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Abstract

In this paper, we propose a new model of memristive multidirectional associative memory

neural networks, which concludes the time-varying delays in leakage terms via sampled-

data control. We use the input delay method to turn the sampling system into a continuous

time-delaying system. Then we analyze the exponential stability and asymptotic stability of

the equilibrium points for this model. By constructing a suitable Lyapunov function, using the

Lyapunov stability theorem and some inequality techniques, some sufficient criteria for

ensuring the stability of equilibrium points are obtained. Finally, numerical examples are

given to demonstrate the effectiveness of our results.

Introduction

Associative memory is one of the most important activities of human brains. It includes one-

to-many association, many-to-one association and many-to-many association. Due to the

complexity of human brains, many-to-many associative memory is more suitable for simulat-

ing the associative memory process of human brains than one-to-many association or many-

to-one association.

Multidirectional associative memory neural networks(MAMNNs) were proposed by Japa-

nese scholars in 1990 [1]. They are used to realize many-to-many association. Moreover,

MAMNNs are the extension of bidirectional associative memory neural networks(BAMNNs),

and they are similar in structure, i.e. there is no connection between the neurons in the same

field, but there exist interconnections between the neurons from different fields. In recent
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years, some studies have analyzed and dealt with MAMNNs in [2–4]. In [2], the authors pro-

posed a multi-valued exponential associative memory model, and they analyzed the stability of

this system. The global exponential stability of MAMNNs with time-varying delays were ana-

lyzed in [3]. In addition, MAMNNs with almost periodic coefficients and continuously distrib-

uted delays were studied in [4]. So far, there have been few results on the stability of

MAMNNs, therefore, it is significant to analyze the stability of MAMNNs.

Due to the characteristics of a memristor, it has been found to be the best device for simu-

lating variable synaptic weights of human brains. Therefore, according to using the memristors

in neural networks(NNs) instead of resistors, memristive neural networks(MNNs) was

designed in [5, 6]. Since then, the dynamic behaviors of MNNs have attracted the attention of

many researchers in [7–10], and they have been widely applied to associative memory [11],

medical image processing [12], etc. Meanwhile, BAMNNs as a special case of MAMNNs,

memristive bidirectional associative memory neural networks(MBAMNNs) have been exten-

sively studied in [13–17]. As an extension of MBAMNNs, the study of memristive multidirec-

tional associative memory neural networks(MMAMNNs) have attracted the attention of

researchers [18]. However, it is worth noting that, because of the complexity of MMAMNNs,

their research results are few. Thus, it is meaningful to analyze the dynamic behaviors of

MMAMNNs.

It is well known that stability of systems plays an important role due to their potential

applications to image encryption [19, 20], associative memory [11], medical image processing

[12], information storage [18], etc. In the past few years, the stability of MNNs and

MBAMNNs have attracted the attention of many researchers [21–24]. Global exponential sta-

bility of MNNs with impulse time window and time-varying delays was discussed in [21]. The

problem of exponential stability for switched MNNs with time-varying delays was studied in

[22]. The theoretical results on the global asymptotic stability and synchronization of a class of

fractional-order MNNs with multiple delays were analyzed in [23]. Based on above discus-

sions, the existence, uniqueness and exponential stability for complex-valued MBAMNNs

with time delays were studied in [24]. As we all know, a stable equilibrium or a periodic solu-

tion is stored as an associative memory pattern. The storage capacity of a system is the collec-

tion of associative memory patterns. In other words, the more equilibrium points, the larger

the storage capacity. Recently, some results about the multistability of MNNs have been

found in [25, 26]. At present, there are few literatures about the stability of MMAMNNs,

accordingly, stability and multistability of MMAMNNs are still a problem that deserves

investigation.

Delays play an important role in the system. The time-varying delays are inevitable in the

hardware implementation due to the switching of amplifiers [27–32]. The leakage delays (or

forgetting delays) exist in the negative feedback of NNs [33, 34]. These two delays have great

impact on the dynamical behaviors of the systems. Simultaneously, time delays can cause oscil-

lation and instability of a system. So it is necessary to adopt some control strategies to stabilize

a system. Various types of control methods, such as output-feedback control [35], switching

control [36], adaptive control [37] and sampled-data control [38–43] are often considered. In

practical applications, the system cannot be in a stable state for a long time, and it is difficult to

ensure that the state variables are continuous. Thus, we choose periodic sampling control,

which has good flexibility and easy maintenance.

Motivated by the above discussions, the main contributions of this paper can be summa-

rized in the following:

1. We propose a novel model of MMAMNNs, which considers time-varying delays in leakage

terms via sampled-data control. Comparing with the previous results, our model combines
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the characters of both MAMNNs and MNNs, which can simulate the associative memory

process of human brains more effectively.

2. The exponential stability and asymptotic stability of equilibrium points for this model are

studied. Sufficient criteria guaranteeing the stability of the MMAMNNs with time-varying

delays in leakage terms are derived, which based on the Lyapunov functions and some

inequality techniques.

3. In practical applications, the system cannot be in a stable state for a long time, and it is diffi-

cult to ensure that the state variables are continuous. Thus, we use sampled-data control to

ensure the stability of a system in this paper. Compared with continuous control methods,

the sample-data control method is more effective and realistic.

The rest of this paper is organized as follows. In the next section, the model of MMAMNNs

with time-varying delays in leakage terms via sampled-data control are proposed and some

preliminaries are introduced. In section 3, by constructing a suitable Lyapunov function, using

the Lyapunov stability theorem and some inequality techniques, some sufficient criteria for

ensuring the exponential stability and asymptotic stability of system are obtained. In section 4,

numerical examples are given to demonstrate the effectiveness of our results. In section 5, we

present our main conclusions.

1 Preliminaries

In this section, we consider the following MMAMNNs with time-varying leakage delays:

dxkiðtÞ
dt

¼ IkiðtÞ � dkiðxkiðtÞÞxkiðt � gkiðtÞÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

apjkiðxkiðtÞÞfpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

bpjkiðxkiðtÞÞgpjðxpjðt � tpjkiðtÞÞÞ;
ð1Þ

where xki(t) denotes the voltage of the ith neuron in the field k at time t. m is the number

of fields in system (1) and np corresponds to the number of neurons in the field p. dki(xki(t)),
apjki(xki(t)), bpjki(xki(t)) are connection weights. fki(x) and gki(x) are activation functions. The

time delays γki(t) and τpjki(t) are leakage delays and time-varying delays, respectively. Iki(t) rep-

resents the sampled-data state feedback inputs of the ith neuron in the field k.

