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Abstract

Behaviors are important indicators for assessing the health and well-being of dairy cows.

The aim of this study is to develop and validate an ensemble classifier for automatically

measuring and distinguishing several behavior patterns of dairy cows from accelerometer

data and location data. The ensemble classifier consists of two parts, our new Multi-BP-Ada-

Boost algorithm and a data fusion method based on D-S evidence theory. We identify seven

behavior patterns: feeding, lying, standing, lying down, standing up, normal walking, and

active walking. Accuracy, sensitivity, and precision were used to validate classification per-

formance. The Multi-BP-AdaBoost algorithm performed well when identifying lying (92%

accuracy, 93% sensitivity, 82% precision), lying down (99%, 82%, 86%), standing up (99%,

74%, 85%), normal walking (97%, 92%, 86%), and active walking (99%, 94%, 89%). Its

results were poor for feeding (80%, 52%, 55%) and standing (80%, 46%, 58%), which are

difficult to differentiate using a leg-mounted sensor. Position data made it possible to differ-

entiate feeding and standing. The D-S evidence fusion method for combining accelerometer

data and location data in classification was used to fuse two pieces of basic behavior-related

evidence into a single estimation model. With this addition, the sensitivity and precision of

the two difficult behaviors increased by approximately 20 percentage points. In conclusion,

the classification results indicate that the ensemble classifier effectively recognizes various

behavior patterns in dairy cows. However, further work is needed to study the robustness of

the feature and model by increasing the number of cows enrolled in the trial.

Introduction

Behavior is an important indicator of health and well-being in dairy cows. Cows exhibit differ-

ent behaviors when health problems (e.g., lameness) or physiological changes (e.g., oestrus)

occur [1]. Behavior assessment is mainly via a farmer’s experience, but focused, long-term
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detection is difficult, especially in large herds, due to lack of time and labor. Some existing sys-

tems based on sensor technology have been developed for automatic behavior analysis [2–4],

but these systems usually identify only a few behavior patterns. An accurate, fast, and low-cost

method for monitoring behavior patterns as an aid in evaluating bovine health and welfare

would be beneficial.

With the advantages of being small in size and light weight, accelerometers have been

widely used to monitor human behaviors and activities. Many valuable studies have used accel-

erometers for distinguishing cow behavior patterns [5–8], making use of a variety of machine

learning methods, including support vector machines (SVMs), decision tree algorithms, and

the k-means clustering algorithm [9]. These methods fall into the general categories of super-

vised learning and unsupervised learning. However, these machine learning algorithms have

disadvantages in the form of excessive memory consumption, poor on-line learning ability,

high sensitivity to outlier data, and limited performance of global optimization.

Cow location data are a direct reflection of cow behavior. For example, cows feed only near

the troughs. This information improves the accuracy of recognizing cow behavior. Several

researchers have analyzed the possibility of tracking cows with different wireless systems.

Porto et al. demonstrated that an Ultra Wide Band (UWB) system can locate cows with a

mean error of about 0.11 m (with an identification accuracy of nearly 100% for the reference

tag) in a semi-open free-stall barn [1]. Huhtala et al. achieved a localization accuracy of 0.1 m

in a test using a wireless sensor network (WSN) and the time difference of arrival (TDOA)

algorithm [10]. However, neither of these studies used acceleration data.

The integration of accelerometers with real-time location data has the potential to achieve

better results for bovine behavior identification. There are additional benefits to incorporating

acceleration data. Such monitoring systems can simultaneously identify, locate, and manage

dairy cows. Location data augmented by acceleration improves the recognition of bovine

behaviors and enables the early detection of health problems in cows.

The main objective of this study is the development and evaluation of a new method to

combine acceleration and location data using evidence theory to improve the accuracy of

bovine behavior recognition. Evidence theory, also known as D-S evidence theory, is a method

of reasoning with uncertainty proposed by Dempster and Shafer in the 1960s [11, 12]. Evi-

dence theory offers multiple inaccurate descriptions of the problem studied and then reaches

an inaccurate conclusion by focusing on the consistency in the descriptions according to a spe-

cific measure. Evidence theory can be used for both data fusion and pattern recognition [13–

15]. Our research has two main purposes. First, we develop a complete design and specific

property of devices for continuous surveillance of cow behavior. Second, we execute a series of

tests to validate the system performance of automatic detection for various types of cow behav-

ior patterns.

Materials and methods

Ethics statement

During our research, all animals were kept in a pathogen-free environment and fed naturally.

The procedures for care and use of animals were approved by the Ethics Committee of the

Henan University of Science and Technology, Luoyang, China. All of the experimental proce-

dures were conducted in conformity with institutional guidelines for the care and use of labo-

ratory animals at Henan University of Science and Technology and with the National

Institutes of Health Guide for Care and Use of Laboratory Animals (NIH Pub. No. 85–23,

revised 1996).
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The data acquisition system

Our system hardware consisted of five leg tags, six location sensors (Sensor 1 through Sensor

6), and one reference location sensor. The leg tag sensor enabled automated measurement of

both acceleration and location of cow movements. Each leg tag included a three-dimensional

accelerometer (ADXL345, Analog Devices Inc., USA), a radio frequency (RF) transceiver

(CC1101, Texas Instruments Inc., USA), and a microcontroller (STC12C5A60S2, STCmicro

Technology Inc., China). The accelerometer used to obtain acceleration data has a range of ±8

g and a sampling frequency of 1 Hz. It integrates a 12 bit A/D converter to change the analog

voltage signal into digital data. The RF transceiver transmits acceleration and location mea-

surements to a laptop computer once per second at 433 MHz and receives ranging data from

location sensors using received signal strength indicator (RSSI) technology to analyze leg tag

locations. Each leg tag measures 89 × 60 × 38 mm and is placed in a water-resistant plastic bag.

