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Abstract

Spectral-domain optical coherence tomography (SDOCT) is a non-invasive imaging modal-

ity that generates high-resolution volumetric images. This modality finds widespread usage

in ophthalmology for the diagnosis and management of various ocular conditions. The vol-

umes generated can contain 200 or more B-scans. Manual inspection of such large quantity

of scans is time consuming and error prone in most clinical settings. Here, we present a

method for the generation of visual summaries of SDOCT volumes, wherein a small set of

B-scans that highlight the most clinically relevant features in a volume are extracted. The

method was trained and evaluated on data acquired from age-related macular degeneration

patients, and “relevance” was defined as the presence of visibly discernible structural abnor-

malities. The summarisation system consists of a detection module, where relevant B-

scans are extracted from the volume, and a set of rules that determines which B-scans are

included in the visual summary. Two deep learning approaches are presented and com-

pared for the classification of B-scans—transfer learning and de novo learning. Both

approaches performed comparably with AUCs of 0.97 and 0.96, respectively, obtained on

an independent test set. The de novo network, however, was 98% smaller than the transfer

learning approach, and had a run-time that was also significantly shorter.

1 Introduction

The detection of key frames is a common approach employed in video analysis, particularly

for the summarisation of video sequences. The techniques typically rely on the detection of

explicit features of interest such as motion [1, 2] as well as other features such as edge informa-

tion [3] and self-similarity [4]. Condensing videos via shot boundary detection has also been

applied to the summarisation of video sequences [5].

In medical imaging, the detection of keyframes is more commonly found in the analysis of

angiogram video sequences, but is less common in other radiographic modalities. Gibson et al.
[6] described an approach for the compression of angiogram videos by detecting diagnostically

relevant frames in videos and ensuring they were preserved. Syeda-Mahmood et al. [7] pre-

sented an approach for the detection of key frames in angiogram video analysis by detecting
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the vessels and selecting frames in which their visibility was best. However, both of these

approaches relied on the explicit detection of features of interest in the images in order to iden-

tify them as “key”.

In ophthalmology, spectral-domain optical coherence tomography (SDOCT) [8] has begun

to find widespread use for the diagnosis and management of various ocular conditions. This

non-invasive imaging modality relies on laser interferometry to generate high-resolution

images of the retina, which allows for the visualisation and quantification of structures in 3-D.

These volumetric images are comprised of B-scans, which numbers can range from as few as

five to two hundred or more. Summarisation of these volumes in current scanning systems is

usually limited to a report that indicates the thicknesses of retinal layers. While such a report

shows large pathologies such as choroidal neovascularizations (CNV), smaller abnormal indi-

cators such as drusen, epiretinal membranes and microcytic macular edema would not be visi-

ble. Thus, visual summaries could complement the existing approach, by highlighting the

pathological conditions that are currently not quantified. Previously, Chakravarthy et. al [9]

described an approach for the detection of B-scans that show choroidal neovascularization

(CNV). The method relies on the detection of the retina, followed by a machine-learning

approach for the detection of possible fluid patches in the images. While this approach does in

fact extract the specific B-scans, the method is limited to CNVs associated with wet-AMD.

Here, we present a deep learning approach for the automated summarisation of SDOCT

volumes. Similar to previous summarisation techniques our proposed system begins with the

detection of “key” B-scans. The system was trained and tested on SDOCT volumes acquired

from patients that presented with age-related macular degeneration (AMD), and “relevance”

was defined on the basis of the presence of visibly discernible structural abnormalities. Using a

deep learning approach for this task allows it to be posed as a recognition task, and thus, does

not require the explicit extraction of features (such as CNV) in order to characterise the B-

scan. We employed and compared two deep learning techniques for keyframe extraction,

where one is a transfer learning technique based on a pretrained network, while the second is

a de novo trained custom convolutional neural network (CNN) that is significantly smaller.

Transfer learning is a commonly used technique that allows for the repurposing of pretrained

networks in applications where data might be scarce (as is commonly the case in medical

imaging). Once the relevant B-scans had been identified, a set of rules were applied to generate

the visual summary.

The paper is organised as follows: Section 2 details the data used in this experiment; Sec-

tion!3 describes the two deep learning networks as well as the summarisation rules. The evalu-

ation and comparison of the two networks is presented in Section!4, and a final discussion of

the results can be found in Section 5.