According to the feature of memristors and the current-voltage characteristic, for conve-

nience, we let

dkiðxkiðtÞÞ ¼

(
�dki; jxkiðtÞj � Gki;

�dki; jxkiðtÞj > Gki;
apjkiðxkiðtÞÞ ¼

(
�apjki; jxkiðtÞj � Gki;

�apjki; jxkiðtÞj > Gki;

bpjkiðxkiðtÞÞ ¼

( �bpjki; jxkiðtÞj � Gki;

�bpjki; jxkiðtÞj > Gki;

ð2Þ

where the switching jumps Γki> 0, for k = 1, 2, � � �, m and i = 1, 2, � � �, nk. �dki > 0, �dki > 0,

ápjki, àpjki, �bpjki,
�bpjki are constants.
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Remark 1. According to the definitions of connection weights, dki(xki(t)), apjki(xki(t))
and bpjki(xki(t)) are varying with the state of memristance of system (1). Therefore, we

consider the MMAMNNs with time-varying leakage delays as state-dependent switching sys-

tem. When dki(xki(t)), apjki(xki(t)) and bpjki(xki(t)) are constants, system (1) becomes a general

MAMNNs.

Because dki(xki(t)), apjki(xki(t)) and bpjki(xki(t)) are discontinuities, the solutions considered

in this paper are defined in the sense of Filippov. co½x; x� represent the convex closure on

½x; x �. A column vector is defined as colðxkiÞ ¼ ðx11; x12; � � � ; x1n1
; x21; � � � ; xmnm

Þ
T
. For a contin-

uous function k(t): R! R, D+k(t) is the upper right Dini derivative of k(t), and defined as

DþkðtÞ ¼ limh!0þ
kðtþhÞ� kðtÞ

h . Some notations are defined as follows:

�dki ¼ maxfd�ki; d
�
kig; dki ¼ minfd�ki; d

�
kig; �apjki ¼ maxfa�pjki; a�pjkig;

apjki ¼ minfa�pjki; a�pjkig; �bpjki ¼ maxfb�pjki; b
�
pjkig; bpjki ¼ minfb�pjki; b

�
pjkig;

�gki ¼ sup
t2R

gkiðtÞ; �tpjki ¼ sup
t2R

tpjkiðtÞ; g ¼ sup
t2R

_gkiðtÞ; b ¼ sup
t2R

_tpjkiðtÞ:

In the Banach space, all sets of continuous functions are expressed as C([−τ, 0], Rn). The ini-

tial condition of system (1) are given as follows:

�ðsÞ ¼ ð�11ðsÞ; �12ðsÞ; � � � ; �1n1
ðsÞ; �21ðsÞ; � � � ; �mnm

ðsÞÞT 2 Cð½� t; 0�;RnÞ, in which

t ¼ max
1�p�m;p6¼k

max
1�j�np

f�tpjki; �gkig.

By applying the set-valued mapping theorem and the differential inclusion theorem, we

define the following equations

coðdkiðxkiðtÞÞÞ ¼

(
�dki; jxkiðtÞj < Gki;

cof�dki;
�dkig; jxkiðtÞj ¼ Gki;

�dki; jxkiðtÞj > Gki;

coðapjkiðxkiðtÞÞÞ ¼

(
�apjki; jxkiðtÞj < Gki;

cof�apjki; �apjkig; jxkiðtÞj ¼ Gki;

�apjki; jxkiðtÞj > Gki;

coðbpjkiðxkiðtÞÞÞ ¼

(
�bpjki; jxkiðtÞj < Gki;

cof�bpjki;
�bpjkig; jxkiðtÞj ¼ Gki;

�bpjki; jxkiðtÞj > Gki:

ð3Þ

Obviously, cof�dki;
�dkig ¼ ½dki;

�dki�, cof�apjki; �apjkig ¼ ½apjki; �apjki� and cof�bpjki;
�bpjkig ¼

½bpjki;
�bpjki�, for k, p = 1, 2, � � �, m, p 6¼ k, i = 1, 2, � � �, nk, j = 1, 2, � � �, np. According to the above

definitions, system (1) can be written as follows

dxkiðtÞ
dt

2 IkiðtÞ � coðdkiðxkiðtÞÞÞxkiðt � gkiðtÞÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

coðapjkiðxkiðtÞÞÞfpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

coðbpjkiðxkiðtÞÞÞgpjðxpjðt � tpjkiðtÞÞÞ;
ð4Þ

Stability of memristive multidirectional associative memory neural networks
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or equivalently, for k = 1, 2, � � �, m, p 6¼ k, i = 1, 2, � � �, nk, there exist d̂kiðxkiðtÞÞ 2 coðdkiðxkiðtÞÞÞ,
âpjkiðxkiðtÞÞ 2 coðapjkiðxkiðtÞÞÞ, b̂pjkiðxkiðtÞÞ 2 coðbpjkiðxkiðtÞÞÞ, such that

dxkiðtÞ
dt

¼ IkiðtÞ � d̂kiðxkiðtÞÞxkiðt � gkiðtÞÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

âpjkiðxkiðtÞÞfpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

b̂pjkiðxkiðtÞÞgpjðxpjðt � tpjkiðtÞÞÞ:
ð5Þ

Remark 2. In [44], the effect of leakage delay on stability was discussed. It was shown that

larger leakage delay can lead to instability of a system. In order to reduce the effect of leakage

delay, we will use the sampled-data control method to ensure the stability of the system.

In this paper, we consider the following sampled-data controller:

IkiðtÞ ¼ LkixkiðtlÞ; ð6Þ

where Lki denotes the sampled-data feedback control gain matrix, xki(tl) are discrete measure-

ment of xki(t) at the sampling instant tl. Besides, there exists a constant Δ(Δ> 0) such that

tl+1 − tl� Δ, 8l 2 N, i.e. Δ is the maximum sampling interval. The initial condition becomes

ϕ(s)2C([−τ, 0], Rn), in which t ¼ max
1�p�m;p6¼k

max
1�j�np

ft�pjki; g
�
ki;Dg.

Remark 3. Due to the existence of the discrete term Iki(t) = Lkixki(tl), it is difficult to analyze

the stability of system (4). The input delay method was proposed in [45]. By applying it, system

(4) will be changed into a continuous system.

The input delay method is applied, we define

tl ¼ t � ðt � tlÞ ≔ t � DðtÞ; ð7Þ

where 0� Δ(t)< Δ and the sampled-data controller can be written as

IkiðtÞ ¼ Lkixkiðt � DðtÞÞ: ð8Þ

Then we get

dxkiðtÞ
dt

2 Lkixkiðt � DðtÞÞ � coðdkiðxkiðtÞÞÞxkiðt � gkiðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

coðapjkiðxkiðtÞÞÞfpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

coðbpjkiðxkiðtÞÞÞgpjðxpjðt � tpjkiðtÞÞÞ:

ð9Þ

Some preliminaries are introduced as follows.

