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Abstract

Study of plant metabolome is a growing field of science that catalogs vast biochemical and

functional diversity of phytochemicals. However, collecting and storing samples of plant

metabolome, sharing these samples across the scientific community and making them com-

patible with bioactivity assays presents significant challenges to the advancement of meta-

bolome research. We have developed a RApid Metabolome Extraction and Storage

(RAMES) technology that allows efficient, highly compact, field-deployable collection and

storage of libraries of plant metabolome. RAMES technology combines rapid extraction with

immobilization of extracts on glass microfiber filter discs. Two grams of plant tissue

extracted in ethanol, using a specially adapted Dremel® rotary tool, produces 25–35 replicas

of 10 mm glass fiber discs impregnated with phytochemicals. These discs can be either

eluted with solvents (such as 70% ethanol) to study the metabolomic profiles or used directly

in a variety of functional assays. We have developed simple, non-sterile, anti-fungal, anti-

bacterial, and anti-oxidant assays formatted for 24-multiwell plates directly compatible with

RAMES discs placed inside the wells. Using these methods we confirmed activity in 30 out

of 32 randomly selected anti-microbial medicinal plants and spices. Seven species scored

the highest activity (total kill) in the anti-bacterial (bacteria from human saliva) and two anti-

fungal screens (Fusarium spp. and Saccharomyces cerevisiae), providing functional valida-

tion of RAMES technology. RAMES libraries showed limited degradation of compounds

after 12 months of storage at -20˚C, while others remained stable. Fifty-eight percent of

structures characterized in the extracts loaded onto RAMES discs could be eluted from the

discs without significant losses. Miniaturized RAMES technology, as described and vali-

dated in this manuscript offers a labor, cost, and time-effective alternative to conventional

collection of phytochemicals. RAMES technology enables creation of comprehensive meta-

bolomic libraries from various ecosystems and geographical regions in a format compatible

with further biochemical and functional studies.
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Introduction

Natural products, particularly those derived from plants, have made invaluable contributions

to human civilization. They enabled the development of human medicines, crop protection

chemicals, dietary supplements, cosmetics, preservatives, disinfectants, flavors, fragrances, and

colorants [1,2]. Up to 70% of all drugs in the market today have an origin or inspiration from

nature [3]. The first commercially produced pharmaceutical, aspirin, synthesized by Bayer in

1897, was derived from the plant natural product salicylic acid, and, to this date, the majority

of painkillers and chemotherapeutic agents originate from plants [2]. There are at least

100,000–200,000 small-molecule compounds produced by plants that are known [2–4], and

this number is increasing annually.

Substantial advances in analytical instrumentation has accelerated the rate of natural prod-

uct discovery in recent years; however, natural product-based formulations, particularly medi-

cines, are facing increasing competition from chemically synthesized compounds and

biologics [3, 5]. Plant-based natural product discovery and research are also hindered by

worldwide destruction of natural habitats, disappearance of many species, as well as political

and logistical concerns associated with the 1992 Rio Convention on Biological Diversity [6, 7].

Field collection and functional testing of plant metabolites generally involves harvesting

plant material, drying it in the sun or hot air, extracting the metabolites using solvents in a sin-

gle or multi-step process, and then drying the extract in containers from which subsamples

can be taken for future use. Libraries produced in this way require destructive and laborious

harvesting, large volumes of solvents, significant amounts of preparation time, and extensive

storage space. The time required to collect, grind, extract and dry plant materials produced

this way facilitates degradation of unstable phytochemicals and formation of unnatural metab-

olites [8]. These traditional collection methods make the preparation of plant metabolomic

libraries laborious, expensive and logistically complicated, especially in comparison to syn-

thetic and combinational libraries. These factors contribute to a downward trend in develop-

ing drugs from plants and other natural sources, despite their lasting potential as a source of

bioactives for future pharmaceuticals [9–11]. In contrast, the rest of the consumer product

industry is experiencing an ever-growing demand for natural, organic and green products and

technologies [12,13].

Cataloging and preserving plant metabolome is critically important at a time when Earth is

facing the catastrophic loss of biodiversity, equaled to a sixth mass extinction [14]. Recent esti-

mates suggest that there are 450,000 vascular plant species (flowering plants, conifers, ferns,

mosses and liverworts) on the planet, two thirds of which are found in the tropics. One third

of all plant species are at risk of extinction, disappearing at 1,000 to 10,000 times the back-

ground rate [15]. The extinction of species and their biochemical diversity represents an irre-

placeable loss for our planet.

There is a need for more efficient technologies providing a sustainable, compact and cost-

effective format for preserving and cataloging plant biochemical diversity that are compliant

with the Rio Convention. Metabolomic libraries of the future should be produced in a format

that allows long-term storage in the countries of origin, with minimum need for space, cura-

tion, and maintenance. Moreover, these libraries should be coupled with a vouchering system,

allowing reliable taxonomic attribution of all samples.

The methodology presented in this manuscript describes a rapid and cost-effective method

of plant metabolome collection and preservation, which is compatible with functional screen-

ing and research. This method enables collecting and storing plant metabolomic libraries in

the countries of origin with limited workforce, training, and resources. It is a fully field-deploy-

able method requiring only two grams of plant material. We also present data that support the
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stability of the collected libraries and demonstrates their use and compatibility with functional

assays.