2 Data

The data used in the experiments were SDOCT images acquired as part of the AREDS2

Ancilliary Study. As detailed in [10], the dataset was registered at ClinicalTrials.gov (Identifier:

NCT00734487) and approved by the the institutional review boards at Devers Eye Institute,

Duke Eye Center, Emory Eye Center, and National Eye Institute. With adherence to the tenets

of the Declaration of Helsinki, informed consent was obtained from all subjects.

The study cohort consisted of 115 healthy individuals and 269 patients with age-related

macular degeneration (AMD). The images were acquired on a Bioptigen SDOCT scanner

(Leica Microsystems Inc., Illinois) from an approximately 6.7×6.7mm area centred on the

fovea. Each volumes consisted of 100 B-scans, each containing 1000 A-scans and 512 pixels

per A-scan (see Fig 1(a)). Further details of the study are provided in [10].
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2.1 Data annotation

The volumes were manually annotated and labeled as being healthy, relevant (containing visi-

bly discernible structural change) or low-quality. For this, each B-scan was visualised and

labeled relevant if any visual structural change was observed. Thus, retinal layer thinning

(which is difficult to identify visually) was not considered a key feature. However, B-scans with

even minor disruptions like small drusen, reticular pseudodrusen and epiretinal membranes

were all labeled as relevant “key” B-scans.

The presence of large shadows, poor contrast and other artefacts (such as vinetting, mirror

location errors) were flagged as poor quality B-scans (see Fig 1(b)–1(d)).

3 Methods

Deep learning [11] has been successfully employed for a number of applications in computer

vision such as image recognition [12, 13] and semantic segmentation [14, 15]. This technique

has also found application in medical imaging [16] for recognition [17], segmentation [18–20]

as well as image registration [21–23]. While larger architectures have shown to perform better

than shallower networks, their training also requires larger datasets.

Transfer learning is a technique that re-purposes existing, trained models for new tasks by

retraining only small parts of the network. As most weights of the network are left unchanged,

this reduces the amount of training data required. Transfer learning lends itself to medical

imaging quite well, as large datasets are difficult to acquire in the medical domain. Thus, this

was the first technique we employed for the detection of relevant B-scans (detailed in Section

3.1). We utilised the 16-layer VGG network [13] that was initially trained for the ImageNet

Challenge—a classification problem consisting of 1000 classes of natural scene images [24].

Transfer learning, however, is not without problems. The pre-trained networks were

designed for object recognition in natural scene images, and require the input to be a 3-chan-

nel RGB image. SDOCT images are however, grayscale. Thus, a B-scan either has to be

Fig 1. (a) The dimensions of an SDOCT volume depicted on the en-face image (left) and the central B-scan of the volume (right).

Examples of poor quality scans with (b) poor contrast, (c) large shadows, and (d) incorrect mirror position.

https://doi.org/10.1371/journal.pone.0203726.g001
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replicated three times to meet the required input dimensions, or a section of three slices (and

only three) has to be used as network input. Designing and training a network de novo allows

to circumvent this requirement and potentially could also result in a smaller or more accurate

network. For comparison we therefore also designed a significantly smaller convolutional neu-

ral network (CNN) that was trained de novo (detailed in Section 3.2).

The networks were developed in Keras [25] with TensorFlow [26] as the backend and nuts-

flow/ml [27] for the data pre-processing.

3.1 Transfer learning approach

The structure of the 16-layer VGG network [13] is as shown in Fig 2(a). It consists of 3x3 con-

volutional filters with a stride of 1; padded to preserve spatial resolution. All layers utilised rec-

tified linear unit [12] (ReLU) activation. The original network for an input RGB (3-channel)

image of 224x224 pixels in size contained 138 million parameters. See [13] regarding training

of the original network.

Since the classification task at hand is a 2-class problem, the model was changed to reflect

this (see Fig 2(b)). Furthermore, the two fully connected layers prior to the final layer were

reduced in size from 4096 to 1024 and 512, respectively. Removal of the two original fully con-

nected layers allowed for the input size of the network to be changed to 300x512x3 pixels. For

an input image of this size, the total size of the network is 18.6 million parameters. The five

blocks of convolutional filters were used as feature extractors and were not re-trained or fine-

tuned, resulting in a network with 3.8 million trainable parameters.