The power supply consists of three 3.7 V lithium ion batteries (ARB-L4-4800, FENIX Ltd.,

China). The protected tag is inserted into a plastic case equipped with adjustable straps and an

adhesive label showing the identification code of the specific leg tag. The adjustable straps

enable a proper fit of the leg tag to the dimensions of cow’s hind leg in order to have the y-axis

of the coordinate system of the leg tag aligned with the axis of cow body (Fig 1).

The weight of leg tag circuit, plastic bag, batteries, plastic case, and adjustable straps is

approximately 30.8 g, 107.5 g, 121.5 g, 268.2 g, and 71.4 g, respectively. The total weight of each

leg tag is approximately 600 g, most of which is from protective and mounting components that

ensure reliability. The plastic bag is made of TPU (thermoplastic urethane, 1.25 g/cm3), and the

XX

Y

Z

Fig 1. Coordinate system of the leg-tag.

https://doi.org/10.1371/journal.pone.0203546.g001
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plastic case is PLA (polylactic acid, 1.3 g/cm3). The density of these materials is high, but lighter

weight materials could be considered in the future. We used motion video analysis software

(MIAS, Fubo Tech Ltd., China) to measure the stride length, speed, and time of leg swing of

normal walking or active walking before and after installing the leg tag. The results showed that

there was no obvious difference in these parameters. We observed no restriction or influence of

the leg tag on the cows’ activities.

The location sensor measures 75 × 48 × 30 mm, weighs 200 g, and communicates with the

leg tags using the 433 MHz radio band. Each location sensor is powered by an AC/DC adapter

and attached to a pole or similar mast at a height of 2.5 m using cable ties. Each of the six loca-

tion sensors sends data packets with its own location and identification number (ID) at 0.5 s

intervals. The position of Sensor 1 is defined as the origin of the plane coordinate system in the

barn. The graphical user interface (GUI) of the corresponding computer application uses the

same coordinate system to visualize the actual movement of cows.

Fixed to a post in the center of the barn, the reference location sensor corrects location sig-

nals via spatial correlation between the reference location sensor and the six location sensors.

This improves location accuracy of the five leg tags by eliminating common ranging errors.

Our specialized application enables users to perform post-processing of the measurement

data acquired from the five leg tags. It executes the ensemble classifier to transform measure-

ments into identified behavior. The main parts of our software are platform management, the

service control manager, and the data fusion engine (DFE). The first two manage the system

configuration and services, animal characteristics (e.g., age, weight, health status, and picture),

the graphical representation of the monitoring area, the wireless communication parameters,

the display of data obtained from the leg tags, and the statistical analysis of the recorded data.

The third part, the DFE, is a real-time processing algorithm which synthesizes the acceleration

and location data collected by the system. Using D-S evidence theory, the DFE enables finding

a straightforward solution to improve the classification performance of cow behaviors.

We used a MySQL database to store the acquired information. The application records the

latest data from the leg tags at 1 second intervals. The data recorded for each tag includes the

acquisition date and time, the identification number, the three-dimensional acceleration, and

the two-dimensional location in the plane.

We also used a video recording system using four cameras (SNC-VB640, Sony Corporation,

Japan) in the barn to validate the results from our system. Among all of the possible views

available from the video system, plan views are the most appropriate here. A top view of the

system provides a panoramic image of the area of interest at a resolution of 1920 × 1080 pixels.

We compared the behaviors shown in the images with the acceleration data acquired from the

sensor system via vision processing software.

We synchronize the video images with the leg tag data in order to match the video analysis

with the accelerometer data for each cow. We vary the time of video recording from 9 a.m. to

11 a.m. to obtain video of each cow involved in all activities (feeding, lying, standing, lying

down, standing up, normal walking, and active walking). The same person downloads and

logs the video recordings and determines the activity for all cows. The following criteria deter-

mine the activity classification.

• Feeding: If a cow stands on its four legs at the feeding zone, and lowers its head into the

headlocks to search or masticate the feed for the entire 1 s video period, the activity is catego-

rized as feeding.

• Lying: If an animal is lying down for the entire 1 s video period, the activity is classified as

lying. When an animal transitions from this position, the lying activity classification ends

once the first movement of the transition occurs.

An ensemble classifier for real-time recognition of cow behavior patterns
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• Standing: Static standing and standing with minor limb movements (shifting) for the entire

1 s video period leads to a classification of standing.

• Lying down: When a cow completes a transition from standing to lying for a 3 s to 8 s video

period, the activity is categorized as lying down.

• Standing up: Similar to the lying down activity, if the duration of the conversion from lying

to a standing takes place during a 3 s to 8 s video period, the activity is categorized as stand-

ing up.

• Normal walking: Normal walking is defined as a progressive step (forward or backward)

within a 1 s video period.

• Active walking: Active walking activity is defined as a minimum of two progressive steps

(forward) within a 1 s video period.

Housing and animals

We conducted a trial from 1st June to 20th June 2017 at a dairy farm located in Nanyang

(Henan Province, China) to investigate our system’s performance. In the study, the free-stall

barn (33˚05050.64@N, 112˚32025.32@E) had a rectangular layout of 180 m × 31 m in an east-

west direction and included a feeding passage, two rows of self-locking headlocks, and two

rows of head to head stalls arranged with sand beds. The roof was covered with light-weighted

color steel plates with symmetric structure with a 1:3 slope. The height of the barn and the

eaves was 10 m and 4.65 m, respectively.