Materials and methods

Ultra-performance liquid chromatography—Mass spectrometry

metabolome analysis

The UPLC/MS metabolome analysis system consisted of the Dionex1 UltiMate 3000 RSLC

ultra-high pressure liquid chromatograph, workstation equipped with the ThermoFisher Scien-

tific’s Xcalibur v. 4.0 software package combined with Dionex1’s SII LC control software, sol-

vent rack/degasser SRD-3400, pulseless chromatography pump HPG-3400RS, autosampler

WPS-3000RS, column compartment TCC-3000RS, and photodiode array detector DAD-

3000RS. After the photodiode array detector the eluent flow was guided to a Q Exactive Plus

Orbitrap high-resolution high-mass-accuracy mass spectrometer (MS) (Thermo ScientificTM,

Waltham, MA). Mass detection was a full MS scan from 100 to 1000 m/z in either positive, or

negative ionization mode with electrospray (ESI) interface. Sheath gas flow rate was 30 arbitrary

units, auxiliary gas flow rate was 7, and sweep gas flow rate was 1. The spray voltage was 3500

volts (-3500 for negative ESI) with a capillary temperature of 275˚C. The mass resolution was

140,000 m/Δm FWHM. Compounds were separated on a PhenomenexTM Kinetex C8 reverse

phase column, size 100 x 2 mm, particle size 2.6 mm, pore size 100 Å. The mobile phase con-

sisted of 2 components: Solvent A (0.5% ACS grade acetic acid in LCMS grade water, pH

3–3.5), and Solvent B (100% Acetonitrile, LCMS grade). The mobile phase flow was 0.20 ml/

min, and a gradient mode was used for all analyses. The initial conditions of the gradient were

95% A and 5% B; for 30 min the proportion reaches 5% A and 95% B, which was kept for the

next 8 minutes, and during the following 4 min the ratio was brought to initial conditions. An 8

min equilibration interval was included between subsequent injections. The average pump pres-

sure using these parameters was typically around 3900 psi for the initial conditions.

Putative formulas were determined by performing isotope abundance analysis on the high-

resolution mass spectral data with Xcalibur v. 4.0 (Thermo ScientificTM, Waltham, MA) soft-

ware and reporting the best fitting empirical formula. Database searches were performed using

the Reaxys.com (RELX Intellectual Properties SA) and SciFinder (American Chemical Soci-

ety). The databases were reviewed for compounds identified from the analyzed genera with

molecular masses corresponding to the LC-FTMS data. Any matches were investigated by

comparing the literature and the experimental data; putative compound assignments were

made when matches were identified.

Anti-fungal assays

Anti-fungal assays were carried out in CELLSTAR “R” Cell Culture Multiwell Polystyrene Grei-

ner Bio-One 24-well plates. Fusarium spp. were isolated from locally purchased Idaho potatoes.

Excised potato disc, with skin, was placed in a Petri dish containing media prepared from 24 g/

L potato dextrose, 15 g/L agar and 150 mg/L spectinomycin. Taxonomic identification of Fusar-
ium spp. was performed under a light microscope and confirmed by Dr. James White, Rutgers

University. Once isolated Fusarium hyphal growth covered the inoculated Petri dish, it was

ready for use in the assays. For Fusarium assays, each well on a plate was filled with 600 μl of LB

(Miller) broth (Sigma Life Science) with spectinomycin (0.15 g/L) to curtail bacterial growth.

Dried baker’s yeast (Saccharomyces cerevisiae) was purchased locally. Yeast inoculum solution

was prepared by adding 250 mg of yeast powder and 250 mg of table sugar to 5 ml of Millipore

water, vigorously shaking the mixture and then allowing it to settle for 5–10 min.
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Anti-bacterial assays

Anti-bacterial assays were performed in Multiwell Polystyrene Greiner Bio-One 24-well plates.

We have observed that human saliva serves as an excellent inoculum of easily culturable bacte-

ria for Screens-to-Nature (STN) screens. This inoculum is always available in the field and

contains a wide array of human-associated bacteria, including some opportunistic pathogens

[16,17]. To prepare saliva inoculum, human saliva was collected in a test tube or vial and 50 μl

of fresh saliva was added to each well containing 600 μl of LB (Miller) broth. Saliva inoculum

can be diluted with 1–3 volumes of water.

Viability staining with MTT

The effect of phytochemicals on both fungal and bacterial growth can be visually assessed as

the appearance of white Fusarium hyphi in the wells or development of turbidity (cloudiness)

associated with yeast and bacterial growth. However, staining with MTT [3-(4, 5-dimethylthia-

zole-2-yl)-2, 5- diphenyltetrazolium bromide] at 5 mg/ml is a more reliable, quantitative and

qualitative, color indicator of anti-fungal and anti-bacterial activities. Live fungi and bacteria

utilize dehydrogenases to convert yellow-colored MTT to a dark purple formazan [18]. Thus,

the presence of anti-fungal or anti-bacterial activity could be detected 2 h following MTT addi-

tion by the color of the solution inside the wells. Light yellow color indicates dead cells and

high activity, while a change to dark purple color indicates living cells and little activity.

Anti-oxidant assays

Anti-oxidant activity was determined with standard ABTS [2, 2 azino-bis (3-ethylbenzo-thia-

zoline-6-sulfonic acid)] [19] assay in a 24-multiwell STN format. Each well was filled with

600 μl of freshly prepared assay solution containing 7 mg/ml ABTS in water, to which 20 μl of

0.5 mg/ml potassium persulfate (K2S2O8) solution from freshly prepared 50 mg/ml stock is

added.

Results

Collection of plant metabolome samples

The RApid Metabolome Extraction and Storage (RAMES) method for collecting and storing

metabolomic libraries of phytochemicals is designed for speed, efficiency, low-cost, simplicity,

portability, long-term storage, and compatibility with bioactivity assays. It also allows sustain-

able sample collection that does not destroy a source plant. Every step can be operated in the

field, without a need for a wet laboratory or constant power supply. Simple power tools used

for collection use rechargeable batteries that can be recharged from the USB or cigarette lighter

port of any vehicle.

