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Abstract

The endangered Cedrela balansae C.DC. (Meliaceae) is a high-value timber species with

great potential for forest plantations that inhabits the tropical forests in Northwestern Argen-

tina.Research on this species is scarce because of the limited genetic and genomic informa-

tion available. Here, we explored the transcriptome of C. balansae using 454 GS FLX

Titanium next-generation sequencing (NGS) technology. Following de novo assembling, we

identified 27,111 non-redundant unigenes longer than 200 bp, and considered these tran-

scripts for further downstream analysis. The functional annotation was performed searching

the 27,111 unigenes against the NR-Protein and the Interproscan databases. This analysis

revealed 26,977 genes with homology in at least one of the Database analyzed. Further-

more, 7,774 unigenes in 142 different active biological pathways in C. balansae were identi-

fied with the KEGG database. Moreover, after in silico analyses, we detected 2,663 simple

sequence repeats (SSRs) markers. A subset of 70 SSRs related to important “stress toler-

ance” traits based on functional annotation evidence, were selected for wet PCR-validation

in C. balansae and other Cedrela species inhabiting in northwest and northeast of Argentina

(C. fissilis, C. saltensis and C. angustifolia). Successful transferability was between 77%

and 93% and thanks to this study, 32 polymorphic functional SSRs for all analyzed Cedrela

species are now available. The gene catalog and molecular markers obtained here repre-

sent a starting point for further research, which will assist genetic breeding programs in the

Cedrela genus and will contribute to identifying key populations for its preservation.
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Introduction

The Meliaceae is a widely distributed family of trees mostly growing in rain forests of tropic

and sub-tropic regions, with some species extending to seasonally dry forests and mangroves

[1–5].

The Cedrela genus spreads in Central and South America and reaches its southernmost

edge in a subtropical montane rainforest ecosystem known as the Yungas [6, 7], in the North-

western Argentina (NWA). The Yungas provide environmental services such as watershed

protection, the restoration of soil fertility and the stability of river basins and represents one of

the sites of highest biodiversity in Argentina. Cedrela is among the most important forest

resources; however, its heavy exploitation led to a depletion process of member of this genus,

such as Cedrela balansae C.DC (Orán Cedar). This species has excellent wood properties and

inhabits between 300 to 700 meters above sea level (masl) in the Piedmont Rainforest, within a

small latitudinal range (22˚ to 24˚30’S). Its habitat in Argentina has been modified by anthro-

pogenic intervention [8, 9]. Therefore, its preservation and the enhancement of this species in

the remaining forests is vital.

Several groups have studied the genetic diversity of C. balansae before using fragment

length polymorphism (AFLP) and simple sequence repeats (SSRs) transferred from other spe-

cies of the Meliaceae family [10–12].

As there is a domestic market demand for this wood, breeding for superior trees of this spe-

cies should result in regional development and discourages withdrawals of the native forest.

The importance of Cedrela to forestry lies in its speed for grow but biotic and abiotic factors,

mainly low and freezing temperatures and shootborers, are the main constrains to establish

commercial plantations of the Cedrela species particularly in the early years of growth.

Knowledge of the genetic bases of resistance to abiotic stress tolerance and insects are

important factors for deciding the breeding strategies for genetic improvement of this species.

Therefore, one of the major challenges for Cedrela spp tree cultivation is the selection of geno-

types adapted to low and freezing temperatures, drought stress and tolerant to mahogany

shoot borer. Such challenges could be confronted by developing new strategies and tools in the

field of biotechnology. Next Generation Sequencing (NGS) technologies and Bioinformatic

work-flows can easily identify SSR markers which are needed in population’ genetics and asso-

ciation studies. Several transcriptomic studies on tree species provided important information

to discover genes of interest and new molecular markers, for example in Quercus spp [13, 14],

Pinus contorta [15], Nothofagus nervosa [16], Prosopis alba [17] and Pinus pinaster [18] inter

alia. In addition, the application of NGS approaches allowed new reports in members of the

Meliaceae family, such as Khaya Senegalensis ([19], Azadirachta indica [20, 21], Carapa guia-
nensis [22] and A. indica andMelia azedarach [23]. Nevertheless, little genomic information of

the Cedrela genus from Argentina is available to date.

