damage-responsive genes in human PBL after 4h, 24h and 48h incubation following 2 Gy exposure with X-rays, alpha

particles and mixed beams. Error bars represent standard errors. Asterisks represent significant differences at the level of � < 0.05, ��<0.01 and
���<0.001 (Students t-test).

https://doi.org/10.1371/journal.pone.0204068.g005
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will not be repaired properly, we analysed the kinetics of DNA repair. In order to eliminate the

confounding differences in the level of damage for each radiation type, the results were pre-

sented as percent of initial damage. The analysis revealed a lagging repair of damage induced

by mixed beams. This is particularly visible at the level of RTI distributions, where a fraction of

cells exposed to mixed beams persistently showed an augmented level of RTI which fits well

with the elevated gene expression levels which was detectable until 48h post exposure. The

results support the outcome of our recent investigation on the induction and decay of 53BP1

foci which form around DNA double strand breaks [25, 39]. Cells reacted to the combined

exposure to alpha particles and X-rays by concentrating the 53BP1 protein in large foci, possi-

bly forming at sites of clustered DNA damage. This happens at the cost of small foci forming at

sites of dispersed, simple damage. Taken together, these findings provide evidence for a high

engagement of the DNA damage response machinery by the complex damage induced by

alpha particles so that the repair of additional damage induced by the low LET radiation is

delayed.

The results are interesting not only from the perspective of how cells react to DNA damage

of various complexities but also from the perspective of radiation protection. They suggest

that, per unit dose, the biological effect of mixed radiation beam may be higher than expected

based on a simple sum of single doses coming from radiations of various qualities, even if

these are multiplied by appropriate radiation weighting factors [40]. The impact of the finding

on transfer of cancer risk among cohorts exposed to different radiation types has been exten-

sively discussed in [24]. Here a short discussion is given on why the results may also be impor-

tant for the medical use of radiation in IMRT and proton therapy.

In proton therapy, an ongoing debate deals with the appropriate value of the relative biolog-

ical effectiveness (RBE) inside and ahead of the planned treatment volume [41]. Experimen-

tally, the RBE is determined using in vitro cell systems, where stray radiation [18] inside the

patient body is not taken into consideration. If protons interact with the produced neutrons

and gamma radiation, then the experimentally determined RBE is lower than that the RBE

inside the patient body. In IMRT, X-rays of energies greater than approximately 6 MeV can

generate neutrons by (γ,n) reactions through interactions with the components of the accelera-

tor and the treatment room, as well as inside the patient body [42, 43]. The unwanted neutron

dose to the patient might be high enough (in the range of several hundred mSv) to cause rele-

vant carcinogenic effects [17]. The RBE of neutrons as a function of its energy is well charac-

terised [40] and can be used to predict the risk of second cancers [43]. However, if neutrons

interact with gamma radiation, then the risk of secondary cancers is underestimated. It should

also be mentioned that, as recently suggested, deficient repair of complex DNA damage may

be linked to constant DDR triggering and the continuous activation of the immune system

which may also potentiate the risk of cancer [44].

From the perspective of radiotherapy, our data also point to a future possibility in combin-

ing alpha emitters or other types of high LET radiation with conventional photon therapy. An

alpha emitter targeted to the skeleton for treatment of bone metastases of castration-resistant

prostate cancer (Xofigo, 223RaCl2) was approved in 2013 [45]. Several clinical trials have been

performed in different tumour types with alpha emitters such as 213Bi, 221At and 225Ac bound

to monoclonal antibodies towards tumour-specific proteins (reviewed in [46–49]) The mixed

beam synergistic effect and the partly separate toxicity profile and range of alpha emitters and

X-rays might allow for a lowered dose of both to create a therapeutic window. A previous trial

using a mixture of neutrons and photons suggested no significant advantage for mixed beam

radiation therapy over photon radiation therapy alone for head and neck cancer patients, how-

ever there was a better response in a subgroup with lymph node metastasis [50]. Three frac-

tions of photons and two fractions of neutrons were given each week, so most likely, they were
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not given concomitantly. A low LET combination of photons and electrons was promising

using Monte Carlo dose calculations, sparing organs at risk considerably better than each ther-

apy alone [51].

It should be remarked that the above considerations are valid provided that the mixed

beam effect occurs in all cell types. Our experience does not allow drawing a decisive conclu-

sion about whether this is the case. We observed synergism in PBL with cytogenetic damage as

the endpoint [21, 22], human lymphoblastoid TK6 (clonogenic cell survival) [24] and human

bone osteosarcoma epithelial (U2OS) cells [25, 39] (DNA repair foci). In contrast, we regis-

tered additivity in human VH10 cells [23] (DNA repair foci) and in AA8 Chinese hamster

ovary cells [20] (clonogenic cell survival). The reason for the discrepancy is not clear. A num-

ber of mixed beam studies have been published, where the high and low LET doses were

applied in sequence. The majority of studies were carried out with human or hamster epithelial

cells, with clonogenic cell survival as the endpoint. 11 detected synergism [52–62] and 5

detected additivity [63–67]. It is obvious that factors other than the cell type and the analysed

endpoint influence the outcome of a mixed beam study and it cannot be concluded that the

effect is restricted to a particular cell type.

Conclusions

The outcome of this study confirms earlier findings that alpha particles and X-rays interact in

producing DNA damage above the level predicted by additivity. The result is interesting both

from the mechanistic perspective of how cells cope with simultaneous clustered and dispersed

DNA damage and from the perspective of radiation protection because they suggest that the

health effects of mixed beam exposure may be higher than expected from additivity of the sin-

gle mixed beam components. Additionally, the results are encouraging for future combination

of high and low LET radiation in radiotherapy.
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