Recording GPS coordinates of the collection site and taking a photo of the plant before col-

lection is strongly recommended, as well as noting the time of collection, weather, topography,

physiological and developmental characteristics of the collected tissue, and other characteris-

tics of the collection site and sampled plant. Grinding and simultaneous extraction of the plant

tissue is performed with the specially adapted cordless, variable speed, Dremel rotary tool

Model 8220, 12V or similar (Dremel, a division of Robert Bosch GmbH Co., Racine, WI) fitted

with a nose cup modified to serve as a lid for the grinding chamber. A specially designed and

manufactured grinding bit, with four slightly angled rectangular blades, was experimentally

determined to be the most effective configuration for rapid plant extraction (Fig 1A, 1B and

1E and Fig 2A1). Always wear protective goggles and thick, safety gloves when operating the

Dremel tool. Using scissors or a knife, excise two grams of tissue from the sample plant, and
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Fig 1. Illustration of RAMES method of preparing metabolome libraries. (See text for details).

https://doi.org/10.1371/journal.pone.0203569.g001
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then further cut it into smaller pieces. Adjust the weight to 2 g on a portable, battery-operated

balance (CS Series, Ohaus, Parsippany, NJ) (Fig 1C). Transfer the sample into a 35 mm diame-

ter x 55 mm depth aluminum chamber (Hy-Ko Products Co., Super Survivor Capsule, #

KB348-BKT) and shred the tissue inside the chamber with scissors or alike (Fig 1D), to 4–8

mm pieces. Add 5 ml of 95% ethanol to the chamber. This volume works well for most leaves

and flowers. For particularly succulent samples with high water content (i.e. fruits or water

storage organs), 4 ml ethanol is sufficient.

With one gloved hand holding the chamber and the other gloved hand securing the Dremel

tool, lower the blade into extraction chamber with the nose cup lid fitting tightly over the

chamber opening and blade almost reaching the bottom (Fig 1E and 1F). Turn on the Dremel

tool and slowly increase the speed to near the maximum power. Slightly tilt and shake the

setup while grinding to encourage tissue contact with the blade.

Fifteen to thirty seconds at full grinding speed is normally sufficient to transform the tissue

and solvent into a slurry. This time may vary depending on the nature of the sample and the

particle size of the starting plant material. Turn off the Dremel tool before removing the grind-

ing blade from the chamber. Filter the slurry through a fine stainless steel mesh filter (removed

from 2.5-inch Ultimate 4-piece Aluminum Golden Gate1 Herb Grinder) position on top of a

5 cm-wide plastic funnel inserted into a 20 ml glass scintillation vial (Fig 1G). Hold the filtra-

tion assembly vertically and slowly pour the extraction slurry on top of the stainless-steel filter

(Fig 1H). Press the bottom of the extraction chamber over the slurry on top of the filter to

squeeze out as much extract as possible (Fig 1I). A scintillation vial with the collected extract

can be capped, labeled, and stored before final processing. However, to prevent degradation of

unstable compounds, it is recommended that the extract is processed immediately.

Metabolite collection and immobilization is performed using rapid loading and drying

(sorption) of the extract onto the filter discs. We have evaluated six types of commercially

available filter discs made from cellulose and glass fiber (Table 1). Absorbency of 70% ethanol

solution, drying time with portable fan, and content of impurities [determined by Ultra High-

Pressure Liquid Chromatography / Mass Spectrometry (UPLC/MS) analysis of compounds

eluted from the filtering discs with 70% ethanol], were used as key factors for selecting the

most suitable filter discs for metabolome collection and preservation. Based on these

Fig 2. Illustration of RAMES method of grinding hard plant tissues prior to extraction. A1, Specially manufactured bit for grinding and extracting plant tissues (also

shown in Fig 1A, 1B and 1E); A2, Dremel 562 tile grinding bit; A3, Dremel 561 multipurpose bit. B, Rapid grinding of woody stems to produce small particles suitable

for extraction; C, Grinding of bark; D, Grinding of branches.

https://doi.org/10.1371/journal.pone.0203569.g002
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properties, Whatman1 glass microfiber filters, Grade GF/D (Whatman # 1823–010, pur-

chased from Millipore Sigma,) were selected as the best sorption substrate for metabolome

preservation. These discs contained almost no interfering compounds eluted with 70% ethanol

and could sorb up to 90 μl of 70% ethanol before reaching saturation. GF/D is available in 10

mm diameter, an optimal size for metabolite collection and functional analysis using 24-multi-

well plate format.

Immobilizing metabolome samples on glass fiber discs

Pipette 90 μl of the filtered, liquid extracts onto a 10 mm GF/D glass fiber disc resting on top

of an aluminum window screen mesh, placed on top of a test tube rack or similar support (Fig

1J). Window screen provides a good surface to support the discs and prevents extract spillage.

Continue loading the RAMES discs until the extract is finished. Two grams of plant material,

such as leaves, produce a minimum of 2.5–3.5 ml recoverable extract. This is sufficient for

loading 25–35 GF/D 10 mm glass fiber discs. Use a long metal pin or a sturdy, thin wire to

puncture the loaded discs in the center and string them along the pin (Fig 1K). To rapidly dry

the RAMES discs, place the strung discs in front of a cordless, rechargeable fan (Efluky Mini

USB 3 Speeds Rechargeable Portable Table Fan, 4.5-Inch). Styrofoam boxes (Fig 1L) or other

soft materials provide an easy support for forced air-drying. Depending on the ambient tem-

perature and humidity, drying takes 3–8 min. Finally, place the RAMES discs inside properly

labeled zip-lock plastic bags (5 x 6.5 cm) (Fig 1M). In this format, RAMES libraries can be eas-

ily transported and stored at -20˚C. Secondary containers, such as larger zip-lock bags or small

cardboard boxes can be used to facilitate transport and storage. In humid climates, desiccants,

such as silica gel, should be placed inside the secondary containers. A standard upright freezer

can store tens of thousands of RAMES samples collected according to this protocol. While test-

ing the RAMES technology in the field, we discovered that a heavy-duty spray bottle is an

excellent water-saving device for washing the equipment used in preparing RAMES libraries

in the field.