The separation area in the barn had 11 cows, five of which were chosen for the trial on the

basis of similar body size. All five of the cows were in the early lactation stage (101–117 days in

milk). The cows were multiparous with parity in the range of 2 to 3 (3 cows in 2nd lactation, 2

cows in 3rd lactation). The five Holstein dairy cows (designated as ID1, ID2, ID3, ID4, and

ID5) were loose-housed in the studied area (Fig 2). The studied area measured 25 m× 13 m

and was located in the middle of the barn and separated by fences. The internal facilities

included a watering trough, a row of self-locking headlocks, and seven groups of head to head

stalls. Cows were milked twice a day, around 5 a.m. and 5 p.m., with a fish-bone milking

machine. Floors were cleaned daily at 7 a.m. with a scraper blade. Cows were fed the total

mixed ration (TMR) diet to achieve balanced nutrition. No behaviors were forced during the

experiment. None of the five cows had shown any signs of serious lameness or other disease

that would affect their behavior.

As mentioned previously, we acquired data with both our proposed system and video

recorders. The leg tags were sampled once per second (1 Hz), with measurements gathered

immediately by the wireless data collection system. Video observation occurred simulta-

neously according to an ethogram defined in advance for all behavior categories (Table 1).

Afterwards, the video and leg tag observations could be aligned with each other on the basis of

the timestamps. As noted already, the video recordings were observed manually in order to

assign the cow behavior in each time frame to one of the defined categories.

To save labor during video classification, we developed a simple image analysis program to

detect obvious motion in the video to assist the observer. We used a block matching method

[16] to detect motion. The matching algorithm is a motion estimation method for locating

matching macroblocks in a sequence of digital video frames. It is widely used in target detec-

tion and video compression. The block matching algorithm divides the current frame of a

video into macroblocks and compares each of the macroblocks with a corresponding block

and its adjacent neighbors in the previous frame of the video. The algorithm produces a vector

An ensemble classifier for real-time recognition of cow behavior patterns
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map indicating orientation and strength of the motion. We configured the detection threshold

to detect obvious motion of cows. The algorithm divided the video flow into pieces which were

then evaluated by human observation and marked as ground truths. The different behavior

31

5
10

4.
65

Sensor1Sensor4

2.
5

Reference  
location sensor 

(a)

(b)
Fig 2. Plan and section of the studied area in the barn. (a) Plan. (b) Section.

https://doi.org/10.1371/journal.pone.0203546.g002
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activities were further extracted from the measurements with the support of the video data.

The behaviors of each cow were constantly monitored during a two-hour daily window (9 a.

m.–11 a.m.), yielding 200 observed hours in total.

Cow behavior recognition

AdaBoost. We applied the AdaBoost (Adaptive Boosting) algorithm to behavior recogni-

tion in this study. Developed by Freund and Schapire, AdaBoost is a classifier ensemble algo-

rithm using a finite number of weak learners [17, 18]. Its advantages include lower memory

and computational requirements. A weak learner (e.g., a single level decision tree or simple

neural network) is a simple, fast, and easily implemented classifier with classification accuracy

only slightly better than a random guess [19]. However, AdaBoost individually trains its weak

learners and combines their decisions to determine a final decision. In other words, the power-

ful pattern classification capacity of AdaBoost algorithm is formed by iteratively combining

performances of weak learners to build a strong classifier whose performance is better than

any of the individual weak classifiers.

Implementation of classifier. We recorded the start and end times of the behavior for

each observation, and we used a program to match observation data with acceleration data

automatically. Due to accidental network delays and data packet loss, some observations were

removed in the initial processing phase. Table 2 presents the composition of the behavior

observations stored in the database.

The length of the time window directly determined the number of data samples used for

training and testing. If the length of the time window was too short, the differences between

the measurements for each behavior were not obvious or significant, which would directly

affect the classification performance of the algorithm. By increasing the time window to 5 s or

longer, the measurements effectively contained the whole process of all behavior activities to

ensure the integrity of behavior data. Our system included only those observations lasting

more than 5 s in the training and performance evaluation of the modeling process. The num-

ber of observations with a duration over 5 s in the database was 18030 (Table 2). The number

of lying down, standing up and active walking observations decreased dramatically when

applying the>5 s filter. We divided the data samples randomly into classifier training and test-

ing data sets. Sixty percent of the data (10818 sets) was selected as the training data set, and the

remaining 40% (7212 sets) was used for the testing set. We trained the classifier model with

the accelerometer measurements (input) and the corresponding behavior categories (output).

Table 1. Descriptions of the predefined behaviors.

Activity level Behavior

category

Definition

Inactive

behaviora
Feeding The cow is at the feeding zone and searches for or masticates the feed.

Lying The cow is in a cubicle in a lying down position.

Standing The cow stands entirely on its four legs.

Active

behaviorb
Lying down The cow bents one foreleg, lowers its forequarters, then hindquarters, and settles

down in a state of lying.

Standing up The cow rises from a lying state to stand on all four feet.

Normal

walking

The cow changes its location in space either in forward or backward direction

with a minimum of one stride within 1 s.