Stability of memristive multidirectional associative memory neural networks
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Assumption 1 For k = 1, 2, � � �, m, i = 1, 2, � � �, nk, 8s1, s2 2 R and s1 6¼ s2, the activation func-

tions fki(�) and gki(�) are odd and satisfy a continuous Lipschitz condition, such that

0 �
fkiðs1Þ � fkiðs2Þ

s1 � s2
� ski;

0 �
gkiðs1Þ � gkiðs2Þ

s1 � s2

� rki;

ð10Þ

where σki and ρki are nonnegative constants.

Definition 1 For k = 1, � � �, m, p 6¼ k, i = 1, � � �, nk, a constant vector x� ¼ ðx�
11
; � � � ; x�

1n1
;

x�
21
; � � � ; x�mnm

Þ
T

satisfies the following equation

0 2 � coðdkiðx�kiÞÞx
�
ki þ

Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

coðapjkiðx
�

kiÞÞfpjðx
�

pjÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

coðbpjkiðx
�

kiÞÞgpjðx
�

pjÞ þ Iki;
ð11Þ

or equivalently, for k = 1, � � �, m, p 6¼ k, i = 1, � � �, nk, there exist d̂kiðxkiðtÞÞ 2 coðdkiðxkiðtÞÞÞ,
âpjkiðxkiðtÞÞ 2 coðapjkiðxkiðtÞÞÞ, b̂pjkiðxkiðtÞÞ 2 coðbpjkiðxkiðtÞÞÞ, such that

0 ¼ � d̂kiðx�kiÞx
�
ki þ

Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

âpjkiðx
�

kiÞfpjðx
�

pjÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

b̂pjkiðx
�

kiÞgpjðx
�

pjÞ þ Iki;

ð12Þ

then, the constant vector x� ¼ ðx�
11
; x�

12
; � � � ; x�

1n1
; x�

21
; � � � ; x�mnm

Þ
T

is an equilibrium point of

MMAMNNs with time-varying leakage delays.

Definition 2 Let the constant vector x� be an equilibrium point of system (1),

xðtÞ ¼ ðx11ðtÞ; � � � ; x1n1
ðtÞ; x21ðtÞ; � � � ; xmnm

ðtÞÞT be an arbitrary solution with the initial condi-

tion ϕ(s) of system (1), if there exist positive constants β and μ such that jxðtÞ � x�j �

m expð� btÞ sup
� t�s�0

j�ðsÞ � x�j; then, the equilibrium point x� of system (1) is globally exponen-

tial stable.

Lemma 1 Let Assumption 1 be valid. Then there is at least one local solution x(t) of system

(1) with the initial condition ϕ(s), s 2 [−τ, 0], which is bounded in [46]. Furthermore, the local

solution x(t) of system (1) can be extended to the interval [0, +1) in the sense of Filippov.

Results

In this section, the stability of one equilibrium point will be studied. By constructing a suitable

Lyapunov function, some sufficient criteria for exponential stability and asymptotic stability

are obtained.

Stability of memristive multidirectional associative memory neural networks
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Theorem 1. Under Assumption 1, let ~dki�gki < 1, and there exist positive constants

Z11; Z12; � � � ; Zmnm
, for t> 0, such that the system (9) is globally exponentially stable if

� ½~dkið1 � 2~dki�gkiÞ �
~dkig � Lki�Zki=ð1 �

~dki�gkiÞ þ

"
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j~apjkijspj

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j~bpjkijrpj

#

Zpj=ð1 �
~dpj�gpjÞ < 0;

ð13Þ

where ~dki ¼
�dki or �dki, ~apjki ¼ �apjki or àpjki, ~bpjki ¼

�bpjki or �bpjki. That is, there exists a positive con-

stant λ, which makes |xki(t)| = O(e−λt).
Proof. Due to the characteristics of the memristor, the theorem will be proved in three

cases.

① |xki(t)|< Γki.
According to the set-valued mapping theorem and the differential inclusion theorem, sys-

tem (9) can be rewritten as

dxkiðtÞ
dt

¼ Lkixkiðt � DðtÞÞ � �dkixkiðt � gkiðtÞÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�apjki fpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�bpjkigpjðxpjðt � tpjkiðtÞÞÞ:
ð14Þ

Then for ω> 0, we define a continuous function as follows

FkiðoÞ ¼ � ½ð
�dki � oÞð1 � 2�dki�gkiÞ �

�dkiðeo�gki � ð1 � gÞÞ � LkieoD�Zki=ð1 �
�dki�gkiÞ

þ

"
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�apjkijspj þ eo�tpjki
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�bpjkijrpj

#

Zpj=ð1 �
�dpj�gpjÞ < 0:

ð15Þ

According to the condition of Theorem 1, we have

Fkið0Þ ¼ � ½
�dkið1 � 2�dki�gkiÞ �

�dkig � Lki�Zki=ð1 �
�dki�gkiÞ þ

"
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�apjkijspj

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�bpjkijrpj

#

Zpj=ð1 �
�dpj�gpjÞ < 0:

ð16Þ

Stability of memristive multidirectional associative memory neural networks
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Because Fki(ω) is continuous, there exists a small positive constant λ, fulfilling the following

in equality

FkiðlÞ ¼ � ½ð
�dki � lÞð1 � 2�dki�gkiÞ �

�dkiðel�gki � ð1 � gÞÞ � LkielD�Zki=ð1 �
�dki�gkiÞ

þ

"
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�apjkijspj þ el�tpjki
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�bpjkijrpj

#

Zpj=ð1 �
�dpj�gpjÞ < 0:

ð17Þ

We construct a suitable Lyapunov function as follows

VkiðtÞ ¼ eltxkiðtÞ �
Z t

t� gkiðtÞ

�dkie
lsxkiðsÞds: ð18Þ

Calculating the upper right Dini derivative of (18), we obtain

DþVkiðtÞ ¼ leltxkiðtÞ þ elt _xkiðtÞ � �dki½eltxkiðtÞ � ð1 � _gkiðtÞÞelðt� gkiðtÞÞxkiðt � gkiðtÞÞ�

¼ leltxkiðtÞ þ elt

�

� �dkixkiðt � gkiðtÞÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�apjkifpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�bpjki gpjðxpjðt � tpjkiðtÞÞÞ þ Lkixkiðt � DðtÞÞ
�

� �dkie
ltxkiðtÞ

þ �dkið1 � _gkiðtÞÞe
lðt� gkiðtÞÞxkiðt � gkiðtÞÞ;