Extracting dry and woody plant tissues

Some plant tissues are dry and hard (seeds, bark, branches, woody stems, and tree trunks),

requiring modifications to the extraction process. Small seeds can be rapidly ground to a pow-

der inside the extraction chamber using the equipment shown in Fig 1, equipped with a spe-

cially manufactured bit (Fig 2A1 and Fig 1A, 1B and 1E). Large seeds can be wrapped in a

cloth and crushed with a hammer before being ground. Woody parts of a plant, such as stems

(Fig 2B), bark (Fig 2C), and branches (Fig 2D), can be rapidly ground to fine particles with a

Dremel 562 tile grinding bit (Fig 2A2), which produces finer particles, or a Dremel 561 multi-

purpose bit (Fig 2A3), which produces relatively coarser particles. Grind woody parts over a

piece of paper to catch the falling particles, and then fold the paper into a funnel to transfer the

Table 1. Comparative analysis of different filter discs according to size (mm), absorbency (μl/mm3), drying speed (μl/s), and drying time (s).

Filter Type Description Diameter Thickness Absorbency Drying speed Drying time

Cellulose (Qualitative) Grade 1 15 0.18 0.25 0.23 34

Cellulose (Qualitative) Grade 3 23 0.39 0.49 0.98 81

Cellulose (Quantitative) Grade 540 21 0.16 0.31 0.43 40

Glass Microfiber GF8 25 0.35 1.78 0.60 507

Glass Microfiber GF6 21 0.35 0.47 0.64 89

Glass Microfiber GF/D 10 0.53 1.50 0.12 487

https://doi.org/10.1371/journal.pone.0203569.t001
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ground material onto a balance and into a grinding chamber. Dry plant material, such as

wood or bark, absorbs large volumes of solvent, thus only 200 mg of dry ground material in 5

ml of 70% ethanol is needed to produce extracts for RAMES libraries. Extract the resulting

slurry for 15–30 seconds using the standard Dremel extraction process (Fig 1) and the grinding

/ extraction bit (Fig 2A1). It takes less than one minute to produce 200 mg of finely ground

plant material suitable for extraction. As an optional step, which improves the extraction effi-

ciency, the grinding chamber with a slurry can be capped and incubated for 10–30 min pre-fil-

tration. Subsequent processing of the extracts is done as shown in Fig 1H–1M. Seeds or other,

less hygroscopic, dry tissues may be extracted in larger sample sizes, i.e. 1–2 g, in 5 ml of 70%

ethanol, to produce sufficient volumes of extract for loading RAMES discs.

Vouchering and genotyping

DNA barcoding of variable DNA regions is becoming a popular, accepted method for plant

identification, limited mainly by the availability of sequencing information for all plant species

and, in some cases, lack of variability of sequence variation at a species levels [20,21]. While

herbarium vouchers provide the most reliable method of confirming taxonomic identity, col-

lecting a herbarium voucher is impractical in many field situations, as it requires significant

amount of time, equipment, storage space, and plant material. Therefore, collecting a small tis-

sue sample (less than 1 g) for DNA barcoding along with RAMES samples offers a viable strat-

egy for confirming plant identification, should it be necessary in the future. A rapid method

for field collecting plant samples for DNA studies and barcoding, using silica gel as a drying

method has been developed and tested [22]. The method involves placing a small tissue sample

under 1 g in weight, such as a leaf disc 10 mm in diameter, in a zip-lock bag with silica gel des-

iccant laced with moisture indicator. Rapid tissue desiccation effectively preserves DNA for

future genetic analysis and can be performed simultaneously with collecting RAMES libraries.

Barcoding samples could be stored in the same zip-lock bags with corresponding RAMES sam-

ples. We recommend collecting 2–3 barcoding samples to complement a RAMES library sam-

ple. We also recommend taking detailed, close-up photographs of harvested plants that can be

used to confirm taxonomic identification in the absence of herbarium voucher. Photographs

of flowers and fruits are especially important for the identification of species with similar vege-

tative structures.

RAMES stability and sample recovery

RAMES samples from fully-developed leaves of three invasive plant species were collected at

Kruger National Park (KNP), South Africa, in mid-August 2016: (1) Chromolaena odorata (L)

R.M.King & H.Rob, (2) Datura stramonium L., and (3) Datura inoxia Mill. These species were

selected because their distribution at KNP was well mapped and their secondary metabolites

were well-described and easily quantifiable. Permit for their collection was obtained from

KNP (Permit number: RASI1343). Duplicate samples were collected from each plant–two dif-

ferent plants for each species. In mid-January 2017 (4 months after collection and storage at

-20˚C), one duplicate RAMES sample from each plant was analyzed with UPLC/MS (see next

section for methods). In Mid-August 2017 (12 months after collection and storage in -20˚C)

the second set of duplicate discs was analyzed using identical conditions. For UPLC/MS analy-

sis, RAMES discs were eluted in 50 ml of 70% ethanol on a shaker overnight. The extract was

dried in a vacuum centrifuge, weighed, and resuspended in 70% ethanol to a concentration of

5 mg dried extract /ml ethanol to normalize the concentration of solids across all samples

before UPLC/MS analysis. Twelve compounds were putatively identified in RAMES samples

from C. odorata (Fig 3, S1 Fig). After 12 months of storage, the same compounds were still
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present in the eluate at the same ratio as they were after 4 months of storage, although some

reduction in the levels of most compounds was observed.

Out of seven compounds detected in the D. stramonium, two showed some degradation;

daturilin showed the largest, with a 45% reduction in content (Fig 4, S2 Fig).

Out of six compounds putatively identified in D. inoxia none have shown considerable deg-

radation (Fig 5, S3 Fig). The content of four compounds increased, possibly due to experimen-

tal error or biotransformation from precursors.