Active walking The cow changes its location in space in a forward direction with a minimum of

two strides within 1 s.

a The cow has little or no movement of legs.
b The cow has significant and continuous leg movements.

https://doi.org/10.1371/journal.pone.0203546.t001
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We implemented the AdaBoost algorithm by combining a multi-class BP (Back Propaga-

tion) neural network with the Stagewise Additive Modeling using Multi-class Exponential loss

function (SAMME) algorithm to construct a strong classifier [20, 21], hereafter called the

Multi-BP-AdaBoost algorithm. The AdaBoost algorithm used the back propagation neural

network as the weak learner to predict the output of samples via iterative training. We also

optimized the number of iterations for the Multi-BP-AdaBoost algorithm. We performed 30

training runs to determine the optimal number of iterations for best classification accuracy.

Algorithm 1 summarizes the steps of the Multi-BP-AdaBoost algorithm.

Algorithm 1. Multi-BP-AdaBoost algorithm.

Input: The training set T = {(p1,q1),� � �,(pN,qN)}, where pi � (pi 2 P� R3) represents the

three-axis acceleration data, qi refers to the matching behavior class, P expresses the training

set containing 7 types of cow behaviors, and N denotes the total number of samples in the

training set.

Output: The AdaBoost classifier G(p).

1. Initialize the parameters of the Multi-BP-AdaBoost algorithm, including the number of

iterations (L) and the weight ω1i of each training sample, where ω1i is formally expressed as

o1i ¼
1

N, i = 1,� � �,N.

2. for l = 1 to L do

3. Train the training set samples to obtain the BP weak classifier as follows: Gl(p):P!
{K = 1,2,� � �,7}, where K is an enumeration of the 7 recognized behaviors.

4. Compute the error rate of classifier: errl ¼
XN

i¼1

oli � IðGlðpiÞ 6¼ qiÞ. I returns 1 when the

condition in parentheses is satisfied and 0 otherwise.

5. Compute the coefficient of Gl(p): al ¼ 1

2
logð1� errlerrl

Þ þ logðK � 1Þ.

6. Update the weights of the training samples to be used in the next iteration (l+1):

olþ1;i ¼
oli

XN

i¼1

oliexpð� alqiGlðpiÞÞ
expð� alqiGlðpiÞÞ, i = 1,� � �,N.

7. end for

Table 2. Composition of behavior observations.

Behavior pattern Number of observations Distributions

Originala >5 sb < 4 s 4 s 5 s 6 s 7 s 8 s > 8 s

Feeding 5239 3676 401 535 627 614 524 607 1931

Lying 7857 6398 353 417 689 732 748 636 4282

Standing 4355 3386 37 369 563 452 513 528 1893

Lying down 1172 449 2 207 514 327 103 15 4

Standing up 1322 378 8 173 763 304 58 14 2

Normal walking 4075 2870 267 476 462 739 642 628 861

Active walking 1901 873 167 372 489 517 321 26 9

Total 25921 18030 1235 2549 4107 3685 2909 2454 8982

a Original number of observations in the database
b Number of observations with the duration over 5 s in the database

https://doi.org/10.1371/journal.pone.0203546.t002

An ensemble classifier for real-time recognition of cow behavior patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0203546 September 7, 2018 8 / 19

https://doi.org/10.1371/journal.pone.0203546.t002
https://doi.org/10.1371/journal.pone.0203546


8. Output the final classifier: GðpÞ ¼ intð
XL

l¼1

alGlðpÞÞ. Int is applied to return only the integer

part of the argument, which then maps to a behavior in set K.

Location information acquisition

The location Sensor 1 was defined as the sink node with collected information (locations, IDs,

etc.) sent by each of the other location sensors. According to the physical distribution of the

location sensors, Sensor 1 divided the studied area in the barn into virtual grids of equal size

(Fig 3). Each grid consisted of four vertices and four edges. The vertices in addition to the

boundary of the studied area were expressed as Oj (j = 1, 2,. . ., (S-1)2, S represents the number

of equal parts of the boundary when the virtual grids are divided). The estimated distance

from each leg tag to a given location sensor was defined as di (1�i�6) and obtained by the

RSSI value received. The combined distances formed a distance vector D (d1, d2,. . ., d6). It

could be testified that there was a nonlinear mapping relationship between location of each leg

tag and the corresponding distance vector.

The communication between each leg tag and the location sensors provided the RSSI ranging

data, which was gathered into a vector R (r1, r2,. . ., r6) where each element indicates the received

signal strength at each location. We translated the vector R into the distance vectorD (d1, d2,. . .,

d6) using the lognormal shadowing model in order to gain a better ranging effect [22]. The dis-

tance from one vertex of virtual grids in addition to the boundary of the studied area to the loca-

tion sensors was defined as hi (1� i� 6), and then a distance vectorHwas constituted as (h1,

h2. . ., h6). We used a similarity function to calculate the proximity of a leg tag to each vertex:

EðD;HÞ ¼
X6

i¼1

1 �
jdi � hij
jdi � hij þ ui

� ��

6; ð1Þ

where di is the ith entrance of the distance vectorD, hi is the ith entrance of the distance vector

Reference location sensor

Fig 3. Grid plot of the area of the barn under study.

https://doi.org/10.1371/journal.pone.0203546.g003
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from one of vertices of virtual grids in addition to the boundary of the studied area to all location

sensors (the number ofHwas equal to (S-1)2), and ui is the absolute average of di and hi. After cal-

culating the similarity values of the distance vectorDwith the distance vectorH for each vertex

according to Eq (1), the corresponding array Cwas calculated as the similarity values between a

leg tag and all vertices in addition to the boundary of the studied area, which was (S-1)2 in length.