In this study, we provide a reference transcriptome for C. balansae and identify SSR mark-

ers to support diversity studies in wild populations. This information also contributes with

tools for the genetic breeding programs, such as the programs of INTA (National Institute of

Agricultural Technology of Argentina) that are focused on improving the behavior of

seedlings.

Materials and methods

Plant material

RNA extraction was performed with leaves from four seedlings of cold tolerant families, whose

mothers come from San Andrés and Pintascayos populations (Argentinian Yungas). Leaves
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were collected from 6-month seedlings under spring season with a temperature range between

10–20˚C. The samples seeds were collected on private lands with the owner permission.

For SSR (70) wet validation, we used DNA of eight C. balansae individuals from seven ori-

gins (Apolinario Saravia, San Andrés, Rio Seco Forestal Santa Bárbara, Rio Seco Familia Fal-

cón, Piquirenda, Calilegua National Park, Yuto).

This sampling covers most of the natural distribution area of this species in Argentina. The

characterization of 11 polymorphic SSRs was performed with 51 individuals from three native

populations of the natural distribution area.

The transferability of 70 SSRs from C. balansae (source species) to C. fissilis, C. angustifolia
and C. saltensis (target species) was evaluated by assessing leaf samples of eight individuals of

either eight populations from C. fissilis, seven from C. angustifolia and three from C. saltensis.
The sampling represents the whole range of the species.

RNA isolation and sequencing

RNA extraction was performed according to Chang’s protocol [24] that is specific to woody

plants. Briefly, 1 g of fresh tissue was grounded to a fine powder by using liquid nitrogen.

Then, two extractions were performed with chloroform and RNA was precipitated with LiCl2,

extracted for a second time with chloroform and finally precipitated with ethanol. The

obtained RNA was resuspended in 50 μl of DEPC (diethylpyrocarbonate) treated water and

was quantified using a Nanodrop 1,000 spectrophotometer. The quality was assessed with a

2,100 Bioanalyzer (Agilent Technologies Inc.). Total RNA was purified using Poly (A) Purist

kit (Ambion) and the quality was assessed again with a 2,100 Bioanalyzer (Agilent Technolo-

gies). cDNA was synthesized using cDNA Kit (Roche) for constructing a shotgun library.

Roche 454 GS FLX Titanium sequencing platform at INDEAR (Rosario Agro Biotechnology

Institute, http://webservices.indear.com/) in Rosario, Argentina performed sequencing. More-

over, all bioinformatic analysis was performed in the Bioinformatics Unit at the Biotechnology

Institute at INTA.

Transcript assembly and analysis

Raw data were preprocessed discarding low-quality reads and the resulting high-quality

cleaned reads were assembled de novo into contigs, isotigs and isogroups using Newbler

Assembler Software 2.6 p1 (Roche, IN, USA).

The reads identified as singletons (i.e., reads not assembled into isotigs) after assembly were

subjected to CD-HIT-454 clustering algorithm using a sequence identity cut-off of 90%, which

eliminates redundant sequences or artificial duplicates.

The assembled sequences were compared against an in-house Viridiplantae non-

redundant protein database (NCBI-NR) using BLASTX with a cutoff E-value of 1e-10 [25].

Annotation and mapping routines were run with BLAST2GO, which assigns Gene Ontol-

ogy annotation [26], (www.geneontology.org/), KEGG maps (Kyoto Encyclopedia of

Genes and Genomes, KASS) and an enzyme classification number (EC number) using a

combination of similarity searches and statistical analysis [27]. In addition to BLAST2GO,

the full suite of InterProScan [28] was run with default parameters to extend the func-

tional annotation and GO term assignment by means of protein signature recognition

methods.

SSR identification. To identify SSRs for all possible combinations of dinucleotide, trinu-

cleotide, tetranucleotide and pentanucleotide repeats, we used the SSR webserver (GDR)

(https://www.rosaceae.org). This webserver uses the GETORF algorithm (EMBOSS Package)

and selects the longest ORF as the putative coding region. This webserver also uses Primer 3
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(v.0.4.0) [29, 30] to design primer pairs. The criterion used for the SSR selection based on the

minimum number of repeats was as follows: five for dinucleotide, four for trinucleotide, three

for tetra, penta and hexanucleotide motives. The locations of specific SSR motifs within pre-

dicted UTRs and coding sequence regions were also analyzed.