Network weights were opimized by Adam [28], with parameters set to recommended values

(learning rate set to 1−6, β1 = 0.9, β2 = 0.999, and � = 1−8). The loss function was the balanced

cross-entropy loss function:

L ¼
X

i

� C2yi log ŷi � C1ð1 � yiÞ log ð1 � ŷiÞ ð1Þ

Fig 2. The structure of the (a) original VGG-16 network [13], and (b) the modified transfer network for keyframe detection. Note

that the layers in the first five banks of CNNs have not been changed from the original network. First, the last three fully-connected

layers were re-trained, followed by a fine-tuning step where all layers were retrained.

https://doi.org/10.1371/journal.pone.0203726.g002
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where, yi is the true label and ŷi is the predicated label of the i-th sample, and C1 and C2 are the

number of samples of the first and second class in the batch, respectively. This loss function,

being normalised by the number of samples in each class helps with class imbalances. Training

was stopped when the validation loss did not decrease by more than 0.1 or after 150 epochs. A

second stage of fine-tuning was conducted where the all layers of the network were retrained

for an additional 50 epochs.

Data preprocessing. The individual B-scans in each volume are 512x1024 pixels in size.

The retina however, does not encompass the entire B-scan, with a large portion of the image

showing the vitreous, choroid and scleral tissue. Thus, detecting and extracting the image

region that contains the retina reduces the image size. Therefore, the image was filtered with a

gaussian derivative filter (first order, σ = 6.0). This generated a high response at the internal

limiting membrane (ILM), and the ellipsoid zone of the photoreceptors as shown in Fig 3(a)

and 3(b). This response was then thresholded (using a threshold obtained by Otsu’s method

[29]), and the largest connected components were detected. Since the largest two components

belong to the retinal surfaces, their locations defined the bounding boxes (at least 300 pixels in

height) around the retina, and B-scan were cropped to this size. The cropped B-scan was finally

resized to 300x512, and replicated three times to match the requirements of the VGG-16 net-

work, which expects the input to be a 3-channel image. The training data was augmented

through random rotations (±5˚), translations (±10 pixels), contrast scaling (0.3, 1.7) and flip-

ping along the horizontal axis.

3.2 De novo network
The de novo CNN consisted of 7 convolutional layers, using 3x3 filters in size (see Fig 4). Skip

connections [30] were introduced between the layers, with the outputs from the previous lay-

ers being concatenated prior to pooling. ReLU activation, and pooling (maximum in a 2x2

window) followed each CNN layer. A global average pooling (GAP) layer was added to enable

Fig 3. Outline of the data preprocessing steps showing (a) the original slice, (b) the filtered image, (c) connected

components of the thresholded image, and (d) the final cropped image indicated by the red box.

https://doi.org/10.1371/journal.pone.0203726.g003
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the generation of class activation maps (CAM) [31]. Finally, a fully connected layer (size = 2)

with a softmax output provided the class probability for the input B-scan. The resulting net-

work contained only 1.4 million trainable parameters, and is 8% the size of the transfer learn-

ing network. As before, training was performed by Adam with the balanced cross-entropy loss

function (see Eq 1).

Data preprocessing. The individual B-scans were processed as described for the transfer-

learning approach, beginning with the detection of the retina followed by image cropping

at the bounding box. The resulting images were down-sampled by a factor of 2 (final size

150x256 pixels) and directly inputted into the network as 1-channel gray-scale images. Train-

ing data was augmented as before, employing random rotations (± 5˚), translations (± 10 pix-

els), contrast scaling (0.3, 1.7) and flipping along the horizontal axis.

3.3 Experimental setup

Of the total 38,382 available B-scans, 32,492 were found to be of sufficient quality for analysis.

A 10-fold cross validation experiment was used to assess the performance of both networks.

The finale set of annotated B-scans divided into training, validation and testing sets containing

75%, 10% and 15% of the SDOCT volumes, respectively. The allocation of an entire volume to

a set ensured that B-scans from a single volume were not distributed across the sets. The divi-

sion of the data into 3 sets ensures that the test set in each cross validation split consists of vol-

umes that have not been previously encountered by the network during training or validation.

The training termination criteria is set using the validation set; when no change is detected in

the area under the curve (AUC) in the validation set, the training is terminated.

The performance of the two networks was evaluated using AUC, which was statistically

evaluated using a Wilcoxon rank sum test. The false positive and false negative rates were also

computed and compared.

3.4 Summarisation rules

Once the relevant B-scans have been extracted, a set of rules is imposed to select the key-

frames. If no relevant B-scans were identified by the deep learning framework, then three

slices (two peripheral and one central slice) are returned by the system. Otherwise, the set of

relevant B-scans Fi, i = 1, 2, . . .N are grouped into regions. If two of the identified B-scans are

only separated by a small distance (preset threshold T), they are considered to be part of the

same region. This not only compensates for mislabeled B-scans (not correctly identified as rel-

evant for the summary), but also aggregates small regions that show disease-induced change.