ð19Þ

then we get

DþVkiðtÞ ¼ leltxkiðtÞ � �dkieltxkiðtÞ þ �dkið1 � _gkiðtÞÞelðt� gkiðtÞÞxkiðt � gkiðtÞÞ

� �dkieltxkiðt � gkiðtÞÞ þ Lkieltxkiðt � DðtÞÞ þ elt

"Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�apjkifpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�bpjki gpjðxpjðt � tpjkiðtÞÞÞ

#

¼ � ð�dki � lÞVkiðtÞ � ð�dki � lÞ
R t
t� gkiðtÞ

�dkielsxkiðsÞds � ½�dki �
�dkið1 � _gkiðtÞÞ

�e� lgkiðtÞ�eltxkiðt � gkiðtÞÞ þ Lkieltxkiðt � DðtÞÞ þ elt

"Xm

p ¼ 1;
p ¼= k

Xnp

j¼1
�apjki

�fpjðxpjðtÞÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�bpjki gpjðxpjðt � tpjkiðtÞÞÞ

#

:

ð20Þ

Let O ¼ sup
t2½� t;0�

jVkiðtÞj;O > 0, there exists a positive constant ξ such that |Vki(t)|� O

< ξηki, t 2 [−τ, 0]. Then for t> 0, we claim that the above formula also holds. The proof will be

given as follows.
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If the formula is not valid, then there exists a time t0 > 0, which makes one of the following

cases occurring:

(
½1�Vkiðt0Þ ¼ xZki;

dVkiðt0Þ
dt

� 0; jVkiðtÞj < xZki; t < t0;

½2�Vkiðt0Þ ¼ � xZki;
dVkiðt0Þ

dt
� 0; jVkiðtÞj < xZki; t < t0:

ð21Þ

For t< t0, we have

eltjxkiðtÞj � jeltxkiðtÞ �
Z t

t� gkiðtÞ

�dkie
lsxkiðsÞdsj þ j

Z t

t� gkiðtÞ

�dkie
lsxkiðsÞdsj

� xZki þ
�dki�gki sup

s2½� t;t0�
elsjxkiðsÞj:

ð22Þ

Hence, we get

eltjxkiðtÞj � sup
s2½� t;t0 �

elsjxkiðsÞj �
xZki

1 � �dki�gki

: ð23Þ

For t = t0, system (20) can be written as follows

DþVkiðt0Þ ¼ � ð�dki � lÞVkiðt0Þ � ð�dki � lÞ

Z t

t� gkiðt0Þ

�dkie
lsxkiðsÞds � ½�dki

� �dkið1 � _gkiðt0ÞÞe� lgkiðt0Þ�elt0xkiðt0 � gkiðt0ÞÞ þ Lkielt0xkiðt0 � Dðt0ÞÞ

þelt0

"
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�apjki fpjðxpjðt0ÞÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�bpjki gpjðxpjðt0 � tpjkiðt0ÞÞÞ

#

:
ð24Þ

If case [1] occurs, according to Assumption 1 and system (24), we obtain

DþVkiðt0Þ � � ð�dki � lÞxZki þ ð
�dki � lÞ�dki�gki

xZki

1 � �dki�gki

þ �dki �
�dkið1 � _gkiðt0ÞÞ

h

� e� lgkiðt0Þ�elgkiðt0Þelðt0 � gkiðt0ÞÞxkiðt0 � gkiðt0ÞÞ þ LkielDðt0Þ

� elðt0 � Dðt0ÞÞxkiðt0 � Dðt0ÞÞ þ elt0
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�apjkijspjjxpjðt0Þj þ eltpjkiðt0Þ

�
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�bpjkijrpje
lðt0 � tpjkiðt0ÞÞjxpjðt0 � tpjkiðt0ÞÞj

�

(

� ð�dki � lÞð1 � 2�dki�gkiÞ �
�dkiðel�gki � ð1 � gÞÞ � LkielD

h i Zki

1 � �dki�gki

þ

"Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�apjkijspj þ el�tpjki
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�bpjkijrpj

#
Zpj

1 � �dpj�gpj

)

x ¼ FkiðlÞx < 0; ð25Þ

which is contradictory to [1].
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Similarly, if case [2] occurs, according to Assumption 1 and system (24), then we obtain

DþVkiðt0Þ � ð�dki � lÞxZki � ð
�dki � lÞ�dki�gki

xZki

1 � �dki�gki

� �dki �
�dkið1 � _gkiðt0ÞÞ

h

�e� lgkiðt0Þ�elgkiðt0Þelðt0 � gkiðt0ÞÞxkiðt0 � gkiðt0ÞÞ � LkielDðt0Þ

�elðt0 � Dðt0ÞÞxkiðt0 � Dðt0ÞÞ � elt0
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�apjkijspjjxpjðt0Þj � eltpjkiðt0Þ

�
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�bpjkijrpje
lðt0 � tpjkiðt0ÞÞjxpjðt0 � tpjkiðt0ÞÞj

�

(

� ½ð�dki � lÞð1 � 2�dki�gkiÞ �
�dkiðel�gki � ð1 � gÞÞ � LkielD�

Zki

1 � �dki�gki

þ

"Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�apjkijspj þ el�tpjki

Xm

p ¼ 1;
p ¼= k

Xnp

j¼1
j�bpjkijrpj

#
Zpj

1 � �dpj�gpj

)

ð� xÞ

¼ � FkiðlÞx > 0;

ð26Þ

which is contradictory to [2].

In both cases, we know |Vki(t)|� O< ξηki, t> 0. Similar to (23), we have eltjxkiðtÞj �

sup
s2½� t;t0 �

elsjxkiðsÞj �
xZki

1� �dki�gki
; t > 0; that is, |xki(t)| = O(e−λt). The Theorem 1 is proved.

② |xki(t)|> Γki.
According to the set-valued mapping theorem and the differential inclusion theorem, sys-

tem (9) can be rewritten as

dxkiðtÞ
dt

¼ Lkixkiðt � DðtÞÞ � �dki xkiðt � gkiðtÞÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�apjki fpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�bpjki gpjðxpjðt � tpjkiðtÞÞÞ:
ð27Þ

The proof of the rest is similar to the first case, so it is omitted here.

③ |xki(t)| = Γki.
According to the definition of a convex closure, it is clear that the system (9) is exponen-

tially stable.

In conclusion, the system (9) is exponentially stable under the condition of Theorem 1.

Remark 4. According to Assumption 1, it is obvious that (0, 0, � � �, 0)T is a equilibrium

point of the system (9).