Demonstration of the effective elution of compounds from GF/D discs was performed with

RAMES samples from fully developed leaves of Coffea arabica L., Theobroma cacao L., Moringa
oleifera Lam., and Artemisia dracunculus L. grown in Rutgers University greenhouses. These

plants were selected because they contain well-defined classes of secondary metabolites that could

be detected with the UPLC/MS analysis employed for this study. These species were also subse-

quently tested in the functional anti-microbial assays. Extracts from these plants were prepared

with the standard RAMES extraction protocol (Fig 1). These extracts were either subjected to

metabolome analysis directly or sorbed onto GF/D discs and eluted after 14 days of storage at

-20˚C, prior to UPLC/MS analysis (Table 2, S4–S7 Figs). Elution was done in 70% ethanol, as

previously described. Extracts measured directly, without being sorbed to glass fiber discs, were

dried in a vacuum centrifuge and resuspended in 70% ethanol to a concentration of 5 mg dried

extract /ml in order to normalize the concentration of solids before UPLC/MS analysis.

Out of seven structures putatively identified in the extract of C. Arabica, four showed no

significant difference in content between sorbed (RAMES disc-eluted) and non-sorbed

extracts. Two were higher in the non-sorbed extract, and one was higher in the sorbed extract.

Out of seven structures putatively identified in the extract of T. cacao, three were not signifi-

cantly different, while four were present in higher concentrations in the non-sorbed extract.

Out of 11 structures present in the extract of A. dracunculus, eight were not significantly

Fig 3. Quantitative comparison of compounds eluted from Chromolaena odorata RAMES libraries following 4 and 12-month storage at

-20˚C. Mean peak areas (n = 2). Kaempferol-3-O-rutinoside (1), Quercetin-disaccharide (2), Quercetin-trisaccharide (3), Rutin (4), Chlorogenic

acid derivative (5), Kaempferol-3-O-glucoside (6), Methoxyhesperetin-1 (7), Methoxyhesperetin-2 (8), Methoxyhesperetin-3 (9), Sakuranetin

(10), Chromomoric acid (11), Oxophyto-9,15-dienoic acid (12).

https://doi.org/10.1371/journal.pone.0203569.g003
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Fig 5. Quantitative comparison of compounds eluted from Datura inoxia RAMES libraries following 4 and

12-month storage at -20˚C. Mean peak areas (n = 2). 6-Hydroxy-hyoscyamin (1), Scopolamin (2), Atropine (3),

3-Tigloyloxy-6,7-dihydroxytropane (4), Daturilin (5), Hydroxy-oxowithatrienolide (6).

https://doi.org/10.1371/journal.pone.0203569.g005

Fig 4. Quantitative comparison of compounds eluted from Datura stramonium RAMES libraries following 4 and

12-month storage at -20˚C. Mean peak areas (n = 2). 6-Hydroxy-hyoscyamin (1), 6-Hydroxy-hyoscyamin-2 (2),

Scopolamin (3), Atropine (4), 3-Tigloyloxy-6,7-dihydroxytropane (5), Daturilin (6), Hydroxy-oxowithatrienolide (7).

https://doi.org/10.1371/journal.pone.0203569.g004
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Table 2. Quantitative comparison of compounds sorbed and then eluted from RAMES discs to compounds present in the initial extract (non-sorbed). Fully

expanded leaves of Coffea arabica, Theobroma cacao, Artemisia dracunculus, and Moringa oleifera were extracted in 5 ml of ethanol as described in Fig 1 and either sorbed

to glass fiber discs and then eluted with 70% ethanol or analyzed directly by the UPLC/MS (see above). Values represent the mean extracted ion chromatogram peak areas

at the corresponding m/z value and ionization mode (x108) for each compound putatively identified in the extract ±S.D. (n = 4). Statistical significance was calculated with

an unpaired, two-tailed T-test with Welch’s correction. Number of asterisks define statistical significance: � p< 0.05, �� p< 0.01, ��� p< 0.001, ���� p< 0.0001. NSD, No

significant difference at p> 0.05. Abbreviations: PACs, proanthocyanidins; DMC, dihydroxy-methoxy chalcone; MIC, moringa isothiocyanate. M/z values for MICs, glu-

cosinolate and niazirin represent [M-H] + acetic acid ion adducts. Quercetin and kaempferol glycosides were identified based on their [M-H] molecular ions and quanti-

fied based on [M+H] aglycone MS/MS fragments at (+) ESI MS ionization. Representative total ion current chromatograms of eluates and extracts can be viewed in S4–S7

Figs.

Plant Name Putative compound m/z value

(ESI-MS)

ionization

mode

Peak area: Eluted from RAMES discs Peak areas:

Original extract,

not sorbed

Significance

(-) (+)