The array Cwas expressed as:

C ¼ ½E1;E2; � � � ;EðS� 1Þ2 �; ð2Þ

where Ei is the similarity value of the distance vectorDwith the distance vectorH of the ith vertex

calculated according to Eq (1).

The coordinates of the leg tag were obtained by computing the centroid of the three vertices

with the top three similarity values. The centroid was calculated as:

ðX;YÞ ¼

X3

j¼1

Xj

3
;

X3

j¼1

Yj

3

0

B
B
B
B
@

1

C
C
C
C
A
; ð3Þ

where (X, Y) are the coordinates of the leg tag, and (Xj, Yj) are the coordinates of the vertices

with the highest similarity.

Environmental factors (e.g., temperature, humidity, air pressure) occasionally affected the

wireless signal. Fluctuations in the RSSI measurements were minor. However, these factors

did affect the distance estimation of the determined propagation model (i.e., lognormal shad-

owing model), which resulted in some errors in the RSSI ranging measurements. Accordingly,

there were regular errors in the distance measurements between the leg tags and the location

sensors in the actual work environment. To improve location accuracy, we corrected the mea-

sured distances through the reference location sensor by comparing real distances with mea-

sured distances and applying an error correction coefficient. This coefficient is defined

according to:

d ¼
1

6

X6

i¼1

ei � fi
fi

ð4Þ

d0i ¼ dið1þ dÞ; ð5Þ

where ei is the real distance from the reference location sensor to the ith location sensor, and fi
is the measurement distance from the reference location sensor to the ith location sensor

based on RSSI. The real distance between the reference location sensor and each location sen-

sor was determined by their position relationship after the system was deployed. The measured

distance from the reference location sensor to each location sensor was obtained by converting

the RSSI value between each sensor pair into a distance value using the lognormal shadowing

model. The δ is the error coefficient as defined in Eq (4), which reflects the accuracy of the

measured distances from the reference location sensor. The parameter di is the measured dis-

tance from one leg tag to the ith location sensor, and d0i is the corrected distance.

Data fusion method using D-S evidence theory

The position of the leg tag on the body of the cow can affect the performance of classification,

as illustrated by Moreau et al. (2009) who deployed sensors at different positions on the body
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of a goat when classifying grazing behavior [23]. Feeding and standing are the behaviors most

likely to be misclassified using a leg-mounted sensor. The hardware used in this study was an

effective wireless sensor network that tracked the spatial position of each cow precisely. The

addition of acceleration data enabled more accurate identification of biologically-relevant

behaviors (e.g., feeding and standing).

No behavioral classification algorithm will ever be free from error, but D-S evidence theory

promises better differentiation between feeding and standing by combining multiple indica-

tors into a single model. The data fusion method used two behavior-related features, namely

the discriminant result of feeding or standing behavior provided by the Multi-BP-AdaBoost

algorithm and the position information of cow, as independent sources of evidence.

The first step in applying D-S evidence theory was defining the propositional space of possi-

ble solutions, the frame of discernment, denoted by Θ [24]. The set of all subsets of Θ were

denoted by 2Θ. In the case of behavior classification, the frame of discernment contained 2 ele-

ments, feeding and standing. All possible subsets were {feeding}, {standing}, {feeding, stand-

ing} and {ϕ}. The subset {feeding, standing} denoted the subset unable to distinguish feeding

or standing, which was simplified as {Uncertainty}. {ϕ} denoted an empty subset that was not

involved in evidence fusion. Consequently, A represented all the subsets of Θ, which specifi-

cally included {Feeding}, {Standing}, {Uncertainty}, {ϕ}. We also defined basic probability

assignments (BPAs) in accordance with D-S evidence theory, giving probabilities to each ele-

ment in 2Θ according to evidence. We expressed BPAs as the mass function m indicating the

probability of each behavior, where m: 2Θ![0, 1], m (ϕ) = 0, and
X

a2A

mðaÞ ¼ mðFeedingÞþ

mðStandingÞ þmðUncertaintyÞ þmð�Þ ¼ 1.

Table 3 shows the design of the BPA functions. Assignments were based solely on evidence,

allowing the representation of ignorance. Considering the confusion between feeding and

standing, the probability of feeding and standing together was regarded as an approximate sta-

tus. For the evidence of the classification result on feeding or standing, the probability of the

behavior estimated by the Multi-BP-AdaBoost algorithm was set to 0.5, the probability of

another behavior was set to 0.4, and the probability of uncertainty was set to 0.1. We assumed

that when the cow’s hind leg was located about 1.5 m away from the headlocks, the cow was

most likely in the state of feeding because 1.5 m is the average length of a cow’s body excluding

the head. In contrast, when the hind leg was close to 0 m from the headlocks, the cow was likely

to be parallel to or facing away from the headlocks and was more likely in the state of standing.

Table 3. Basic probability assignment functions based on interval division.

Evidence BPAs Interval division m(Feeding) m(Standing) m(Uncertainty)

Result of Multi-BP-AdaBoost algorithm m1 Feeding 0.5 0.4 0.1

Standing 0.4 0.5 0.1

Position of cow m2 0 < Da � 1.5 mb
1 �

ð1:5� DÞ
1:5

� �
� 0:9

ð1:5� DÞ
1:5
� 0:9 0.1

1.5 m < D� 1.5 m + errormaxc

1 �
ðD� 1:5Þ

ð1:5þerrormax Þ� 1:5

� �
� 0:9

ðD� 1:5Þ

ð1:5þerrormax Þ� 1:5
� 0:9 0.1

1.5 m + errormax< D� 13 md 0 0.9 0.1

a Perpendicular distance between cow’s hind leg and headlocks
b Average length of a cow’s body excluding the head
c Maximum value of mean positioning errors of the cows under study
d Width of the experiment area in this study

https://doi.org/10.1371/journal.pone.0203546.t003
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If the cow was located away from the headlocks within the studied area, then standing had

greater probability.