SSRs validation, characterization and transferability. PCR reactions consisted of 5 ng of

total DNA, 0.25 μM of each primer, 3.0–4.5 mM of MgCl2, 0.25 mM of each dNTP, 1X of PCR

buffer and 0.6 U of Taq polymerase (Inbio). The PCR reactions consisted of a denaturation

step of 2 min at 94˚C followed by 28 cycles at the touchdown temperature of 51 or 56˚ (45 s at

92˚C, 45 s at 51 or 56˚ and 45 s at 72˚C) and the final extension step at 72˚C for 10 min. Some

microsatellites required a single temperature ranging from 55–62˚C. The amplification prod-

ucts were separated on a 6% (w/v) denaturing polyacrylamide gel and were stained using the

DNA silver staining procedure of Promega (USA) following the manufacturer’s instructions.

The SSR profiles were scored manually for each of the SSR loci. The molecular weight of each

band was estimated in base pairs (bp) by comparison with a 10 bp DNA Ladder (Invitrogen)

using the GEL software (Dubcovsky J., unpublished data) based on the reciprocals method

[31].

Polymorphic amplification patterns (P), compatible with the species ploidy level in the

expected size within or out of range and monomorphic (M) patterns of all the markers were

defined. M corresponded to a single band of equal molecular weight.

The DNA used here for all studies had previously been extracted and used in earlier works

[12, 32].

Usefulness of SSRs marker for diversity analysis. To assess the potential of the 11 novel

SSRs for genetic diversity analysis, we evaluated 51 individuals of C.balansae. Total number of

alleles (Na), observed (Ho) and expected heterozygosity or gene diversity per locus (He) were

calculated running the GenAlEx 6.5 program [33] in https://biology-assets.anu.edu.au/

GenAlEx/Download.html. The Polymorphism Information Content (PIC) was estimated with

Microsatellite Toolkit [34].

Also, the estimation of linkage disequilibrium (DL) to account for a non-independent seg-

regation of markers [35] and Inbreeding coefficients (Fis) related to consanguineous mating

were computed through the GDA 1.1 program [36].

Results

The sequencing run resulted in 212,589 single end reads, with an average of 434 bp (approxi-

mately 92.3 Mbp) that represent 1.2 X of Cedrela odorata genome [37]. After filtering for adap-

tors, primers and low-quality sequences, we obtained 202,010 high quality sequences for

assembly analysis (95% of raw sequences). Because no reference genome sequence was avail-

able for Cedrela species, all the filtered high-quality reads using the Newbler assembly Software

v. 2.6 (Roche, IN, USA) were assembled. The assembly process resulted in the identification of

2,620 contiguous sequences (contigs) and 32,117 singletons. Contig sequences were further

assembled into 1,531 isotigs which are the putative transcripts re-constructed from the contig

data. Moreover, to distinguish the transcripts that come from the same locus, we set the New-

bler software to group all isotigs that shared a common contig-graph. This run resulted in

1,266 isogroups, which could be considered as putative “loci”. In addition, CD-HIT-454 algo-

rithm was used to eliminate artificial duplicates when clustering all singletons. After clustering,

we detected 25,580 (80%) unique singletons longer than 200 bp. Table 1 displays an overview

of the sequencing and assembly process.

Most isogroups (84.4%) had only one isotig, whereas the others contained between 2 and

13 isotigs. The average of transcripts per locus was 1.2.
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The sum of all isotigs and singletons, hereon named unigenes, longer than 200 bp (27,111

unigenes) were considered for further downstream analysis.

The size distribution of isotigs ranged from 214 to 9,135 bp, with an average of 976.7 bp

and an N50 equal to 1,033 bp (Fig 1). More than 90% of the isotigs were between 200 to 1,500

bp and 50% of the assembled bases grouped into isotigs greater than 744 bp. The coverage

depth for isotigs ranged from 1 to 6 contigs.

The singleton length ranged from 200 to 728 bp, with a mean of 424.7 (Table 1) and most of

them (69%) were between 400 bp and 600 bp (data not shown).

