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Abstract

Young adults demonstrate a small, but consistent, asymmetry of spatial attention favouring

the left side of space (“pseudoneglect”) in laboratory-based tests of perception. Conversely,

in more naturalistic environments, behavioural errors towards the right side of space are

often observed. In the older population, spatial attention asymmetries are generally dimin-

ished, or even reversed to favour the right side of space, but much of this evidence has been

gained from lab-based and/or psychophysical testing. In this study we assessed whether

spatial biases can be elicited during a simulated driving task, and secondly whether these

biases also shift with age, in line with standard lab-based measures. Data from 77 right-

handed adults with full UK driving licences (i.e. prior experience of left-lane driving) were

analysed: 38 young (mean age = 21.53) and 39 older adults (mean age = 70.38). Each par-

ticipant undertook 3 tests of visuospatial attention: the landmark task, line bisection task,

and a simulated lane-keeping task. We found leftward biases in young adults for the land-

mark and line bisection tasks, indicative of pseudoneglect, and a mean lane position

towards the right of centre. In young adults the leftward landmark task biases were nega-

tively correlated with rightward lane-keeping biases, hinting that a common property of the

spatial attention networks may have influenced both tasks. As predicted, older adults

showed no group-level spatial asymmetry on the landmark nor the line bisection task, but

they maintained a mean rightward lane position, similar to young adults. The 3 tasks were

not inter-correlated in the older group. These results suggest that spatial biases in older

adults may be elicited more effectively in experiments involving complex behaviour rather

than abstract, lab-based measures. More broadly, these results confirm that lateral biases

of spatial attention are linked to driving behaviour, and this could prove informative in the

development of future vehicle safety and driving technology.

1. Introduction

Young adults exhibit a small, but consistent, spatial attention bias towards the left side of space

(“pseudoneglect” [1]), probably as a result of right cerebral hemisphere dominance for spatial

attention. Spatial asymmetries have been elicited across a range of laboratory-based tasks,
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involving visual judgements of size (the landmark and line bisection tasks [2]), luminance

(greyscales task [3]), spatial frequency (gratingscales task [4]), emotions (chimeric face task

[5]), and tasks including non-visual set-ups (the mental number line [6] and tactile line bisec-

tion tasks [1]). We have previously demonstrated consistent within-task spatial biases when 5

tasks were tested on two separate days, yet failed to find between-task consistency in young

adults [7] (see also [3] and [8]). Relative to young adults, healthy older adults typically exhibit a

group-level rightward shift of spatial bias, with either no spatial asymmetry, or a mild prefer-

ence for the right hemispace ([9–20] but see [21,22] for maintained leftward biases in older

age). This behavioural shift may represent diminished right hemisphere control of spatial

attention in older adults [10].

Although pseudoneglect is most commonly assessed using computerised and/or labora-

tory-based tasks, spatial attention asymmetries can also be elicited in more ecologically valid

contexts. Such measures are important, due to the potentially negative consequences of mis-

judging our environment, for example colliding with objects. This could be particularly conse-

quential for older adults, because impaired lateral spatial processing has been associated with

an increased risk of falls [14,16]. In contrast to lab-based measures, these ‘real-world’ tasks

have, by-and-large, identified systematic behavioural errors and preferences towards the right
side of space. For instance, people tend to pass through doorways to the right of true centre

[23], and doorframe collisions are more likely to occur on the right side of the body than the

left [24]. Furthermore, right-sided bumping also occurs when navigating doorways using elec-

tric wheelchairs, scooters and remote-controlled cars [25–27]). It is possible that the dimen-

sions of left hemispace are perceptually overestimated and compensated for by shifting

behaviourally rightward as a result. Though intriguingly, this behaviour has also been demon-

strated in situations that do not appear to involve obstacle avoidance or navigation. For

instance, people preferentially select seats towards the right side of an aeroplane rather than

the left ([28] although see [29]), and the right side of theatre halls [29–33], however this may

be dependent on the expected cognitive demands of the situation (see [34] for discussion of a

leftward seating preference in classrooms).

There is good evidence that these biases are a product of asymmetrical cortical activity

between the left and right cerebral hemispheres, given that behavioural biases can be modu-

lated by activating one hemisphere unilaterally [24]. Importantly, such behavioural errors are

often inversely correlated with standard lab-based tests of perceptual spatial bias, suggesting

that a common neural mechanism underpins both lab-based and naturalistic tasks (e.g.