We fused the evidence (i.e., behavioral indicators) via combination rules and combined the

corresponding BPAs into a single model using Dempster’s rule of combination. For behavior-

related features, the BPAs of the two independent indicators were represented by m1 and m2

(Table 3). The combination operator in Dempster’s rule, denoted by�, satisfies the commuta-

tive and associative laws. We fused conflicting evidence from the two sources using the follow-

ing relation:

m0 ¼ m1 �m2 ¼ ðm0ðFeedingÞ;m0ðStandingÞ;m0ðUncertaintyÞÞ

k1 ¼ m1ðFeedingÞm2ðFeedingÞ þm1ðFeedingÞm2ðUncertaintyÞ þm2ðFeedingÞm1ðUncertaintyÞ

k2 ¼ m1ðStandingÞm2ðStandingÞ þm1ðStandingÞm2ðUncertaintyÞ þm2ðStandingÞm1ðUncertaintyÞ

k3 ¼ m1ðUncertaintyÞm2ðUncertaintyÞ

K ¼ k1 þ k2 þ k3

m0ðFeedingÞ ¼ k1=K

m0ðStandingÞ ¼ k2=K

m0ðUncertaintyÞ ¼ k3=K

; ð6Þ

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

where m0 is the result of combination, and the components m’(Feeding), m’(Standing) and

m’(Uncertainty) are the probabilities of feeding, standing, and uncertainty after evidence

fusion, respectively. K, k1, k2, and k3 are intermediate variables in the fusion process. m1(Feed-

ing), m1(Standing), and m1(Uncertainty) are the probabilities of feeding, standing, and uncer-

tainty determined by result of the Multi-BP-AdaBoost algorithm, and the m2(Feeding),

m2(Standing) and m2(Uncertainty) are the probabilities of feeding, standing, and uncertainty

computed from the cow’s position. The criterion of feeding or standing was eventually deter-

mined by the rules, as given in Eqs (7) and (8).

Feeding :

m0ðFeedingÞ > ε1 þm0ðStandingÞ

m0ðUncertaintyÞ < ε2

m0ðFeedingÞ > m0ðUncertaintyÞ

: ð7Þ

8
><

>:

Standing :

m0ðStandingÞ > ε1 þm0ðFeedingÞ

m0ðUncertaintyÞ < ε2

m0ðStandingÞ > m0ðUncertaintyÞ

: ð8Þ

8
><

>:

In these equations, ε1 and ε2 are predefined threshold values. In general, ε1 is significantly

larger than ε2 to ensure classification reliability. According to experience, ε1 and ε2 were set to

0.2 and 0.03, respectively, in our study. If the conditions of Eqs (7) and (8) were not satisfied,

the result of behavior classification was considered to be uncertain, with related behavioral

data removed from recognition and processing.

Data analysis

We presented our classification results in the form of a confusion matrix listing the number of

cases correctly identified as positive (the modeled behavior) or negative (other behaviors). We

labeled misclassifications of negative and positive samples as false positives and false negatives,

respectively. We evaluated the performance of the algorithm based on accuracy, sensitivity,

and precision, along with their bootstrapped statistics (mean ± S.D.). We calculated these
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indicators as:

Accuracy ¼
ðTrue Positivesþ True NegativesÞ

ðTrue Positivesþ False Positivesþ False Negativesþ True NegativesÞ
: ð9Þ

Sensitivity ¼
True Positives

ðTrue Positivesþ False NegativesÞ
: ð10Þ

Precision ¼
True Positives

ðTrue Positivesþ False PositivesÞ
: ð11Þ

For each leg tag, we calculated the planimetric positioning error by computing the Euclid-

ean distance between the location provided by the system and that verified by the operator.

We used the maximum, mean, and minimum values of the positioning errors to assess the

location performance of each leg tag. Fig 4 outlines the ensemble classification method in the

study.

Results

Table 4 shows that the Multi-BP-AdaBoost algorithm clearly identified the specific behaviors

of lying, lying down, standing up, normal walking, and active walking but struggled with

behavior patterns (feeding and standing) with nearly identical profiles. The algorithm con-

fused feeding and standing (in total, 38.0% and 38.2% of the cases, respectively). However, as

shown in Table 5, the overall performance of the Multi-BP-AdaBoost algorithm was quite

acceptable. Accuracy was high for all activities. Sensitivity was good for all classes of behavior

except for feeding and standing. The highest precision was obtained with active walking. Preci-

sion for the feeding and standing classifications was considerably lower than the average level.

During the selected experiment time, we verified cow positions using rectified panoramic

top-view images from the video-recording system. We created the dataset of true cow positions

by applying our custom processing software that made a direct comparison between location

data acquired from the location algorithm with the video based on similarity.

The location performance of the system was better under static conditions than in the case

of moving states. Table 6 shows the maximum, mean, and minimum values of the planimetric

positioning errors for each of the five leg tags and the reference location sensor. The position-

ing error of the system for the reference location sensor was considerably lower than the errors

computed for the moving leg tags (Table 6). This was because the position of the reference

location sensor was fixed during the trial.