Table 1. Overview of the sequencing and assembly of C.balansae leaf transcriptome.

Description Statistics

Total number of raw read sequences 212,589

Mean length (bp) 434

Total Number of assembled read sequences 149,572

Total number of isotigs (>200 bp) 1,531

Average length of isotigs (>200 bp) 976.7

Range of isotig length (>200 bp) 214–9,135

Total number of singletons (>200 bp) 25,580

Average length of singletons (bp) 424.7

Range of singleton length (bp) 200–728

Total number of unigenes 27,111

https://doi.org/10.1371/journal.pone.0203768.t001

Fig 1. Frequency distribution of isotigs length. The histograms represent the number of isotig sequences in relation to their length.

https://doi.org/10.1371/journal.pone.0203768.g001
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For the functional annotation, 27,111 unigenes were searched in the nr-Protein from NCBI

using BLASTx tool. From this analysis, 20,953 sequences (77.3%) had at least one positive hit.

When we analyzed the unigenes with the Interproscan suite, data annotation reached 99.65%

after scanning all databases in the suite (Table 2).

This Transcriptome Shotgun Assembly project has been deposited at NCBI TSA database

within BioProject: PRJNA451202. Moreover, all raw data (single end reads) were deposited in

the NCBI SRA database with run name: SRR7050098 and sample name SAMN08964270

(https://www.ncbi.nlm.nih.gov/nuccore/GGMM00000000).

Approximately 99% of unigenes longer than 1,000 bp, depicted matches with genes of the

databases and only 54% of the unigenes shorter than 300 bp showed suitable matches (S1 Fig).

C. balansae unigenes showed the highest homology with the semi-woody plant Vitis vinif-
era, (28%), followed by the woody plants Ricinus communis (27.6%) and Populus trichocarpa
(23.0%) (Fig 2).

Total 10,548 unigenes, were assigned Enzyme Comission (EC) numbers and the most rep-

resented enzyme classes were transferases, hydrolases and oxidoreductases (S2 Fig).

All unigenes were contrasted against the KEGG database to identify the active biological

pathways in C. balansae and 7,774 unigenes were mapped to 142 different KEGG pathways.

The type classification of pathways from the KEGG annotation results indicated genes related

to metabolism representing the largest proportion, especially carbohydrate metabolism, lipid

metabolism and amino acid metabolism. Purine metabolism was the second largest category

in the classification (S1 Table).

Regarding secondary metabolites, we identified 70 genes involved in the terpenoid back-

bone biosynthesis (Fig 4), 45 in ubiquinone and other terpenoid-quinone, 9 in diterpenoide

biosynthesis, 7 in sesquiterpenoid and triterpenoid biosynthesis, and 6 in monoterpenoid

genes.

SSRs marker development and validation

Repeat motifs were analyzed to explore the SSR profiles in the C. balansae leaf transcriptome

unigenes. The criterion used for the SSR selection was based on the minimum number of

repeats (see Materials and Methods). Thus, we identified 2,663 SSRs (262 in isotigs, 2,401 in

singletons) within 27,111 unigene sequences. When we considered multiple repeat occur-

rences in a same unique locus: 670 of the unigenes contained more than one SSR and 1,993

unigenes contained one SSR. Detailed information of the SSRs is described in S2 Table.

As expected, trinucleotide repeat motifs were the most frequent type of microsatellite

(1,269; 48%) in this study. The other repeat motifs showed much lower frequencies, with 639

(24%) 588 (22%) and 167 (6%) for tetra, dimeric and pentanucleotide repeats respectively. In

addition, 1,932 (72.5%) SSRs, 216 (11%) isotigs and 1,716 (89%) singletons had sufficient

flanking sequences to allow the design of appropriate unique primers to generate PCR prod-

ucts within the range of 100–300 bp. About 1,133 (43%) of the SSR sequences were inside ORF

sequences, being most of them tri-nucleotide repeats (63%). Other repeat types were much less

Table 2. Summary of functional annotation of assembled C. balansae unigenes.