[35,36]). It is nevertheless important to note that the literature does not reach full consensus:

Nicholls, Loetscher & Rademacher [37] found no correlation between rightward deviations of

a soccer ball kick and the spatial bias elicited when pointing towards the goal midpoint, and

Hatin et al. [21] observed no relationship between doorway collision frequency and bias on the

standard line bisection task, with more left-sided collisions identified overall. Importantly, the

majority of these studies recruited a young participant cohort, and age-related effects have

rarely been investigated in naturalistic tasks. Hatin et al. [21] found that, although lab-based

measures tend to show a consistent rightward shift of spatial bias in older age, there was no dif-

ference in left versus right doorway collision frequency between young and older adults, and

further similarities between age groups have been observed in American driving collision sta-

tistics [38]. These studies indicate a need for further research into naturalistic spatial biases in

the older population and how they might relate to laboratory measures of spatial attention

asymmetries.

In this study we were interested in assessing how a more complex behaviour (lane-keeping

during simulated driving) may be associated with spatial attention asymmetries, and in partic-

ular whether a rightward shift in older age is also observable on this task. The ability to quickly
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and accurately process, and act upon, spatial information is an essential component of safe

driving in young and older adults alike. Research surrounding the use of in-car automatic lane

departure warning software has identified that lane-departure warnings are generally activated

more often in older adults than in young [39]. However, spatial asymmetries are difficult to

study in driving behaviour due to the potential confound of learned behaviour associated with

left- or right-lane driving experience. For example, Dutch right-lane drivers naturally adopt a

lateral lane position that is slightly to the right of centre, probably as a learned behaviour to

avoid oncoming traffic approaching from the left, or to overcompensate for being asymmetri-

cally seated on the left side of the vehicle [40,41]. Similarly, right-lane drivers in South Korea

adopt a right-of-centre position when instructed to drive at the lateral midpoint of a single-car-

riageway road [42], and the majority of unintentional lane-drift crashes on straight roads in a

sample of 5,470 road traffic accidents in the Unites States were towards the right hand side

[43]. This appears to be mirrored in the left-driving population: Lenné, Triggs & Redman [44]

observed a drift towards the left edge of the road over time in Australian drivers, and in Scot-

land, 60.05% of injury-causing accidents involving lane departures are towards the left-side of

the carriageway, with right-sided departures less frequent (39.95%: [45]).

Interestingly though, there is evidence of cross-cultural behavioural similarities that may

point towards the influence of spatial attention biases during driving. Friedrich, Elias &

Hunter [38] found a similar pattern of left-sided vehicle collisions as observed in the Scottish

traffic records, in the right-lane driving American population. This was contrary to expecta-

tions and importantly, they found no difference in the laterality of collision behaviour between

young and older adults. However, Hämäläinen et al. [46] recently found that older, but not

younger, right-lane driving Finnish adults tended to erroneously cross the lane boundary to

the left during simulated driving, whilst performing a simultaneous, high-load perception task.

The older adults also had a rightward perceptual bias, indicated by more erroneous rightward

responses during bilateral visual target presentation, suggesting that their leftward driving

error may be related to this rightward perceptual bias. Further evidence of a leftward percep-

tual biases during driving was gained from Benedetto et al. [47] who identified a left-sided

attentional preference in Italian right-lane drivers using eye-tracking during a simulated Lane

Change Task [48]. In the Lane Change Task, participants are instructed to move their vehicle

into one of three lanes, in response to instructions presented on bilaterally-situated signs on

the left and right sides of the track. Participants were found to look towards the left-situated

signs more frequently than those placed on the right, even though road signs are normally

right-situated on Italian roads. In summary, some aspects of driving behaviour are likely to be

influenced by learned experience, but natural asymmetries of lateral spatial processing, such as

pseudoneglect, may also be involved.