Remark 5. According to the definition of a convex closure, dki(xki(t)), apjki(xki(t)) and

bpjki(xki(t)) in system (9) are in a interval. Based on the analysis of the first two cases, we know

that system (9) is exponentially stable in this interval.
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Obviously, system (9) without sample-date feedback control is shown as follows

dxkiðtÞ
dt

2 � coðdkiðxkiðtÞÞÞxkiðt � gkiðtÞÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

coðapjkiðxkiðtÞÞÞfpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

coðbpjkiðxkiðtÞÞÞgpjðxpjðt � tpjkiðtÞÞÞ:

ð28Þ

Corollary 1. We consider time-varying delays in the leakage terms without sample-data

feedback control. According to Assumption 1, let ~dki�gki < 1, there exist positive constants

Z11; Z12; � � � ; Zmnm
, for t> 0, such that the equilibrium point x� of system (28) is exponentially

stable if

� ½~dkið1 � 2~dki�gkiÞ �
~dkig�Zki=ð1 �

~dki�gkiÞ þ

"
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j~apjkijspj

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j~bpjkijrpj

#

Zpj=ð1 �
~dpj�gpjÞ < 0;

ð29Þ

where ~dki ¼
�dki or �dki, ~apjki ¼ �apjki or àpjki, ~bpjki ¼

�bpjki or �bpjki. That is, there exists a positive con-

stant λ, which makes |xki(t)| = O(e−λt).
Proof. Due to the characteristics of the memristor, the theorem will be proved in three

cases. The proof process is similar to Theorem 1, and we will not described here.

Theorem 2. Under Assumption 1, if there exists a constant λ satisfies

L2
ki < 2lki �

~d2
ki �

Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

~a2

pjki s
2

pj þ
~b2

pjki r
2

pj þ 1þ
1

1 � b

� �

�
1

1 � g
�

1

1 � D
;

ð30Þ

where ~dki ¼
�dki or �dki, ~apjki ¼ �apjki or àpjki, ~bpjki ¼

�bpjki or �bpjki. Then, the solution of system (4) is

globally asymptotically stable under the sampled-data controller Iki(t) = Lki xki(t − Δ(t)) − λki
xki(t).

Proof. We construct a suitable Lyapunov function as follows

VkiðtÞ ¼
1

2
x2

kiðtÞ þ
1

2ð1 � gÞ

Z t

t� gkiðtÞ
x2

kiðsÞdsþ
1

2ð1 � bÞ

�
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

Z t

t� tpjkiðtÞ
x2

pjðsÞdsþ
1

2ð1 � DÞ

Z t

t� DðtÞ
x2

kiðsÞds:
ð31Þ

Due to the characteristics of the memristor, the theorem will be proved in three cases.

① |xki(t)|< Γki.
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According to the set-valued mapping theorem and the differential inclusion theorem, sys-

tem (9) can be rewritten as follows

dxkiðtÞ
dt

¼ Lkixkiðt � DðtÞÞ � lki xkiðtÞ � �dki xkiðt � gkiðtÞÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�apjki fpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�bpjki gpjðxpjðt � tpjkiðtÞÞÞ:

ð32Þ

Calculating the upper right Dini derivative of (32), we have

DþVkiðtÞ ¼
1

2ð1 � gÞ
x2

kiðtÞ �
1

2
x2

kiðt � gkiðtÞÞ
� �

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

1

2ð1 � bÞ
x2

pjðtÞ
�

�
1

2
x2

pjðt � tðtÞÞ
�

þ
1

2ð1 � DÞ
x2

kiðtÞ �
1

2
x2

kiðt � DðtÞÞ
� �

þ xkiðtÞ _xkiðtÞ

¼
1

2ð1 � gÞ
x2

kiðtÞ �
1

2
x2

kiðt � gkiðtÞÞ
� �

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

1

2ð1 � bÞ
x2

pjðtÞ
�

�
1

2
x2

pjðt � tðtÞÞ
�

þ
1

2ð1 � DÞ
x2

kiðtÞ �
1

2
x2

kiðt � DðtÞÞ
� �

þ xkiðtÞ
�

Lkixkiðt � DðtÞÞ � lkixkiðtÞ � �dkixkiðt � gkiðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�apjki fpjðxpjðtÞÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�bpjki gpjðxpjðt � tpjkiðtÞÞÞ
�

:

ð33Þ

According to Assumption 1, we yield

DþVkiðtÞ �
1

2ð1 � gÞ
x2

kiðtÞ �
1

2
x2

kiðt � gkiðtÞÞ
� �

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

1

2ð1 � bÞ
x2

pjðtÞ
�

�
1

2
x2

pjðt � tðtÞÞ
�

þ
1

2ð1 � DÞ
x2

kiðtÞ �
1

2
x2

kiðt � DðtÞÞ
� �

þ �dkijxkiðtÞjjxkiðt � gkiðtÞÞj þ jxkiðtÞj
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�apjkijspjjxpjðtÞj þ jxkiðtÞj

�
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�bpjkijrpjjxpjðt � tðtÞÞj þ jxkiðtÞjLkijxkiðt � DðtÞÞj � lkix
2

kiðtÞ:

ð34Þ
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By the mean-value inequality, we get

dkijxkiðtÞjjxkiðt � gkiðtÞÞj �
1

2
d2

kix
2

kiðtÞ þ x2

kiðt � gkiðtÞÞ
� �

; ð35Þ

jxkiðtÞj
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�apjkijspjjxpjðtÞj �
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

1

2
�a2

pjki s
2

pjx
2

kiðtÞ þ
1

2
x2

pjðtÞ
� �

;
ð36Þ

jxkiðtÞj
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

j�bpjkijrpjjxpjðt � tðtÞÞj �
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

1

2
�b2

pjki r
2

pj x
2

kiðtÞ þ
1

2
x2

pjðt � tðtÞÞ
� �

;
ð37Þ

jxkiðtÞjLkijxkiðt � DðtÞÞj �
1

2
L2

kix
2

kiðtÞ þ
1

2
x2

kiðt � DðtÞÞ: ð38Þ

According to (34) and the mean-value inequality, we get an inequation as follows

DþVkiðtÞ �
1

2ð1 � gÞ
x2

kiðtÞ �
1

2
x2

kiðt � gkiðtÞÞ
� �

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

1

2ð1 � bÞ
x2

pjðtÞ
�

�
1

2
x2

pjðt � tðtÞÞ
�

þ
1

2ð1 � DÞ
x2

kiðtÞ �
1

2
x2

kiðt � DðtÞÞ
� �

þ
1

2
�d2

ki x
2

kiðtÞ
h

þx2

kiðt � gkiðtÞÞ
�

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

1

2
�a2

pjki s
2

pjx
2

kiðtÞ þ
1

2
x2

pjðtÞ
� �

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

1

2
�b2

pjki r
2

pj x
2

kiðtÞ þ
1

2
x2

pjðt � tðtÞÞ
� �

þ
1

2
L2

ki x
2

kiðtÞ

þ
1

2
x2

kiðt � DðtÞÞ � lkix
2

kiðtÞ:

ð39Þ

Then we have

DþVkiðtÞ �

(
1

2
�d2

ki þ
1

2
L2

ki þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

1

2
�a2

pjki s
2

pj þ
1

2
�b2

pjki r
2

pj þ
1

2
þ

1

2ð1 � bÞ

� �

þ
1

2ð1 � gÞ
þ

1

2ð1 � DÞ
� lki

)

x2

kiðtÞ: ð40Þ

According to the condition of Theorem 2, we get D+Vki(t)<0. From the Lyapunov stability

throrem, the solution of system (9) is globally asymptotically stable.