Database Tools # of annotated transcripts % of annotated transcripts

Nr Protein BLASTx 20,953 77.33

InterProScan Full interpro suite 26,977 99.65

GO BLAST2GO 19,029 64.00

KEGG BLAST2GO 7,774 29.00

https://doi.org/10.1371/journal.pone.0203768.t002
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Fig 2. Summary of functional annotation of assembled C.balansae unigenes. Gene Ontology terms were assigned successfully to 19,029 of the

BLASTX annotated unigenes using BLAST2GO. These unigenes were classified in three main groups: biological process, cellular components and

molecular functions. For biological processes, the most represented GO term was cellular process followed by metabolic process and response to

stimulus. For cellular components, genes associated with cell parts and organelles were the most highly represented, while genes related to binding

and catalytic activity represented the largest proportion of genes with molecular functions. Fig 3 shows more information on the functional

categorization.

https://doi.org/10.1371/journal.pone.0203768.g002
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Fig 3. Gene ontology (GO) classification of annotated C. balansae unigenes.

https://doi.org/10.1371/journal.pone.0203768.g003
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Fig 4. The terpenoid biosynthesis pathway. Color boxes indicate the identified genes in C. balansae transcriptome.

https://doi.org/10.1371/journal.pone.0203768.g004
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frequent (di 17%, tetra 16% and penta 4%). In the UTRs region, most SSRs (66%) were tri-nucleo-

tide and tetra-nucleotide motifs. Finally, we selected SSRs belonging to gene families associated

with important traits to Cedrela genus, such as cold-hardiness, drought tolerance, growth rate, etc.

to assist the selection of best genotypes in the early stages of breeding programs.

To validate the SSR developed, we identified a subset of 70 SSR loci based on its sequence

length, GC content and mainly the functional annotation (S2 Table). Then, we select those

related to the following categories: transcription factors (Zinc fingers, Myb), peroxidases,

among other categories of which 51% were located in predicted ORF’s. We tested all loci for

PCR amplification and polymorphism in eight genotypes belonging to the eight remaining

populations of C. balansae. Sixty-three (90%) out of the 70 SSRs were effectively amplified thus

validating the quality of assembly. Of these SSRs, 52 were monomorphic and 11 (16%) poly-

morphic. Although most SSR loci were monomorphic, some of them could show polymor-

phism in another sample of individuals. Furthermore, the putative biological function

assigned to the validated and polymorphic SSR corresponded to response to cold (64%) and

other stress stimulus (36%) (Table 3).

Table 4 shows the results of the analyses performed with the 11 novel SSRs to assess their

genetic information content in a larger sample of 51 accessions belonging to the C. balansae
sampled from across the natural range of the species. Thus, we identified 30 allelic variants

through the 11 polymorphic loci with 2 to 5 alleles per SSR. The He and PIC values ranged

from 0.075 to 0.491 and from 0.073 to 0.370 for loci Trcbal 8 and Trcbal 47, respectively.

Only one locus (TrCbal64) showed linkage disequilibrium (LD) and three (TrCbal64,

TrCbal16, TrCbal43) had excess homozygotes (inbreeding) using as cutoff value: Fis ~ 0.200

(Table 4).

Table 3. Polymorphic SSRs primer pairs derived from C. balansae unigenes.

Locus name Marker ID

name

Motif Primer sequence 5’-3’ Amplicon length expected Sequence description

TrCbal8 isotig00700c (gga)5 F:AAATTCCTTTCTTCTCCTTGGC 196 dehydrin 2 Vitis yeshanensis

R:GAAAAGATTGACGACTTACCCG

TrCbal9 isotig00766a (ggc)7 F:CCAGAAAAATACCAGGAAGTGG 153 unnamed protein product Thellungiella halophila

R:TTGAGTTTGAGCAGGAGTGCTA

TrCbal15 isotig01103a (ctgc)3 F:CAGGTCATTTCAGAAAGCTTCA 136 predicted protein Populus trichocarpa

R:ATGACTAGAGATGGACCGCAAT

TrCbal16 GR7D2IN01A9N43 (ggc)4 F:GTCGAGTTTGTGATCGAATCTG 262 Predicted glycine-rich protein 2-like Vitis vinifera

R:CACCTCCTCCCTGATAACAATC

TrCbal27 GR7D2IN02JVDNY (aattt)3 F:AATGCCTCCAAGGATTAACAAG 201 predicted protein P. trichocarpa