We aimed here to investigate the relationship between two standard, lab-based measures of

spatial attention bias (the LANDMARK and LINE BISECTION tasks) and a simulated LANE

KEEPING task, in young and older adults with prior experience of left-lane driving. We modi-

fied the Lane Change Task used in Benedetto et al. [47] so that the instructions were similar to

the standard line bisection task (i.e. find and maintain the midpoint of the lane). By testing a

left-lane driving population, we aimed to de-couple the predicted effects of prior driving expe-

rience from spatial attention asymmetries. Specifically, we predicted that if lane positioning is

influenced by prior driving experience, both young and older adults would naturally adopt a

left-of-centre driving position mirroring the rightward preference of European drivers. Con-

versely, they would position themselves to the right-of-centre if driving position is related to a

spatial attention asymmetry (i.e. pseudoneglect), and we would also expect to observe an

inverse correlation between lateral driving position and the landmark and line bisection tasks.

We predicted that older adults would lose their group-level leftward bias on the landmark and
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bisection tasks, and expected their lane-keeping to be less lateralised than the younger group

as a result.

2. Method

2.1. Participants

78 right-handed adults were recruited. One young participant was excluded from statistical

analysis due to a landmark task bias score of>2.5 standard deviations above the group mean

(PSE = 28.91). The remaining 77 participants comprised 38 young adults (27 females, mean

age = 21.53, range = 18–34, SD = 4.35) and 39 older adults (19 females, mean age = 70.38,

range = 60–86, SD = 6.03). All had normal or corrected-to-normal vision with glasses or con-

tact lenses and held a valid UK driving licence. Young adults had on average 3.08 (SD = 3.42)

years of driving experience since gaining their licence, and the older group 47.4 (SD = 10.16)

years. The study was approved by the University of Glasgow College of Science and Engineer-

ing ethics committee and written, informed consent was obtained from each participant.

2.2. Procedure

Participants were asked to indicate their subjective alertness on a linear scale (0 = almost

asleep, 100 = fully alert) before and after testing. Young adults were tested in one single experi-

mental session, with each participant completing 3 tasks (landmark, line bisection, and lane-

keeping) in a counterbalanced order across participants. The older adults completed the 3

tasks as part of a larger experiment involving a total of 6 counterbalanced spatial attention

tasks: landmark, line bisection, greyscales, grating scales, lateralised visual detection (as per

[7]), with the addition of the lane-keeping task. All 6 tasks were undertaken twice: once per

session, across 2 days separated by a minimum of 24 hours. The data reported here was

obtained during the first of the two testing sessions.

2.3. Landmark and line bisection tasks

In the young group, the landmark and line bisection tasks were performed on a Dell Precision

T3400 PC with a CTX Ultra 18” monitor (1280x1024 pixel resolution and 85Hz refresh rate).

Older adults were tested on a Dell Precision 380 PC with a 19” Dell 1908FP Ultra Sharp LCD

flat screen monitor, with a 1280x1024 pixel resolution. Viewing distance was kept constant at

0.6m with a chin rest.

2.3.1. The landmark task. Stimuli: Stimuli were identical to those used in Learmonth

et al. [7] and were originally adapted from [49] and [2]. Horizontal lines of 100% Michelson

contrast were presented individually on a grey background (luminance = 179, hue = 160) at

the vertical midpoint of the screen. Each line measured 800x14 pixels (approximately

22.4x0.4cm, 21.15x0.33˚ visual angle. Each line was transected vertically at the centre of the

screen but the length of the left and right sides of the line varied across trials to enable psycho-

metric curve fitting. A total of 17 different stimuli, varying in their asymmetry, were used: 1

where the left and right sides were of equal length, and a series of stimuli where the left (or

right) side was either 6, 12, 18, 24, 30, 36, 42 or 48 pixels shorter (or longer) than the left. One

landmark task block consisted of 136 trials (8 repetitions of 17 stimuli: 4 repetitions where the

upper left/lower right were shaded black and 4 repetitions where the these quadrants were

shaded white, as per Fig 1).

Procedure: In each trial, a centred fixation cross appeared for 1000ms, followed by one of

the landmark stimuli for 150ms. The fixation cross then reappeared until a two-alternative

forced-choice key press was made. Participants were instructed to press “v” with their right
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index finger if they perceived the left side of the line to be shorter than the right, and “b” with

their right middle finger if they perceived the right side of the line to be shorter than the left.