Coffea arabica Caffeine 195 192.03 ± 11.79 174.03 ± 10.62 NSD

PACs-Trimer 865 4.29 ± 0.76 6.28 ± 0.53 �

PACs- Dimer 577 9.45 ± 0.49 10.91 ± 0.43 ��

Catechin derivative 451 18.99 ± 1.07 18.68 ± 1.48 NSD

Catechin caffeate 451 19.82 ± 6.80 20.87 ± 1.55 NSD

Neochlorogenic acid 353 14.26 ± 1.18 12.11 ± 1.26 NSD

Chlorogenic acid 353 245.10 ± 10.80 222.33 ± 2.76 �

Theobroma cacao Kaempferol-3-glycoside 447 287 0.70 ± 0.35 1.16 ± 0.05 NSD

Kaempferol 287 1.40 ± 0.13 1.71 ± 0.11 �

Kaempferol derivative 287 0.54 ± 0.05 0.46 ± 0.03 NSD

Isoscutellarein glucuronide 461 12.73 ± 1.04 12.64 ± 0.43 NSD

Caffeoyl L-DOPA 360 2.93 ± 0.46 59.05 ± 2.13 ����

Caffeoyl tyrosine 344 5.59 ± 0.18 24.07 ± 1.20 ����

Dihydroxy-cinnamoyl tyrosine 328 17.09 ± 1.31 21.42 ± 1.33 ��

Artemisia dracunculus 6-Demethoxy capillarisin 285 8.47 ± 5.60 15.09 ± 6.10 NSD

Sakuranetin 285 51.34 ± 13.03 57.07 ± 24.98 NSD

DMC-1 271 14.62 ± 2.74 12.49 ± 5.56 NSD

DMC-2 271 63.59 ± 10.69 53.09 ± 20.12 NSD

Neochlorogenic acid 353 2.39 ± 0.82 5.29 ± 0.29 ��

Chlorogenic acid 353 31.31 ± 8.77 53.00 ± 3.86 �

Isochlorogenic acid 353 3.34 ± 0.81 3.58 ± 0.13 NSD

Dicaffeoyl quinic acid 515 4.98 ± 2.20 9.53 ± 1.62 �

Tetrahydroxy-methoxy flavone (1) 315 8.50 ± 3.13 3.25 ± 1.23 NSD

Tetrahydroxy-methoxy flavone (2) 315 3.50 ± 2.74 6.48 ± 2.78 NSD

Davidigenin 257 10.47 ± 5.66 15.91 ± 6.94 NSD

Moringa oleifera MIC-1 370 146.20 ± 14.71 64.37 ± 52.74 NSD

MIC-2/3 412 11.63 ± 1.34 3.71 ± 2.72 ��

MIC-4 412 70.72 ± 7.84 35.69 ± 28.46 NSD

Glucosinolate 612 18.30 ± 3.98 6.30 ± 2.39 ��

Niazirin 338 4.65 ± 0.82 8.01 ± 1.89 �

Quercetin-3-glycoside 463 303 0.20 ± 0.11 135.22 ± 233.29 NSD

Quercetin-3-malonyl-glycoside 549 303 0.13 ± 0.07 0.28 ± 0.01 �

Kaempferol-3-glycoside 447 287 0.13 ± 0.03 0.15 ± 0.01 NSD

Kaempferol-3-malonyl-glycoside 533 287 0.15 ± 0.05 0.21 ± 0.01 NSD

Kaempferol-3-malonyl-glycoside isomer 533 287 0.05 ± 0.01 0.07 ± 0.01 NSD

Neochlorogenic acid 353 0.22 ± 0.09 0.49 ± 0.17 NSD

Isochlorogenic acid 353 1.07 ± 0.50 3.38 ± 1.28 �

Chlorogenic acid 353 0.15 ± 0.06 0.45 ± 0.16 �

https://doi.org/10.1371/journal.pone.0203569.t002
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different in sorbed and non-sorbed extracts, while three were present in the higher level in the

non-sorbed extract. Finally, out of 13 structures putatively identified in M. oleifera, seven were

not different between sorbed and non-sorbed extracts, four were higher in the non-sorbed

extract, while two were higher in sorbed extract. Overall, from the 38 structures putatively

identified in four tested plant species, 22 (58%) showed no significant difference in content

when RAMES disc-eluted and no-sorbed extracts were compared at p< 0.05.

Anti-microbial assays

We modified Screens-to-Nature (STN) bioactivity assays developed by Global Institute for

BioExploration [23–27], to be fully compatible with the RAMES format. STN technology relies

on low cost, simple, field-deployable assays to detect pharmacologically active compounds

from plants and other natural sources. STN assays do not require sterile conditions or wet lab-

oratories. They were developed to enable and empower scientists, students, and interested

community members to explore their local biodiversity to discover or validate natural sources

of pharmacologically active compounds. We have conducted STN training in eighteen differ-

ent countries, including the US. Here, we describe four STN assays (two anti-fungal, one anti-

bacterial and one anti-oxidant) modified and formatted to be seamlessly compatible with

RAMES technology and 10 mm GF/D glass fiber discs.

RAMES-STN anti-fungal assays

Fusarium spp. and baker’s yeast (Saccharomyces cerevisiae) are used as model organisms for

the assays. All anti-fungal RAMES-STN assays are carried out in 24-well plates that comfort-

ably accommodate a 10 mm GF/D disc in each well. Fusarium inoculum is administered by

placing a 2 mm plug, punched from the plate with the potato-derived Fusarium agar/dextrose

culture, inside each well 3–5 min after the RAMES disc.

For the yeast assays, 600 μl of the yeast inoculum solution is pipetted into each well contain-

ing the RAMES disc. A GF/D disc impregnated with 90 μl of econazole nitrate solution (300

mg/ml dimethyl sulfoxide) is used as a positive control for both fungal assays; a GF/D glass

fiber disc loaded with 90 μl of 70% ethanol was used as a negative control. To test the anti-fun-

gal activity of plant extracts, plates are incubated for 72 h at room temperature. To accelerate

fungal growth and reduce the assay time to 48 h, plates can be incubated at 37˚C to enhance

fungal growth. All treatments are duplicated in adjacent wells (Fig 6).

In the field, results observed following the viability staining with MTT are recorded on a

0–3 qualitative scale, with 3 denoting the highest activity (light yellow, similar to positive stan-

dard), and 0 indicating no activity (dark purple, similar to negative control). Activity can be

more precisely quantified by spectrophotometric measurements of absorbance value of the

solution within each well using a test wavelength and reference wavelength at 570 nm and 630

nm, respectively [28]. For some extracts, MTT may stain RAMES discs purple, possibly indi-

cating some chemical reaction between the stain and sorbed phytochemicals (Fig 6, wells

2C-D, 6C). This staining is not related to anti-microbial activity and can be ignored, while the

true activity is determined by color changes of solution in the well.

RAMES-STN anti-fungal assays are illustrated in Fig 6 (wells A1 to F4) using RAMES discs

prepared from locally purchased, peeled lemons (Citrus limon L.), peeled garlic cloves (Allium
sativum L.), and orange (Citrus sinensis L.) rinds.