② |xki(t)|> Γki.
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According to the set-valued mapping theorem and the differential inclusion theorem, sys-

tem (9) can be rewritten as follows

dxkiðtÞ
dt

¼ Lkixkiðt � DðtÞÞ � lki x2
kiðtÞ � �dki xkiðt � gkiðtÞÞ þ

Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�apjki fpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�bpjki gpjðxpjðt � tpjkiðtÞÞÞ:

ð41Þ

The proof of the rest is similar to the first case, so it is omitted here.

③ |xki(t)| = Γki.
According to the definition of a convex closure, it is clear that the solution of system (9) is

globally asymptotically stable.

In conclusion, the solution of system (9) is globally asymptotically stable under the condi-

tion of Theorem 2.

Obviously, system (9) without time-varying delays in leakage terms is shown as follows

dxkiðtÞ
dt

2 Lkixkiðt � DðtÞÞ � lki xkiðtÞ � coðdkiðxkiðtÞÞÞxkiðtÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

coðapjkiðxkiðtÞÞÞfpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

coðbpjkiðxkiðtÞÞÞgpjðxpjðt � tpjkiðtÞÞÞ:

ð42Þ

Corollary 2. We consider the sample-data feedback control without time-varying delays in

the leakage terms. According to Assumption 1, the solution of the system (42) is globally

asymptotically stable under the sampled-data controller Iki(t) = Lkixki(t − Δ(t)) − λkixki(t) if

L2
ki < 2lki þ 2~dki �

Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

~a2

pjki s
2

pj þ
~b2

pjki r
2

pj þ 1þ
1

1 � b

� �

�
1

1 � D
;

ð43Þ

where ~dki ¼
�dki or �dki, ~apjki ¼ �apjki or àpjki, ~bpjki ¼

�bpjki or �bpjki.

Proof. We construct a suitable Lyapunov function as follows

VkiðtÞ ¼
1

2
x2

kiðtÞ þ
1

2ð1 � bÞ

Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

Z t

t� tpjkiðtÞ
x2

pjðsÞdsþ
1

2ð1 � DÞ

Z t

t� DðtÞ
x2

kiðsÞds: ð44Þ

Due to the characteristics of the memristor, the corollary will be proved in three cases.

① |xki(t)|< Γki.
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According to the set-valued mapping theorem and the differential inclusion theorem, the

system (42) can be rewritten as follows

dxkiðtÞ
dt

¼ Lkixkiðt � DðtÞÞ � lki xkiðtÞ � �dkixkiðtÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�apjki fpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�bpjki gpjðxpjðt � tpjkiðtÞÞÞ:
ð45Þ

Under the condition of Corollary 2, the proof method is similar to Theorem 2, and we will

not described here.

② |xki(t)|> Γki.
According to the set-valued mapping theorem and the differential inclusion theorem, the

system (42) can be rewritten as follows

dxkiðtÞ
dt

¼ Lkixkiðt � DðtÞÞ � lki xkiðtÞ � �dki xkiðtÞ þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�apjki fpjðxpjðtÞÞ

þ
Xm

p ¼ 1;
p ¼= k

Xnp

j¼1

�bpjki gpjðxpjðt � tpjkiðtÞÞÞ:
ð46Þ

The proof of the rest is similar to the first case, so it will not repeated here.

③ |xki(t)| = Γki.
According to the definition of a convex closure, it is clear that the solution of system (42) is

globally asymptotically stable.

In conclusion, the solution of the system (42) without time-varying delays in leakage terms

is globally asymptotically stable under the condition of Corollary 2.

Numerical simulation

In this section, several numerical examples are given to illustrate the efficiency of our theoreti-

cal results.

Example 1. Consider the following MMAMNNs with leakage delays via sampled-data feed-

back control, there are three fields and one neuron in each field( dx11ðtÞ
dt

¼ � d11ðx11ðtÞÞx11ðt � g11ðtÞÞ þ a2111ðx11ðtÞÞf21ðx21ðtÞÞ

þa3111ðx11ðtÞÞf31ðx31ðtÞÞ þ b2111ðx11ðtÞÞg21ðx21ðt � t2111ðtÞÞÞ

þb3111ðx11ðtÞÞg31ðx31ðt � t3111ðtÞÞÞ þ L11x11ðt � DðtÞÞ;

dx21ðtÞ
dt

¼ � d21ðx21ðtÞÞx21ðt � g21ðtÞÞ þ a1121ðx21ðtÞÞf11ðx11ðtÞÞ

þa3121ðx21ðtÞÞf31ðx31ðtÞÞ þ b1121ðx21ðtÞÞg11ðx11ðt � t1121ðtÞÞÞ

þb3121ðx21ðtÞÞg31ðx31ðt � t3121ðtÞÞÞ þ L22x22ðt � DðtÞÞ;

dx31ðtÞ
dt

¼ � d31ðx31ðtÞÞx31ðt � g31ðtÞÞ þ a1131ðx31ðtÞÞf11ðx11ðtÞÞ

þa2131ðx31ðtÞÞf21ðx21ðtÞÞ þ b1131ðx31ðtÞÞg11ðx11ðt � t1131ðtÞÞÞ

þb2131ðx31ðtÞÞg21ðx21ðt � t2131ðtÞÞÞ þ L33x33ðt � DðtÞÞ;

ð47Þ
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where

d11ðx11ðtÞÞ ¼

(
2:32; jx11j � G11;

2:56; jx11j > G11;
d21ðx21ðtÞÞ ¼

(
1:73; jx11j � G21;

2:21; jx11j > G21;

d31ðx31ðtÞÞ ¼

(
1:98; jx31j � G31;

2:18; jx31j > G31;
a1121ðx21ðtÞÞ ¼

(
0:48; jx21ðtÞj � G21;

0:73; jx21ðtÞj > G21;

a1131ðx31ðtÞÞ ¼

(
1:05; jx31ðtÞj � G31;