Analysis: The percentage of trials in which the participant judged the left to be shorter was

calculated separately for each of the 17 stimuli. Psychometric functions were fitted to this data,

separately per subject, using a cumulative logistic function:

f m; x; sð Þ ¼ 1=
�
1þ exp

x � m

s

� ��

where μ is the point on the x-axis that corresponds to 50% left and 50% right-response rate, x
represents the transector locations and s is the psychometric curve width. The point of subjec-

tive equality (PSE) and curve widths were extracted. The PSE is a measure of the subjective

horizontal midpoint of the landmark line and is used to quantify spatial attention bias, whereas

the curve width estimates the overall precision of these judgements. A wide (large) curve width

value indicates low precision and a narrow (small) curve width value high precision.

2.3.2. The line bisection task. Stimuli: Individual horizontal white lines were presented

on a grey background at the vertical midpoint of the screen (Fig 1). Each line measured 805x15

pixels (approximately 22.4x0.4cm, 21.15x0.33˚ visual angle). The outermost two pixels border-

ing the line were shaded black. The line was jittered along the horizontal axis on a trial-by-trial

basis at 9 different locations (0 = centred on the screen, and 40, 80, 120 and 160 pixels to the

left and right of centre (approximately 0.95, 1.9, 2.85 & 3.8˚). The mouse pointer appeared at

the upper horizontal midpoint of the screen at the start of each trial (screen co-ordinates:

X = 640, Y = 40 pixels; 11.17˚ above the fixation cross). One line bisection task block consisted

of 108 trials (12 repetitions of 9 stimulus locations).

Procedure: In each trial, a fixation cross appeared for 1000ms, then one of the 9 stimuli

appeared until either a response was made, or a maximum of 6 seconds had passed without a

response. The next trial appeared thereafter, with the mouse pointer reset at the start position.

Participants were instructed to move the mouse down towards the line using their right hand,

and to use the left mouse button to click on the horizontal midpoint of the line as accurately as

possible.

Fig 1. The landmark and line bisection task stimuli. Landmark task: A) The right side is shorter than the left by 48

pixels, B) The left side is shorter than the right by 48 pixels and C) Both sides are of equal length. Line bisection task: A)

Line jittered 160 pixels to the right of centre, B) Centred, and C) Jittered 160 pixels to the left of centre.

https://doi.org/10.1371/journal.pone.0203549.g001
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Analysis: The horizontal and vertical co-ordinates of the mouse click location were logged

in E-Prime. The subjective horizontal midpoint of the line (i.e. the clicked x-coordinate) was

subtracted from the true midpoint location to generate a spatial bias score for each trial, in pix-

els relative to midpoint. Trials that were more than 2.5 SD above and below the individual’s

mean bias score were excluded, the majority of which appeared to be due to mouse clicks

made in error when lowering the mouse towards the line (Young: 43 trials = 1.05% of total,

Older: 83 trials = 1.97%). An overall mean line bisection bias was then calculated per

individual.

2.3.3. The lane-keeping task. The lane-keeping task was adapted from the Lane Change

Task, an ISO-standardised driving simulation software that is commonly used to assess the

effects of secondary tasks on driving performance within the laboratory setting (ISO

17387:2008 [48]). In both young and older groups, the task was presented on a Dell Precision

T7400 PC with a Dell Ultrasharp 2408WFP 24” LCD computer screen (1680x1050 pixel reso-

lution). Participants were seated approximately 1m directly in front of the screen, with a Logi-

tech G27 gaming steering wheel attached to the table (Fig 2). Three pedals were situated on the

floor, representing the clutch (left pedal), brake (middle) and accelerator (right), as per a stan-

dard manual transmission vehicle. The position of the chair and pedals were adjusted to com-

fortably accommodate each participant. The Lane Change Task software produced a simulated

engine noise when the accelerator pedal was pressed, but no other vehicle details (vehicle

frame, windshield, gearstick etc.) were present.

Procedure: The instructions for the Lane Change Task were modified to enable a direct

comparison between the 3 tasks. Participants were instructed to keep both hands on the steer-

ing wheel and, using the right foot pedal to accelerate, to maintain a constant speed of 60mph

(the maximum possible speed, as indicated by a speedometer at the lower right of the screen)

along the straight sections of the track. The course began with a short straight section, followed

immediately by a right-hand bend. The track then straightened, and participants were

instructed to accelerate to 60mph and position themselves at the middle of the centre lane by

the time they reached the yellow “start” flag. They were then instructed to maintain a constant

position at the centre of the middle lane for the duration of the straight section (Lap 1), using

the steering wheel to adjust if necessary. Each lap involved a 3km long straight track with no

other cars or pedestrians present, taking approximately 3 minutes to complete at a constant

maximum speed of 60mph, and the simulated width of each of the 3 lanes was 3.85m wide (Fig