RAMES-STN anti-bacterial assay

Growing conventional bacterium inoculum requires significant time, sterile conditions, and

special equipment (i.e. autoclaves, sterile glassware and sterile transfer hoods). These
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requirements are difficult to fulfill in the field or in a basic laboratory. In the field conditions,

human saliva makes an excellent bacterial inoculum of easily culturable bacteria for

RAMES-STN screens. For anti-bacterial assays, 600 μl of saliva inoculum in LB broth is added

to each well containing RAMES discs and plates incubated for 48 h at room temperature or at

37˚C. MTT-based anti-bacterial activity detection is identical to that described for the STN

anti-fungal assays. RAMES-STN anti-bacterial assays are illustrated in Fig 6 (wells A5-F6)

using RAMES discs prepared from locally purchased, peeled lemon (Citrus limon L.), garlic

cloves (Allium sativum L.) and orange (Citrus sinensis L.) rinds. Penicillin (90 μl of 4 mg/ml

solution loaded onto GF/D disc) is used as positive control.

Detection of anti-microbial activity with RAMES-STN assays

Thirty two plants, purchased in local grocery stores or collected at Rutgers University green-

house, were assayed for anti-microbial activities using the RAMES-STN methodology

(Table 3). Traditional uses as anti-microbial medicinal plants or spices were the main criteria

for choosing plant material for testing. Only two plants did not have activity in any of the three

screens, scoring “0” (peace lily and spearmint), 17 plants showed at least one “3” (highest)

activity, and 7 plants scored “3” in all three screens (clove, juniper berries, pomegranate, star

anise, tamarind, tarragon and upland cress).

RAMES-STN anti-oxidant assay

Anti-oxidant compounds in plants have been historically associated with health benefits [29–

31]. Phenolics, carotenoids and organic acids are the main groups of anti-oxidants in plants.

These compounds have been extensively studied for their pharmacological activities against

chronic diseases and cancer [32]. To measure anti-oxidant activities in RAMES libraries,

RAMES discs are added to each well immediately before the ABTS assay solution is dispensed

into each well, and results recorded after 2 h of incubation at room temperature with some agi-

tation. Anti-oxidant activity is visually determined on a 0–3 scale according to solution color

change. Samples lacking anti-oxidant activity remain blue and score 0, while samples with

high anti-oxidant activity turn colorless and score 3. Scoring is done according to the color of

the solution, not the glass fiber disc. If more precise quantification is required, spectrophotom-

eter can be used to record the absorbance value at 734 nm.

RAMES-STN anti-oxidant assays are illustrated in Fig 6 (wells A7 to F8) using RAMES

discs prepared from locally purchased, peeled lemons (Citrus limon L.), peeled garlic cloves

(Allium sativum L.) and orange (Citrus sinensis L.) rinds.

Discussion

Plant metabolome research offers significant benefits to human health and wellness, the global

environment, and fundamental science [33–35]. However, collecting samples of plant metabo-

lome from plants, particularly those grown in the wild, can be laborious and complicated,

Fig 6. Illustration of anti-fungal, anti-bacterial and anti-oxidant RAMES-STN assays in 24-multiwell plate format. Activity is rated using a

0–3 scale with 0 representing no activity and 3 representing high activity. Activity ratings are included in parenthesis after well numbers. Rows 1–2.

Fusarium spp. anti-fungal assay. Wells A1-B1 (3) positive control (glass fiber disc with econazole nitrate); C1-D1 (0) negative control (glass fiber

disc with 70% ethanol); E1-F1 (0) blank (no glass fiber disc); A2-B2 (0) peeled lemon extract; C2-D2 (3) peeled garlic extract, E2-F2 (0) orange rind

extract. Rows 3–4. Saccharomyces cerevisiae anti-fungal assay. Wells A3-B3 (3) positive control (econazole nitrate); C3-D3 (0) negative control;

E3-F3 (0) blank; A4-B4 (0) peeled lemon extract; C4-D4 (2) peeled garlic extract; E4-F4 (0) orange rind extract. Rows 5–6. Saliva-inoculated anti-

bacterial assay. Wells A5-B5 (3) positive control (penicillin); C5-D5 (0) negative control, E5-F5 (0) blank; A6-B6 (3) peeled lemon extract; C6-D6

(3) peeled garlic extract; E6-F6 (1) orange rind extract. Rows 7–8. Anti-oxidant assay. Wells A7-B7 (3) positive control (ascorbic acid); C7-D7 (0)

negative control; E7-F7 (0) blank; A8-B8 (1) peeled lemon extract; C8-D8 (2) peeled garlic extract; E8-F8 (3) orange rind extract.

https://doi.org/10.1371/journal.pone.0203569.g006
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involving destructive harvesting and processing of large amounts of plant materials through

lengthy extraction and drying processes. Long processing times with large volumes of solvents

often leads to degradation of bioactive compounds in addition to creating problems with

transportation and storage.

Miniaturized RAMES technology, described and validated in this manuscript, offers a cost-

and time-effective alternative to conventional collection of plant extracts. RAMES allows com-

pact storage of thousands of plant metabolome samples in a format compatible with screening

strategies that utilize glass fiber discs impregnated with phytochemicals in the variety of func-

tional assays. RAMES technology also provides a format for storing plant metabolome libraries

for future biochemical studies, as most phytochemicals can be easily eluted from the discs

(Table 2). We suggest that the short sample extraction and drying times offered by RAMES

technology stabilizes many labile phytochemicals compared to other library collection strate-

gies. However, direct comparative studies are needed to confirm this assumption. RAMES

libraries can be collected with almost no environmental impact. A total of 2 g wet tissue (leaves,

Table 3. RAMES-STN evaluation of 32 plants for their antimicrobial activities.