After applying the localization algorithm based on the RSSI similarity degree, the resulting

average of mean positioning errors of the five leg tags was approximately 1.16 m. The worst

mean positioning error (leg tag5) of 1.30 m is lower than the average length of a cow’s body

excluding the head, which confirmed that location information could be further used for dis-

criminating between feeding and standing. This error would not have affected the analysis of

corresponding behavioral indices that did not require a high level of location precision. More-

over, the reference location sensor had higher positioning accuracy and could correct the

range errors of the leg tags through Eqs (4) and (5).

The data samples predicted as feeding or standing at the first stage were re-analyzed

through the data fusion method using D-S evidence theory (Table 7), with the Multi-BP-Ada-

Boost classification result and the cow’s position as input. Table 7 shows the re-classification

results with significant improvements recognizing the two behaviors. We concluded that com-

bination of indicators is a recommended classification method for behaviors with no obvious
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differences. However, the inability to satisfy the conditions of classification criterion meant

that 77 data samples were considered to be uncertain and abandoned. Table 8 summarizes the

performance of data fusion method. The sensitivity and precision of recognizing the two

Fig 4. Flowchart of the ensemble classification method proposed in the study.

https://doi.org/10.1371/journal.pone.0203546.g004
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behaviors increased by an average of 20 and 18.5 percentage points, respectively. Furthermore,

the proportion of true negatives was lower in the re-classification sample and lead to an inevi-

table decrease in the accuracy of predicting feeding and standing.

Discussions

Behavior is now recognized as an essential indicator of bovine health that can safeguard farm-

ers from economic distress. However, traditional observational techniques often fail to provide

the necessary level of diagnostic accuracy because of time and labor. Accelerometers have been

shown to be a feasible method for an automated, remote measurement of behavior patterns in

cows [25, 26]. Farmers can benefit from alerts generated from the combination of sensor and

accelerometer data. The classification accuracy of the leg tags designed in this study directly

influences the utility of this technique. Continuous video observation of cow activities, as

implemented in this trial, is the reference standard for evaluating sensor-based measurement.

The video-recording system enables accurate recording of both patterns (specific behaviors)

and intensity (number, duration, and frequency). Several studies of dairy cow behavior have

used video validation [27, 28].

Table 4. Confusion matrix achieved from the classification of dairy cow behaviors by the Multi-BP-AdaBoost algorithm (the number of correctly classified samples

is expressed in boldface).

Predicted behavior Observed behavior Totalb

Feeding Lying Standing Lying down Standing up Normal walking Active walking

Feeding 809 157 517 2 0 76 0 1561

Lying 60 2098 38 1 1 15 2 2215

Standing 559 295 785 0 1 44 1 1685

Lying down 4 5 0 155 9 6 8 187

Standing up 1 3 1 13 128 17 11 174

Normal walking 38 1 13 7 2 987 16 1064

Active walking 0 0 0 2 10 3 311 326

Totala 1471 2559 1354 180 151 1148 349 7212

a Total number of test samples used in the classification
b Total number of behaviors predicted by the Multi-BP-AdaBoost algorithm for each behavior pattern

https://doi.org/10.1371/journal.pone.0203546.t004

Table 5. Summary statistics (mean±S.D.) of the performance indicators of the Multi-BP-AdaBoost algorithm for all behavior categories.

Behavior pattern Algorithm performance indicators

Accuracya Sensitivityb Precisionc

Feeding 0.80±0.03 0.52±0.02 0.55±0.01

Lying 0.92±0.01 0.93±0.01 0.82±0.02

Standing 0.80±0.04 0.46±0.01 0.58±0.01

Lying down 0.99±0.02 0.82±0.01 0.86±0.01

Standing up 0.99±0.00 0.74±0.04 0.85±0.01

Normal walking 0.97±0.04 0.92±0.01 0.86±0.03

Active walking 0.99±0.02 0.94±0.01 0.89±0.02

a Proportion of predictions (positive or negative) that were correct
b Proportion of positive predictions that were correct
c Proportion of the positive cases that were predicted positive

https://doi.org/10.1371/journal.pone.0203546.t005
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In this study, we developed a Multi-BP-AdaBoost classification algorithm that uses acceler-

ometer data from a leg-mounted sensor to distinguish behaviors. Our evaluation of the algo-

rithm was based on accuracy, sensitivity, and precision.

Our prediction method appears capable of detecting behavior changes using accelerometer

data. The performance of Multi-BP-AdaBoost algorithm as presented in the Table 5, was

higher than the previous findings of Martiskainen et al. (2009) with the exceptions of feeding

and standing [9]. This was reasonable due to the placement of the accelerometer on the leg of

the cow, which made distinguishing feeding and standing more difficult as compared to a

neck-mounted tag. Therefore, we applied a mixed classification method to strengthen the

identification of easily-confused behaviors. In addition, our data had fewer samples of “stand-

ing” behavior, which lowered sensitivity of predicting this behavior considerably as compared

to other behavior categories.

Since the Multi-BP-AdaBoost algorithm did not reliably differentiate feeding and standing

based on the leg tag alone, we introduced the cow’s location. The Multi-BP-AdaBoost algo-

rithm result and the cow’s position were used as two independent indicators to classify behav-

iors identified as feeding or standing in the first stage. By applying both accelerometer data

and location data provided by the leg tag, the algorithm based on D-S evidence theory

enhanced the classifier performance of the system by combining evidence correlation of

behaviors and spatial positions. We determined each cow’s position by analyzing signals

exchanged between a corresponding leg tag and the six location sensors. We used RSSI, the

ratio between received signal power and a reference power, to estimate distances [29]. In our

study, the location method using a similarity function had lower accuracy than other complex

positioning methods (such as UWB technology) but offered simplicity, lower cost, and lower

computational complexity [30]. In our experimental conditions, the results showed that a

higher positioning error was achieved for the leg tags applied to the cows than for the reference

Table 6. Location performance of the algorithm based on RSSI similarity degree with each location sensor.