2). In the standard LCT task, participants are usually instructed to change lanes in response to

instructions presented on 18 signs that are simulated at 150m intervals, on the left and right

edges of the track. Here they were specifically instructed to ignore these signs. After they had

driven past the final flag of Lap 1, the second lap was approached via a right-hand bend, and

the third lap via a left-hand bend. Each participant completed 3 laps of the track, with the first

lap considered a practice, to familiarise themselves with the simulator controls and procedure.

Analysis: The horizontal position of the car within the middle lane (deviation from the mid-

point in metres) was logged by the LCT software throughout the experiment, where 0 = the

veridical midpoint of the lane, a negative value representing left-of-centre lane position and

positive value a right-of-centre position. The position of the car as it passed the start flag plus

each of the 18 instruction signs was extracted for each participant. The mean lane position, in

metres, was then calculated separately for each of the 2 test laps, per person, and finally, the

grand average of the two laps was calculated.

3. Results

The full dataset for this study is available at https://osf.io/53c7w/.
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3.1. Subjective alertness

A 2x2 ANOVA (time: pre vs post experiment x age: young vs older) identified an overall

decrease in alertness over time, [F(1,74) = 8.11, p = 0.006, ηp2 = 0.1], and generally higher

alertness ratings in the older group [F(1,74) = 23.74, p<0.001, ηp2 = 0.24]. Neither group expe-

rienced a larger alertness reduction pre- vs post-test than the other (time x age interaction:

F(1,74) = 0.33, p = 0.57, ηp2 = 0.004, mean alertness scores: young pre-test = 66.71, post-

test = 61.79; older pre-test = 84.49, post-test = 77.69).

3.2. Mean spatial biases

Young adults had a leftward spatial attention bias on the landmark task (mean PSE = -2.12 pix-

els, one-sample t-test against zero (i.e. no bias) t(37) = 2.35, p = 0.024) and on the line bisection

task (mean bias = -5.53 pixels, t(37) = 4.04, p<0.001), indicative of pseudoneglect in both tasks.

Although the older adults had a mean leftward bias for both the landmark and line bisection

tasks, these were not significantly different from zero (landmark task mean PSE = -1.19 pixels,

t(39) = 1.53, p = 0.13; line bisection task mean bias = -2.39 pixels, t(39) = 1.7, p = 0.098) (Fig 3).

In the Lane-Keeping Task, the mean lateral positions in Lap 1 and Lap 2 were strongly cor-

related in both age groups (Lap 1 vs Lap 2: young r(38) = 0.78, p<0.001, older r(39) = 0.82,

p<0.001). Therefore, the grand average lateral lane positions (mean of Laps 1 & 2) were used

in all subsequent analysis. Mean spatial bias was to the right of centre for the young adults

(mean position = 0.14m, one-sample t-test against zero (i.e. no bias) t(37) = 3.95, p<0.001)

and also to the right of centre for older adults (mean position = 0.21m, t(38) = 5.05, p<0.001)

(Fig 3). Independent samples t-tests were then used to compare the spatial biases between

young and older adults, separately across each of the 3 tasks, but these identified no age-related

differences for any task (landmark: t(75) = 0.79, p = 0.44, line bisection: t(75) = 1.6, p = 0.12,

lane position task: t(75) = 1.31, p = 0.2).

The line bisection task was further analysed to probe for age-related differences at each of

the 9 line positions along the horizontal axis. A 9x2 mixed ANOVA (position x age) identified

a main effect of line position (F(8,600) = 43.85, p<0.001, ηp2 = 0.37) where lines positioned to

the left of the screen were generally bisected further to the left than lines positioned to the right

of the screen. There was no main effect of age (F(1,75) = 0.77, p = 0.38, ηp2 = 0.01) but there

was an age x position interaction (F(8,600) = 18.31, p<0.001, ηp2 = 0.2). 95% confidence inter-

vals were bootstrapped (2000 samples) for each position, per age group, and these are shown

in Fig 4. Generally, young adults were more susceptible to the lateral position of the line, with

the left-positioned lines bisected further to the left in young adults compared to the older

adults (non-overlapping 95% CIs when the line was placed 80 and 120 pixels to the left of cen-

tre), and further to the right when lines were positioned towards the right of the screen (non-

overlapping 95% CIs when the line was placed at 120 and 160 pixels to the right of centre).