For instance, drusen may be present in a small number of B-scans near the fovea, but the indi-

vidual slices may be separated by a few slices that show no pathology. In such a situation, it is

Fig 4. Architecture of the de novo network for keyframe detection.

https://doi.org/10.1371/journal.pone.0203726.g004
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reasonable to aggregate them into a larger region. A flexible threshold T, controls the aggrega-

tion during run time.

Next, each region is represented by the first, median and last scan of each region. Thus, if

M regions are detected in the volume, a total of 3M key-frames will be returned by the algo-

rithm. Note, that selecting the median and not the midpoint between the first and last B-scans,

ensures that the B-scan included in the summary will be one that was identified by the deep

learning classifier as being relevant for the visual summary.

4 Results

The training of the transfer learning network (including the fine-tuning) required approxi-

mately 200 epochs, while de novo training needed nearly 2000 epochs. This is to be expected as

the transfer learning network is pre-trained. The fine-turning however, did not improve the

performance of the network. The initial loss was also substantially larger for the de novo net-

work. Fig 5 shows the training process of the transfer learning and de novo network for a single

split.

The mean AUC (standard deviation expressed in parentheses) computed on the test set was

0.967 (0.004) and 0.965 (0.011) (p = 0.51) for the transfer learning and the de novo networks,

respectively. The standard deviations seen in the 10-fold cross-validation experiments is quite

small, indicating the stability of both networks.

The confusion matrices and AUC curves for a single split are as shown Fig 6. The sensitivity

(lower right quadrant of the confusion matrix) was found to be 0.91 for the transfer learning

and 0.90 for the de novo network (see Fig 6(a) and 6(b)). Similarly, the specificity was found

to be 0.87 and 0.89 for the transfer learning and de novo networks, respectively. Fig 7 shows

instances of B-scans with mild ((a)-(c)) and severe ((d)-(f)) AMD-related pathologies that

were correctly identified by the networks as being relevant to the visual summary. The CAM

visualisation for mild and severe B-scans are shown in Fig 7.

In the control datasets, 3.5% and 5.3% (p< 0.01), of the B-scans were erroneously detected

as abnormal by the TL and de novo networks, respectively. There was no statistical difference

between the false positive rates detected by the two networks. Visualisations of these B-scans

showed that poor quality scans were sometimes misclassified. Errors in the retinal localisation

as shown in Fig 8(b) also led to misclassifications.

Fig 5. Loss and accuracy (AUC) monitored during (a) transfer learning and (b) de novo training.

https://doi.org/10.1371/journal.pone.0203726.g005
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The mean FNR noted in the TL and de novo trained networks were 3.2% and 2.9%

(p< 0.01), respectively. Visually inspection of the results obtained from a single split showed

that approximately 90% of the false negatives obtained using either network contained small

pathological conditions such as isolated drusen (see Fig 8(c)). However, there were also

instances where geographic atrophy was not correctly identified as a pathology (see Fig 8(d)).

The dataset consists of horizontal as well as vertical scans [10], where normal B-scans close to

the optic nerve head are visually very similar to geographic atrophy. Since the model did not

incorporate this additional piece of information (horizontal or vertical scan), it is not surpris-

ing to see misclassifications of this particular pathology.

Fig 6. Confusion matrices for the (a) transfer learning (TL) and (b) the de novo network. (c) The AUC plot for the two networks.

https://doi.org/10.1371/journal.pone.0203726.g006

Fig 7. Examples of AMD B-scans with small/mild (top row) and significant pathologies (third row). CAMs from the de novo
network for the same images are shown in the second and fourth rows, respectively.

https://doi.org/10.1371/journal.pone.0203726.g007
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4.1 Summarisation result

An example of a visual summary generated by the system is displayed in Fig 9. This scan

showed pigment epithelial detachment at the fovea, and only a single region was identified by

the summarisation rules.

A second example of an SDOCT volume with drusen and geographic atrophy is presented

in Fig 10. Here three separate regions were detected by the summarisation algorithm as indi-

cated by the blue, red and green regions in Fig 10(b). The final visual summary consisting of

the B-scans that represent the three regions depicted in Fig 10(c). The individual B-scans from

the three regions are shown in the three rows Fig 10(d)–10(l), with the colours of the bounding

boxes corresponding to the location indicated in Fig 10(c).