Common name Latin name Tissue part Bacteria Fusarium Yeast

Ajowan caraway Trachyspermum ammi Seeds 0 3 3

Arabian coffee Coffea arabica Fresh leaves 1 0 1

Avocado Persea americana Fresh peel 1 0 1

Black cardamom Amomum subulatum Dry fruit 1 1 1

Black pepper Piper nigrum Dry unripe fruit 1 0 3

Clove Syzygium aromaticum Flower bud 3 3 3

Cocoa Theobroma cacao Fresh leaves 0 0 1

Dill Anethum graveolens Seeds 2 2 3

Grain of paradise Aframomum melegueta Seeds 1 0 0

Horseradish tree Moringa oleifera Fresh leaves 1 3 2

Indian bay leaf Cinnamomum tamala Dry leaves 2 0 1

Indian gooseberry Phyllanthus emblica Frozen fruit 3 1 3

Indonesian cinnamon Cinnamomum burmannii Dry bark 3 1 3

Juniper berries Juniperus communis Dry seed cone 3 3 3

Longan Dimocarpus longan Fresh peel 2 0 2

Malanga Caladium colocasia Fresh leaves 0 1 0

Mountain ironwort Sideritis montana Dry leaves and flowers 3 0 3

Nutmeg Myristica fragrans Seeds 2 0 1

Peace lily Spathiphyllum wallisii Fresh leaves 0 0 0

Pomegranate Punica granatum Fresh peel 3 3 3

Porcelainflower Hoya carnosa Fresh leaves 1 2 3

Quinoa Chenopodium quinoa Leachate 2 1 2

Rambutan Nephelium lappaceum Fresh peel 3 0 3

Redstem wormwood Artemisia scoparia Fresh leaves 0 1 2

Roselle Hibiscus sabdariffa Dry flower 3 3 3

Spearmint Mentha spicata. Fresh leaves 0 0 0

Star anise Illicium verum Dry flower 3 3 3

Sweet basil Ocimum basilicum Fresh leaves 0 0 1

Sweet fennel Foeniculum vulgare Seeds 1 0 3

Tamarind Tamarindus indica Pods 3 3 3

Tarragon Artemisia dracunculus Fresh leaves 3 3 2

Upland cress Barbarea verna Seeds 3 3 3

https://doi.org/10.1371/journal.pone.0203569.t003
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flowers) or 200 mg dry tissue (seeds, bark, wood), sufficient for preparing 25–35 replicate

RAMES samples, can be harvested without significantly disrupting collection sites or source

plants. Using ethanol as the only solvent may limit the diversity of the natural products

extracted from plant tissues. Therefore, future users of RAMES technology may consider using

solvents with different extraction properties, such as water, hexane, or acetone, to create more

diverse metabolomic libraries.

At present, we can only evaluate the stability of RAMES libraries after 12 months of storage

(Figs 3–5). More detailed studies over longer periods, as well as the direct comparison of

RAMES technology to conventional methods of storing dried extracts, are needed to fully

address stability concerns associated with storage of any biochemical samples. However, the

initial data from samples eluted from RAMES libraries over time suggest that many com-

pounds remain stable after 12 months of storage, while others slowly degrade or become more

difficult to elute. This is not at all surprising as many phytochemicals are inherently unstable

and have short half-lives, particularly in extracts [8,36]. We have also confirmed that the major

phytochemicals detected in freshly prepared extracts from four plant species can be eluted

from RAMES discs stored for 2 weeks at -20˚C (Table 2). Measured differences in the content

of some phytochemicals may be explained by their inherent instability, biotransformation dur-

ing storage, or binding to glass fiber discs, which hinders elution. Overall, our data indicate

that sorbing plant extracts onto glass fiber discs followed by storage in a standard freezer

causes relatively minor quantitative and qualitative compositional changes compared to a

fresh extract. It is reasonable to assume that storage at -80˚C will further increase the storage

life of RAMES libraries.

A key advantage of RAMES libraries is their immediate compatibility with functional assays

that were co-developed with them, as demonstrated on the examples of anti-fungal, anti-bacte-

rial, and anti-oxidant assays (Fig 6). These simple, field-deployable STN assays require minimal

laboratory equipment and are formatted to accommodate RAMES discs removed from storage

and placed inside wells of a 24-multiwell plate containing appropriate reagents and inoculum.

Thus, these assays can be performed at a field collection site anywhere in the world, not requir-

ing transport of the samples to a special screening facility that may be outside the country of ori-

gin. Such removal of samples from the country of origin may violate the 1992 Rio Convention

on Biological Diversity and has historically increased the challenges of bioprospecting. For the

STN anti-fungal assays that can be operational in non-sterile field conditions, we adapted Fusar-
ium spp. that can be easily cultured from the surface of tuberous vegetables, and common bak-

er’s yeast, available in most locations. Human saliva was found to be a good source of bacteria

inoculum, available outside the laboratory and carried by every individual. We found a 24-mul-

tiwell plate format with liquid media in each well to be the most applicable to the basic labora-

tory and field conditions. However, we found agar diffusion assays [37] to be also well

compatible with RAMES technology (data not shown). This assay uses the radius of the micro-

bial inhibition zone around the compound(s)-impregnated filter disc placed on the surface of

inoculated agar as a measure of antimicrobial activity. We have validated the use and predict-

ability of RAMES-STN anti-microbial assays by testing 32 medicinal plants and spices with

reported anti-microbial activities (Table 3). Thirty of these plants showed detectable activity, in

at least one screen; seven showed highest level of activity (complete kill = “3” similar to positive

control) in all screens i.e., one anti-bacterial and two anti-fungal. These data confirm the utility

of the RAMES-STN technology for detecting anti-microbial activities.

The simplicity of STN assays not only allows rapid lead detection in the field, but also

makes them excellent educational tools for biology teachers at schools and universities [23–

27]. RAMES technology combined with STN assays connects students with traditional botani-

cal knowledge and stimulates their interest in science, human health, and biodiversity
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conservation. We also see value in collecting RAMES libraries from regions threatened with

biodiversity loss. Such cataloging of phytochemical diversity is needed to preserve the informa-

tion about the ecosystems that may be lost forever.

Finally, while this manuscript only describes the application of RAMES-STN platform to

plant metabolome, this technology can be just as easily adapted to collecting metabolome

libraries from other lifeforms on our planet. Sharing RAMES libraries with other researchers

by sending them metabolome-impregnated glass fiber discs from a species of interest should

further strengthen studies of natural products and enable the development of novel functional

screens compatible with this technology.
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