3.3. Inter-task correlations

The 3 tasks were then inter-correlated using Spearman’s rho and Shepherd’s pi ([50]: a robust

correlation method which adjusts for the influence of outlying data points), separately for

young and older adults (Fig 5).

Young adults: The lane position and landmark tasks were moderately negatively correlated:

rho(38) = -0.4, p = 0.014 (significant at Bonferroni corrected α = 0.017); Shepherd’s pi: r(38) =

-0.57, p<0.001; bootstrapped 95% confidence intervals (CI) after 20,000 iterations = [-0.68,

Fig 2. The lane-keeping task experimental setup.

https://doi.org/10.1371/journal.pone.0203549.g002
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-0.06] with a leftward spatial bias on the landmark task associated with a mean rightward lane

position. The lane position and line bisection tasks failed to correlate rho(38) = -0.2, p = 0.22;

pi = -0.15, p = 0.74; CI = [-0.47, 0.1] and the landmark and line bisection tasks also failed to

correlate, confirming a lack of inter-task relationship between these 2 tasks as per Learmonth

et al. [7]: rho(38) = 0.13, p = 0.45; pi = 0.16, p = 0.73; CI = [-0.22, 0.44].

Fig 3. Mean spatial biases for the landmark (in pixels), line bisection (pixels) and lane-keeping tasks (metres).

Individual biases are overlaid.

https://doi.org/10.1371/journal.pone.0203549.g003
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Older adults: None of the 3 tasks were correlated in the older adults: lane position vs land-
mark: rho(39) = -0.026, p = 0.88; pi = -0.03, p = 1; CI = [-0.32, 0.28], lane position vs line bisec-
tion: rho(39) = -0.038, p = 0.82; pi = -0.038, p = 1; CI = [-0.35, 0.29], landmark vs line bisection:

rho(39) = 0.16, p = 0.35; pi = 0.24, p = 0.28; CI = [-0.19, 0.48].

4. Discussion

The aim of this study was first of all to examine whether spatial biases can be elicited during a

simulated driving task, and secondly whether these biases change with age, similar to standard

lab-based measures. As we, and others, have previously reported, young adults exhibited a

group-level leftward pseudoneglect bias on both the LANDMARK and LINE BISECTION

tasks, whereas older adults had no group-level bias to either side of space. Both young and

older groups positioned themselves significantly to the right of centre in the LANE KEEPING

task, however there were no age-related differences in any of the 3 tasks when the groups were

compared directly. Importantly, although biases failed to correlate across the 3 tasks in older

adults, lateral lane position was moderately negatively correlated with the landmark task in the

younger group (rho = -0.4, pi = -0.57).

4.1. Spatial bias and lane keeping in young adults

In finding no correlation between the landmark and line bisection tasks in young adults, we

have replicated our previous results in Learmonth et al. [7], where we found no significant

inter-task correlation between these two perceptual tasks. Here we have extended this work to

demonstrate a similar lack of relationship between these tasks in older adults. We again con-

clude that although each of these tasks may elicit significant group-level spatial biases individu-

ally, the unique cognitive demands of each task renders them non-interchangeable in spatial

Fig 4. Mean spatial biases obtained for lines presented at each location along the horizontal axis, separately for each age group, with 95%

confidence intervals (2000 bootstrapped samples).

https://doi.org/10.1371/journal.pone.0203549.g004
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attention research. In light of this, the moderate correlation observed between the lane keeping

and landmark tasks in young adults is notable, particularly given that prior evidence of correla-

tions between line bisection and naturalistic measures has been mixed [21,24,35–37].