1:21; jx31ðtÞj > G31;
a2111ðx11ðtÞÞ ¼

(
� 2:32; jx11ðtÞj � G11;

� 5:45; jx11ðtÞj > G11;

a2131ðx31ðtÞÞ ¼

(
� 3:24; jx31ðtÞj � G31;

� 2:56; jx31ðtÞj > G31;
a3111ðx11ðtÞÞ ¼

(
� 2:1; jx11ðtÞj � G11;

� 1:56; jx11ðtÞj > G11;

a3121ðx21ðtÞÞ ¼

(
� 0:8; jx21ðtÞj � G21;

� 0:76; jx21ðtÞj > G21;
b1121ðx21ðtÞÞ ¼

(
� 0:56; jx21ðtÞj � G21;

� 0:98; jx21ðtÞj > G21;

b1131ðx31ðtÞÞ ¼

(
� 1:73; jx31ðtÞj � G31;

� 3:56; jx31ðtÞj > G31;
b2111ðx11ðtÞÞ ¼

(
� 0:4; jx11ðtÞj � G11;

� 1:2; jx11ðtÞj > G11;

b2131ðx31ðtÞÞ ¼

(
� 4:33; jx31ðtÞj � G31;

� 6:67; jx31ðtÞj > G31;
b3111ðx11ðtÞÞ ¼

(
0:23; jx11ðtÞj � G11;

0:32; jx11ðtÞj > G11;

b3121ðx21ðtÞÞ ¼

(
0:47; jx21ðtÞj � G21;

0:58; jx21ðtÞj > G21:

ð48Þ

Fig 1. Exponential stability of system (9) with leakage delays via sampled-data feedback control.

https://doi.org/10.1371/journal.pone.0204002.g001
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Let Γ11 = Γ21 = Γ31 = 2. We set the action functions fki(x) = gki(x) = tanh(x). The time-vary-

ing delays are γki(t) = 0.1 + 0.1sin(t) and τpjki = 0.5cos(t) − 0.5. The sampled-data feedback con-

trol is set to Δ(t) = 0.02t. According to Assumption 1, we have σki = ρki = 1. By calculating, we

get �gki ¼ 0:2, �tpjki ¼ 0, γ = 0.1, β = 0.5, Δ = 0.02. The initial condition ϕ(s) 2 C([−0.2, 0], Rn).

Under the condition of Theorem 1, let ηki = 2, we get L11 = −1.6, L21 = −7, L31 = −2. The expo-

nential stability of one equilibrium point of the MMAMNNs with time-varying delays in leak-

age terms via sampled-data feedback control is represented (Fig 1). The exponential stability of

one equilibrium point of MMAMNNs with time-varying delays without sampled-data control

is showed (Fig 2). A sampled-data feedback controller for exponential stability of system (9) is

described (Fig 3). A sampled-data feedback controller for exponential stability of system (9) is

described (Fig 4). In the following, five sets of initial values are given

1. ϕ11 = sin(0.5 � t) − 0.4, ϕ21 = 0.5 � sin(t) − 0.4, ϕ31 = 0.5 � t − 0.4.

2. ϕ11 = −0.2 + 2 � t, ϕ21 = exp(−0.5 � t), ϕ31 = 2 � cos(t).

3. ϕ11 = exp(0.5 � t), ϕ21 = sin(t), ϕ31 = 3.

4. ϕ11 = −0.6, ϕ21 = −1, ϕ31 = 2.

5. ϕ11 = −cos(0.5 � pi � t), ϕ21 = −1 + exp(t − 0.25), ϕ31 = 0.2�t.

Under the same parameters, on the one hand, according to Figs 1 and 2, we know that

whatever the initial value of each field is, it eventually approximates a straight line. The corre-

sponding value of the line is the equilibrium point value of each field, i.e. no matter what the

initial value of each field is, the equilibrium point ultimately converges to zero. In other words,

whatever the initial value is, an arbitrary local solution x(t) is gradually approaching the equi-

librium point x� = (0, 0, � � �, 0)T.

Fig 2. Exponential stability of system (28) without sampled-data feedback control.

https://doi.org/10.1371/journal.pone.0204002.g002
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Fig 3. A sampled-data feedback controller for exponential stability of system (9).

https://doi.org/10.1371/journal.pone.0204002.g003

Fig 4. A sampled-data feedback controller for exponential stability of system (9) after local amplification.

https://doi.org/10.1371/journal.pone.0204002.g004
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On the other hand, compared with the MMAMNNs without sample-data control, MMAMNNs

with sample-data control converge to the equilibrium point faster. Hence, it is valuable to study the

MMAMNNs with time-varying delays in leakage terms via sampled-data feedback control.

Remark 6. Since the system cannot be in a stable state for a long time, and it is also a huge

consumption to continuously acquire the state of the system, thus, we use sampled-data con-

trol method in this paper, which has good flexibility and easy maintenance.

The varying of MMAMNNs with a larger leakage delay γki(t) = 5sin(t) and without sample-

data control is showed (Fig 5). Compared with Fig 2 with a leakage delay γki(t) = 0.1 + 0.1sin

(t), we know that a larger leakage delay can cause fluctuations of system (28) without sampled-

data control. Moreover, the system (28) in Fig 5 is unstable and it varies greatly.

Example 2. Consider the following MMAMNNs with leakage delays via sampled-data feed-

back control, there are three fields and one neuron in each field( dx11ðtÞ
dt

¼ � d11ðx11ðtÞÞx11ðt � g11ðtÞÞ þ a2111ðx11ðtÞÞf21ðx21ðtÞÞ

þa3111ðx11ðtÞÞf31ðx31ðtÞÞ þ b2111ðx11ðtÞÞg21ðx21ðt � t2111ðtÞÞÞ
þb3111ðx11ðtÞÞg31ðx31ðt � t3111ðtÞÞÞ þ L11x11ðt � DðtÞÞ � l11x11ðtÞ;

dx21ðtÞ
dt

¼ � d21ðx21ðtÞÞx21ðt � g21ðtÞÞ þ a1121ðx21ðtÞÞf11ðx11ðtÞÞ

þa3121ðx21ðtÞÞf31ðx31ðtÞÞ þ b1121ðx21ðtÞÞg11ðx11ðt � t1121ðtÞÞÞ
þb3121ðx21ðtÞÞg31ðx31ðt � t3121ðtÞÞÞ þ L22x22ðt � DðtÞÞ � l21x21ðtÞ;

dx31ðtÞ
dt

¼ � d31ðx31ðtÞÞx31ðt � g31ðtÞÞ þ a1131ðx31ðtÞÞf11ðx11ðtÞÞ

þa2131ðx31ðtÞÞf21ðx21ðtÞÞ þ b1131ðx31ðtÞÞg11ðx11ðt � t1131ðtÞÞÞ
þb2131ðx31ðtÞÞg21ðx21ðt � t2131ðtÞÞÞ þ L33x33ðt � DðtÞÞ � l31x31ðtÞ;