R:TTGGGTGATATTCAACTTGCAG

TrCbal38 isotig00209b (aga)5 F:TTTCTTCCCTCGAAGTAGGGTT 132 carbonic anhydrase, putative Ricinus communis

R:CCACATTACGCCCTACTGTTTT

TrCbal42 isotig00797a (ta)5 F:GCATAACCAAACATACTGGGTG 208 Dehydration-responsive protein RD22 precursor

R:AAGTGCTCAAAGTTAAGCCAGG

TrCbal43 isotig00125a (ta)6 F:ATTTGCTGCACTGAACACATTC 242 Inositol-3-phosphate synthase

R:GCTAAGGAGAAAAGTGGATGGA

TrCbal47 GR7D2IN01C6ECWa (gac)5 F:TGCCTTAATCTCGTCTTCACAA 209 hypothetical protein ARALYDRAFT

R:AACCTGATTCGCCTGAACTAGA

TrCbal61 GR7D2IN01B4HGH (ctc)5 F:TCCGATTATTCCGACAATCC 178 cold shock protein, putative Ricinus communis

R:GGAAGTGGTGGTGCTTGTTT

TrCbal64 GR7D2IN02HQKGO (acat)3 F:TCAAGAATCACACACAGACGC 251 temperature-induced lipocalin P.tremuloides

R:ACTGATCCACCACCAGAAGG

https://doi.org/10.1371/journal.pone.0203768.t003
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Cross transferability of SSR marker to three Cedrela species

We successfully transferred 68 out of the 70 SSRs screened in C. balansae at least in one other

target species. C. fissilis, C. saltensis and C. angustifolia showed higher cross-amplification level

with 92.9%, 88.6% and 77.1% of transferability, respectively. In C. fissilis, we detected more

polymorphic SSRs (27; (39%) than in C. balansae (16%), which is the source species, in C. salt-
ensis (16%) and in C. angustifolia (9%). Among the target species, 31 were polymorphic (32

including C. balansae, the source specie).

In C. fissilis, the number of alleles ranged from 2 to 5, whereas in C. saltensis and C. angusti-
folia, it ranged from 2 to 4 and 2 to 5, respectively. The range of allele size revealed several loci

showing variation among species. (S2 Table).

Discussion

Utility of NGS for gene and marker discovery in non-model species

The development of several new Next Generation Sequencing (NGS) techniques in the last

decades can now generate large volumes of data, especially important for non-model organ-

isms. Bioinformatics is a discipline of great expansion and development in recent years as a

necessary complement to the implementation of large-scale genomics applied to the study of

organism. NGS allowed us to generate a large fraction of C. balansae transcriptome. Indeed, C.

balansae is a non-model species with scarce genomic information available in the literature

prior to this study. So far, only 17 sequences for C. balansae are available in the Genbank, and

no markers have been published.

Marker identification and characterization

NGS provides an affluence of potentially useful markers that increase possibility of finding

associations with functional genes and therefore with phenotypes. SSR markers derived from

expressed sequences are faster to obtain, although they are considered less informative because

DNA sequence is conserved in transcribed regions [38].

SSRs detected in this work require evaluation of their transferability and characterization for

their usefulness for genetic diversity analyses among and within the Cedrela genus. In this study,

we successfully amplified 97% SSRs of the analyzed SSRs (70) and 16% of these SSRs resulted

Table 4. Results of genotyping 51 C. balansae samples with 11 SSRs.

Locus name Na He Ho PIC LD Fis

TrCbal8 2 0.075 0.078 0.073 0.643 -0.045

TrCbal9 5 0.165 0.176 0.159 0.664 -0.052

TrCbal15 2 0.251 0.294 0.219 0.604 -0.171

TrCbal16 4 0.403 0.314 0.343 0.215 0.248

TrCbal27 4 0.076 0.078 0.075 0.660 -0.051

TrCbal38 2 0.128 0.137 0.120 0.613 -0.092

TrCbal42 2 0.251 0.255 0.219 0.570 -0.025

TrCbal43 2 0.095 0.100 0.090 0.718 -0.306

TrCbal47 2 0.491 0.471 0.370 0.357 0.040

TrCbal61 3 0.147 0.157 0.140 0.641 -0.127

TrCbal64 2 0.483 0.082 0.366 0.020 0.769

Na: number of alleles. Ho and He: observed and expected heterozygosity.PIC: polymorphism index content..LD: linkage desequilibrium Fis:estimated inbreeding

coefficient.

https://doi.org/10.1371/journal.pone.0203768.t004
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polymorphic in C. balansae. Although the number of polymorphic SSRs detected in this study is

low, another potential 299 polymorphic SSR (16% of total) from the 1,869 SSRs is expected.