The distinction between lateralised perceptual and behavioural biases is central to the inter-

pretation of these results. Our findings are in broad agreement with much of the previous liter-

ature on spatial attention asymmetries, which has described a perceptual over-estimation of

the left side of space, concurrent with a compensatory behavioural bias towards the right dur-

ing more naturalistic tasks, such as doorway navigation [24,36,37]. Similar to observations in

lab-based studies of spatial asymmetries, perceptual biases towards the left side of space have

been demonstrated during driving in right-lane driving populations [47]. This observation is

interpreted as evidence of a universal perceptual bias towards the left side of space (pseudone-
glect), given that these participants all had prior experience of road signs situated on their right

side. If we are correct in supposing that behavioural biases arise in direct response to leftward

perceptual biases (specifically, where the left side of space is perceived to be larger than the

right), then we would expect all drivers to position themselves to the right of centre, regardless

of whether they are experienced in driving on the left or the right side of the road. However, if

lane position is purely influenced by prior driving experience, our left-lane driving participants

should have naturally positioned themselves to the left of centre, given their experience of

Fig 5. Correlation plots showing the relationship between the lane position, landmark and line bisection tasks for young and older adults,

with regression line and 95% confidence intervals. Histograms show the distribution of 20,000 bootstrapped samples of the Spearman’s rho

correlations, with 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0203549.g005
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avoiding oncoming traffic approaching to their right, and mirroring findings in right-lane

driving populations [40–42]. Our observation here that both young and older adults adopted a

significant mean rightward lane position leads us to conclude that at least some aspects of driv-

ing behaviour are likely to be cross-cultural and influenced by spatial attention asymmetries

rather than learned strategies. Indeed, the moderate negative correlation observed in young

adults between the lane keeping task and the psychophysical landmark task supports the inter-

pretation that both tasks reflect a stable property of the cerebral attention networks, contrary

to our results in Learmonth et al. [7]. It is therefore likely that the left side of space was percep-

tually over-estimated and participants situated themselves towards the right of centre as a

form of behavioural spatial compensation. Given that prior research has focused on groups of

either right- or left-lane drivers, it would now be of interest to perform a direct, cross-cultural

test of perceptual and behavioural biases during driving to disentangle the effects of natural

spatial attention asymmetries from learned behaviour.

4.2. Spatial bias and lane keeping in older adults

Although our older adults failed to show any lateralised biases on the landmark and line bisec-

tion tasks, similar to many previous findings [9–20], there were no significant age-related dif-

ferences when each task was probed using independent samples t-tests. We had initially

predicted that, if lane-keeping behaviour is determined by perceptual attention asymmetries,

our older adults would prove less lateralised than the younger group on all tasks. However, the

lack of significant difference between the two age groups in the landmark and line bisection

tasks makes this hypothesis difficult to answer conclusively here. Nevertheless, the mean bias

reduction observed here in the older group does generally agree with previous studies. What is

certainly contrary to our initial predictions is that older adults, like the younger participants,

had a significant rightward positioning on the lane keeping task. One possible explanation for

this may be that lateralised spatial asymmetries are elicited more effectively when older adults

are engaged in more complex and ‘real-world’ behavioural tasks, and that abstract lab-based

and/or psychophysical measures of perception may fail to capture subtle spatial attention

asymmetries that are, in fact, still present in this group.

It is unlikely that the extensive prior driving experience in the older group gave rise to this

maintained rightward position. Our older participants were all highly experienced left-lane

drivers, with a mean of 47.4 years of experience, versus 3.08 years in the young group. We

would therefore have expected to observe either a position closer to the true centre, in response

to perceptual learning, or a higher incidence of left-of-centre positioning due to more experi-

ence of actively avoiding traffic approaching from the right. Given that our results showed a

positioning towards the opposite side, it is unlikely that this prior experience substantially

influenced behaviour on the lane position task. It is also important to note that we observed a

considerable number of older adults who, individually, did maintain a leftward bias in the

landmark and line bisection tasks similar to the young group (see [9,10,22]). These older adults

may represent a highly-functioning subset of the population, given that older participants are

often self-selective in volunteering for lab-based experiments, and full-profile cognitive testing

was unfortunately not undertaken here. This could also be an important factor in other studies

which have reported varying findings, as the cognitive and physical health status of the older

group is rarely examined or reported and may not be fully representative of typical aging.