ð49Þ

where

d11ðx11ðtÞÞ ¼

(
2:3; jx11j � G11;

2:8; jx11j > G11;
d21ðx21ðtÞÞ ¼

(
2:1; jx11j � G21;

2:4; jx11j > G21;

d31ðx31ðtÞÞ ¼

(
1:8; jx31j � G31;

2:1; jx31j > G31;
a1121ðx21ðtÞÞ ¼

(
� 0:72; jx21ðtÞj � G21;

� 0:56; jx21ðtÞj > G21;

a1131ðx31ðtÞÞ ¼

(
0:34; jx31ðtÞj � G31;

0:78; jx31ðtÞj > G31;
a2111ðx11ðtÞÞ ¼

(
0:25; jx11ðtÞj � G11;

0:49; jx11ðtÞj > G11;

a2131ðx31ðtÞÞ ¼

(
� 0:32; jx31ðtÞj � G31;

� 0:16; jx31ðtÞj > G31;
a3111ðx11ðtÞÞ ¼

(
0:96; jx11ðtÞj � G11;

1:15; jx11ðtÞj > G11;

a3121ðx21ðtÞÞ ¼

(
� 0:86; jx21ðtÞj � G21;

� 0:54; jx21ðtÞj > G21;
b1121ðx21ðtÞÞ ¼

(
0:78; jx21ðtÞj � G21;

0:84; jx21ðtÞj > G21;

b1131ðx31ðtÞÞ ¼

(
� 0:53; jx31ðtÞj � G31;

� 0:17; jx31ðtÞj > G31;
b2111ðx11ðtÞÞ ¼

(
0:58; jx11ðtÞj � G11;

0:79; jx11ðtÞj > G11;

b2131ðx31ðtÞÞ ¼

(
� 0:8; jx31ðtÞj � G31;

� 0:65; jx31ðtÞj > G31;
b3111ðx11ðtÞÞ ¼

(
0:68; jx11ðtÞj � G11;

1:23; jx11ðtÞj > G11;

b3121ðx21ðtÞÞ ¼

(
0:89; jx21ðtÞj � G21;

1:01; jx21ðtÞj > G21:

ð50Þ
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Let Γ11 = Γ21 = Γ31 = 2. We set the action functions fki(x) = gki(x) = tanh(x). The time-vary-

ing delays are γki(t) = 0.5cos(t) + 0.5 and τpjki = 0.5 + 0.5sin(t). The sampled-data feedback con-

trol is set to Δ(t) = 0.02t. According to Assumption 1, we have σki = ρki = 1. By calculating, we

get g�ki ¼ 1, t�pjki ¼ 1, γ = 0.5, β = 0.5, Δ = 0.02. The initial condition ϕ(s) 2 C([−1, 0], Rn).

Under the condition of Theorem 2, let ηki = 2, we get L11 = 0.16, L21 = −0.3, L31 = 0.32, λ11 = 9,

λ21 = 8, λ31 = 6. The asymptotic stability of one equilibrium point of the MMAMNNs with

time-varying delays in leakage terms via sampled-data feedback control is displayed (Fig 6).

The asymptotic stability of one equilibrium point of MMAMNNs without leakage terms is

illustrated (Fig 7). A sampled-data feedback controller for asymptotic stability of system (9) is

described (Fig 8). The varying of MMAMNNs with a larger leakage delay γki(t) = 5sin(t) and

without sample-data control is showed (Fig 9). In the following, five sets of initial values are

given

1. ϕ11 = exp(−0.1 � t) + 0.2, ϕ21 = 0.5 � sin(t) + 0.2, ϕ31 = t + 0.2.

2. ϕ11 = 2 � cos(t), ϕ21 = 0.3 + exp(−0.5 � t), ϕ31 = 0.2 + sin(t).

3. ϕ11 = −0.7, ϕ21 = 2, ϕ31 = −1 + cos(t).

4. ϕ11 = −0.35�t, ϕ21 = −0.4 − t, ϕ31 = exp(t).

5. ϕ11 = −cos(0.5 � pi � t), ϕ21 = exp(t − 0.25), ϕ31 = 0.2 � tanh(t).

Under the same parameters, on the one hand, according to Figs 6 and 7, we know that no

matter what the initial value of each field is, it will eventually approach zero. In other words,

Fig 5. Exponential stability of system (28) without sampled-data feedback control(γki(t) = 5sin(t)).

https://doi.org/10.1371/journal.pone.0204002.g005
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Fig 7. Asymptotic stability of system (42) without leakage terms.

https://doi.org/10.1371/journal.pone.0204002.g007

Fig 6. Asymptotic stability of system (9) with leakage delays via sampled-data feedback control.

https://doi.org/10.1371/journal.pone.0204002.g006
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whatever the initial value is, an arbitrary local solution x(t) is gradually approaching the equi-

librium point x�.
On the other hand, we know that the leakage delays have an effect on the stability of the sys-

tem. Compared with Figs 6 and 7, it is clear that the curve of MMAMNNs with leakage terms

has a significant change. However, the leakage delays are inevitable, so it is significant to study

MMAMNNs with leakage terms.

In the simulation experiment, we set the sampling period to 0.02s, and the specific sampling

controller action diagram is shown in Fig 4 (after partial enlargement). As can be seen from

Figs 3 and 8, the value of the controller remains unchanged during the sampling period until

the next sampling period. As time goes on, the system gradually stabilizes and the controller

values tend to zero. Compared to continuous control methods, the sampled-data control

method reduces energy consumption to a certain extent. At the same time, because the system

cannot be in a stable state for a long time, the state of the interval control system is more

realistic.

Conclusion

In this paper, we propose a new model of MMAMNNs with time-varying delays in leakage

terms via sampled-data control. Compared with some continuous control methods, the sam-

ple-data control method is more effective and realistic. So we turn the sampling system into a

continuous time-delay system by using sampled-data control. Then the exponential stability

and asymptotic stability of the equilibrium points for this model are analyzed. By constructing

a suitable Lyapunov function, using Lyapunov stability theorem and some inequality

Fig 8. A sampled-data feedback controller for asymptotic stability of system (9).

https://doi.org/10.1371/journal.pone.0204002.g008
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techniques, some sufficient criteria are obtained to guarantee the stability of the system. Some

numerical examples are given to demonstrate the effectiveness of the proposed theories. These

results will be further applied in the areas such as associative memory of brain-like systems,

intelligent thinking for intelligent robots, mass storage, medical image processing etc.
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