Fig 8. Examples of false positives from control subject scans (top row), and false positives in AMD scans (bottom row).

https://doi.org/10.1371/journal.pone.0203726.g008

Fig 9. (a) The en-face projection image of the volume, with (b) all the key B-scans and (c) the final visual summary. The

B-scans that correspond to the three locations are shown below, and colour coded to indicate their location in the volume.

https://doi.org/10.1371/journal.pone.0203726.g009
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5 Discussion & conclusions

SDOCT finds extensive use in ophthalmology for the visualisation and quantification of

structures in the retina. This high-resolution modality generates vast quantities of data

(� 50MB per volume), making the visual inspection of these images time-consuming, tiring

and therefore error prone. Summarisation of the SDOCT volumes has been limited to the

extraction of structural measurements, such as retinal layer thicknesses or optic nerve head

parameters such as cup-to-disc ratio. However, other conditions such as epiretinal mem-

branes or intra-layer cysts (that do not affect retinal layer thickness) require the manual

inspection of the B-scans in the OCT volume. Visual summaries that retrieve key B-scans

and identify relevant regions of the scan can be a valuable addition to the existing diagnostic

framework.

Previously proposed summarisation methods for videos or volumetric medical images rely

on the detection of relevant features, similar to our approach. However, our method does not

explicitly segment AMD-related pathologies (see [9]), but uses a deep learning network for the

detection of B-scans that show structural abnormalities. Our method can be extended to any

Fig 10. (a) The en-face projection image of the volume, with (b) all the key B-scans and (c) the final visual summary. The

three B-scans corresponding (d)—(f) to the first region (blues), (g)—(i) the second region (reds), and (j)—(l) to the third

region (greens).

https://doi.org/10.1371/journal.pone.0203726.g010
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structural abnormality or even use a different definition of “relevance”. For instance, a similar

system could be designed to extract B-scans where maximal temporal change is identified.

This would allow to monitor a variety of conditions such as AMD (dry or wet) or even glau-

coma, where changes at the optic cup are recorded over time.

In this work, we also compared a commonly used technique—transfer learning—with a de
novo trained network. Medical imaging applications typically do not have large datasets to

work with and thus, transfer learning is commonly used. Here, we reduced the size of the net-

work as well as the size of the input image, and gauged the ability of a lightweight de novo
trained network to accomplish the same task. The de novo networks was 92% smaller than the

TL network, however, the AUC obtained using these two networks are equivalent, with no sta-

tistical difference between the two networks. It is also important to note here that the standard

deviation of the AUCs was very small for both networks, indicating the robustness of both

frameworks. The training and run-time tells a different story, with the TL network only requir-

ing 3 days for training (on a K80 NVIDIA-GPU), while the de novo network required nearly 9

days. The run-time was, as expected, significantly smaller for the de novo network, which was

able to classify an entire SDOCT volume in four seconds, while the larger transfer learning net-

work took 190 seconds (computed on a 2.5GHz Intel Core i7, 16GB RAM system).

The pre-defined expectations of inputs was also found to be a hindrance rather than a bene-

fit in this particular application.

A separate experiment was conducted with the transfer learning network, where the input

consisted of three adjacent B-scans instead of a replication of a single B-scan. Intuitively, one

would expect that the use of adjacent B-scans would bolster the network’s ability to detect the

key B-scans, but this network performed worse. The conclusion to be drawn is not that the

adjacent B-scans have no additional useful information, but that the transfer learning network

is ill-equipped to leverage this. The VGG-16 network was originally designed for three-channel

colour images where each channel presented different colour characteristics of the same

image. Here, the adjacent B-scans might show differing structures (healthy B-scans adjacent

to one with small drusen), and the network was not able to efficiently leverage this additional

information. A de novo network, designed and trained for this, might do better, but we did not

pursue this in the current work.

The key aspect of the de novo network remains its ability to be designed and trained for

specific applications. In this instance, examples of this adaptability include the easy incorpo-

ration of a the global average pooling layer (to generate the CAMs), as well as skip-connections

(known to assist in training). The inclusion of the CAM brings a degree of “explainability” to

the system, where this visualisation indicates the source of the final class label. This output

could also be used as an input to the rules that generate the visual summaries, where the size of

would CAMs impact the inclusion in the visual summary.

In conclusion, the presented de novo network allows for the rapid and reliable detection of

key B-scans in SDOCT volumes, which are used to generate visual summaries of volumes. In

the future, we intend to extend the summarisation techniques to other disease models, as well

as explore the use of small networks, designed specifically for the task at hand.
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