4.3. Limitations

It is also possible that the different viewing distances used in the perceptual tasks and the driv-

ing task could have influenced the results obtained in this study. This is particularly relevant
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given that the driving task was not an entirely naturalistic representation of real-world driving

behaviour, but was instead very similar in design to the perceptual line bisection task. In the

line bisection task, participants were instructed to mark the midpoint of a horizontal line. In

the lane keeping task they had to identify the lane midpoint and maintain this position, adjust-

ing if necessary. The driving task was completed using a standard desktop computer, thereby

removing the contextual cues that may be associated with natural driving behaviour. It is

therefore important to question whether this experimental design was naturalistic enough to

elicit a rightward behavioural bias, or whether the task instead represents a perceptual lane

bisection task similar to the landmark and line bisection. In perceptual spatial attention tasks,

leftward pseudoneglect biases are typically observed within peri-personal space, with a right-

ward shift of perception often identified when the perceptual judgement takes place in extra-

personal space [51–55]. Here, the landmark and line bisection tasks were performed within a

peri-personal viewing distance of 0.6m, whereas participants were 1m from the computer

screen during the lane keeping task, and thus in extra-personal space. We could, therefore,

expect a perceptual bisection task, undertaken in extra-personal space, to result in a significant

rightward bias, as observed here. However, we have previously demonstrated leftward percep-

tual biases in young adults using a�1m viewing distance [56,57] and therefore consider this

explanation to be unlikely.

As a final consideration, it remains unclear how these results can be integrated with the dis-

proportionate number of collisions on the left side of vehicles in right-lane driving populations

[38]. Right-lane drivers would be expected to collide more frequently on the right if vehicle

collisions arise purely as a result of a rightward behavioural compensation for a leftward per-

ceptual asymmetries. We would also expect slightly more frequent right-sided collisions in

American drivers if they actively avoided oncoming vehicles approaching to their left. This

explanation would also align with Thomas et al. [23] who found more frequent right-of-centre

doorway deviations in Swiss adults (right-lane drivers), with a reduced bias in Australians

(left-lane drivers), which was attributed to differences in prior driving experience. However, it

is possible that the higher frequency of left collisions in Friedrich et al. [38] was a result of traf-

fic hazards (i.e. oncoming vehicles) approaching the left side more often than the right, rather

than a result of compensatory (either perceptual or avoidant) lateral lane positioning. Simi-

larly, the higher frequency of left-sided lane departures in the Scottish traffic records could be

attributed to avoidant actions towards the left, or forced departures as a result of right-sided

collisions. Unfortunately the reasons for these accidents are not specified, but would provide a

clearer picture of the role of other vehicles in lateralised aspects of driving behaviour. Given

that these vehicle collision statistics are drawn from thousands of reported driving accidents,

and are therefore highly naturalistic behaviours by definition, we must remain mindful that

driving is a highly complex process involving an interplay of multiple variables (e.g. road

width, bends, speed limits, single carriageway vs motorway, the presence of other vehicles and

pedestrians, congestion levels and standard manoeuvres such as turning corners) in addition

to the possible contribution of lateral attention biases. As mentioned previously, although the

lane keeping task we developed involved a more ecologically valid test of spatial attention com-

pared to many psychophysical measures, our driving simulator setup was admittedly not

completely naturalistic. In a natural left-lane driving scenario, the driving seat is positioned

asymmetrically on the right side of the car, whereas our setup here involved a single chair posi-

tioned directly in front of the computer screen. Our participants may have overcompensated

for this unfamiliar positioning by placing themselves slightly too far to the right of centre

when asked to maintain a central position on the simulated track. Yet, this would still not

explain the presence of a correlation between the driving and the landmark task in young

adults. Secondly, we required participants to maintain a fixed mid-lane position in the middle
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of three lanes for an extended period of time, and this behaviour is rarely—if ever—required

during normal day-to-day driving. Maintaining an appropriate position within a lane usually

only requires that the vehicle is positioned broadly within the specified lane (a space that is

almost always wider than the car), and not necessarily fixed at the midpoint. It would be of

value now to improve the ecological validity of this task by assessing whether lab-based spatial

attention tasks are correlated with lane positioning during regular carriageway driving.

In conclusion, we have demonstrated that both young and older British adults adopt a sig-

nificantly right-of-centre position in a simulated lane-keeping task, contrary to predictions in

a left-lane experienced population. There was a moderate negative correlation in young adults

between the computerised landmark task and the lane position task, indicating that lateralised

asymmetries of visuospatial perception likely impact on driving behaviour. These results sug-

gest that the development of a deeper understanding of natural lateralised biases of visual

attention, and how they relate to driving behaviour, is important for future research into the

development of driving safety measures, particularly into older age.
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