Similar results were found in others native tree species, Nothofagus and Prosopis, where

20% and 15% of the tested SSRs respectively were polymorphic [16, 17]. A similar research

with Illumina sequencing technology in sesame showed that about 90% primer pairs success-

fully amplified DNA fragments [39], which is comparable with our results (97%) and confirms

the quality of sequencing and assembly here used. Moreover, the SSR frequency observed in C.

balansae transcriptome was 9.8%, comparable to that reported in sugarcane (7.96%) [40], and

also higher than in otherMeliaceae species (3%) [19].

Furthermore, the presence of the trinucleotide motif that was observed as the most frequent

in C. balansae was in consonance with the characteristics of the SSRs found in the transcrip-

tomic sequences of Nothofagus nervosa and Prosopis alba tree species. [16, 17].

In the UTRs region, tri-nucleotide and tetra-nucleotide motifs were more frequent (66%);

this value is slightly higher than that found in Nothofagus spp, which was 45% [18] and compa-

rable to that detected in Prosopis alba [17]. Such dominance of triplets over other repeats in

coding regions may be explained based on the selective disadvantage of non-trimeric SSR vari-

ants in coding regions, possibly causing frame-shift mutations [41].

The estimation of genetic diversity with these novel SSRs in 51 samples from three popula-

tions indicated low levels of polymorphism (He = 0.233; Ho = 0.195; PIC = 0.198 to 0.370) as

expected in genic SSRs. A similar analysis using neutral SSRs showed moderate diversity

genetic values [10, 12]. This difference could be attributed to the marker type used. In general,

most transcriptome-derived loci detected lower level of polymorphism than that derived from

genomic libraries [42–44]. Moreover, the moderate to low genetic diversity average values

observed with both kind of markers is in accordance with the small latitudinal range of its dis-

tribution area in Argentina, as well as with the impact of the indiscriminate logging on the C.

balansae species [8, 9, 10–12].

Cross-transferability

In general, the transferability of functional markers to congeneric species seems to be a good

approach to quickly obtain a set of compatible markers. [42, 45, 46]. According to this informa-

tion, our results showed high levels of cross-amplification in the target species, C. fissilis (93%),

and C. saltensis (89%). The transferability efficiency of the same set of markers slightly decreased

to 77% in C. angustifolia, owing to the greater phylogenetic and morphological distance that exists

between C. angustifolia and the other three species of the Cedrela genus [47–49].

In general, the mean transferability was higher (86%) than in the cross-amplification car-

ried out with the same three target species of Meliaceae (43%) with neutral SSRs [50]. How-

ever, in this last study, the researchers assessed.other source species (C.odorata, Swietenia
humilis and Swietenia macrophylla) [50], except for C. fissilis which was used in both studies.

The high level of transferability of microsatellites from transcriptome sequences is attributable

to a higher sequence conservation in primer binding sites [51]. Additionally, transferability

also depends on the genetic distance between species.

Moreover, the 70 SSRs analyzed resulted in about 46% (32) polymorphic markers for all the

studied species. Therefore, we could expect to identify at least other 859 potential polymorphic

SSRs from a set of 1,869 markers that have not yet been analyzed in the Cedrela species.

Conclusions

We performed a de novo transcriptome sequencing analysis of C. balansae leaf tissues using a

454-sequencing platform. This is the first report on the whole transcriptome of Cedrela genus.
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Genomic resources such as sequence of transcriptomes, genes and SSRs from this study will

have a profound application to study diversity and traits association related to biotic and abi-

otic factors in C. balansae and other species of theMeliaceae family.
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Conceptualization: Susana L. Torales, Máximo Rivarola, Noga Zelener, Luis Fornés, H. Este-

ban Hopp, Norma B. Paniego, Susana N. Marcucci Poltri.
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