Location sensor Location performance indicators

Maximum value (m) Mean value (m) Minimum value (m)

Leg tag1 1.37 1.04 0.83

Leg tag2 1.24 1.16 0.87

Leg tag3 1.26 1.15 0.92

Leg tag4 1.31 1.13 0.72

Leg tag5 1.41 1.30 1.09

Reference location sensor 0.96 0.85 0.52

https://doi.org/10.1371/journal.pone.0203546.t006

Table 7. Re-classification results for all the data samples that have been predicted as feeding or standing using

D-S evidence theory (The number of correctly classified samples is denoted in boldface).

Predicted behavior Observed behavior Totalb

Feeding Standing

Feeding 1178 435 1613

Standing 347 1209 1556

Uncertainty 36 41 77

Totala 1561 1685 3246

a Total number of data samples used in the re-classification
b Total number of behaviors predicted by the data fusion method based on D-S evidence theory for feeding, standing

and uncertainty

https://doi.org/10.1371/journal.pone.0203546.t007
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location sensor (Table 6). This error was always less than 1.5 m, which is a key threshold for

differentiating feeding versus standing. 1.5 m was used to divide intervals of BPA functions of

feeding and standing for the position information of cow. The placement of the leg tag on the

cow’s leg made it impossible to accurately distinguish the orientation of the cow from the posi-

tion information, which may lead to the behavioral misclassification that was also validated in

this trial. Furthermore, the small positioning error shows that the system developed in this

study has the capability to provide a detailed analysis of the utilization level of different func-

tional areas of the barn for cow activities.

In this work, we focused on the spatial characteristics of behaviors detected in the leg tags,

and estimated the confusing behaviors (feeding and standing) using D-S evidence theory. Two

basic behavior-related features of dairy cows were used as independent sources of evidence,

namely, the classification result of the Multi-BP-AdaBoost algorithm and the position of the

cow. By combining these indicators in a complementary way, we built a single model to fuse

various opinions. The classification result of the Multi-BP-AdaBoost algorithm was treated for

the two circumstances of feeding and standing. Moreover, the position of the cow was divided

into three areas according to the distance between cow and headlocks, which exactly reflected

the influence of positioning errors on the classification result. The re-classification results

show that the method could be useful in identifying feeding and standing with leg-mounted

tags (Table 8).

Conclusion

In this study, our ensemble classifier achieved ideal classification performance. The results of

the study showed that the system is a potential solution to behavior classification in dairy

cows. The Multi-BP-AdaBoost algorithm can be used to recognize five categories of behaviors

apart from feeding and standing. Our proposed D-S evidence fusion method distinguishes

these two confused behaviors and has great potential to monitor position-related cow activities

in real-time. By increasing the number of enrolled cows, further work is needed to improve

the parameters used in the classifier in order to improve the classification accuracy, sensitivity,

and precision. The next step in the development of this system is to test large-scale deploy-

ment. Once the functionality and reliability has been confirmed on a larger scale, commerciali-

zation is possible.

Supporting information

S1 Table. The data sample of cow behaviors in the time window of 6 s.

(XLSX)

Acknowledgments

The authors would like to thank the farm Sansege for providing the conditions for carrying

out the trial and allowing the installation of equipment.

Table 8. Summary statistics (mean±S.D.) of the performance indicators of the data fusion method for feeding

and standing.

Behavior pattern Algorithm performance indicators

Accuracy Sensitivity Precision

Feeding 0.75±0.03 0.73±0.03 0.75±0.04

Standing 0.75±0.04 0.78±0.04 0.72±0.03

https://doi.org/10.1371/journal.pone.0203546.t008

An ensemble classifier for real-time recognition of cow behavior patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0203546 September 7, 2018 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203546.s001
https://doi.org/10.1371/journal.pone.0203546.t008
https://doi.org/10.1371/journal.pone.0203546


Author Contributions

Conceptualization: Jun Wang, Zhitao He.

Data curation: Jun Wang, Zhitao He.

Formal analysis: Zhitao He.

Funding acquisition: Jun Wang.

Investigation: Song Gao.

Resources: Guoqiang Zheng.

Software: Zhitao He, Song Gao.

Validation: Song Gao.

Writing – original draft: Jun Wang, Zhitao He, Guoqiang Zheng, Song Gao.

Writing – review & editing: Jun Wang, Zhitao He, Guoqiang Zheng, Song Gao, Kaixuan

Zhao.

References
1. Porto SMC, Arcidiacono C, Giummarra A, Anguzza U, Cascone G. Localisation and identification per-

formances of a real-time location system based on ultra wide band technology for monitoring and track-

ing dairy cow behavior in semi-open free-stall barn. Computers and Electronics in Agriculture, 2014;

108: 221–229.

2. Müller R, Schrader L. A new method to measure behavioural activity levels in dairy cows. Applied Ani-

mal Behaviour Science, 2003; 83: 247–258.

3. O’Driscoll K, Boyle L, Hanlon A. A brief note on the validation of a system for recording lying behaviour

in dairy cows. Applied Animal Behaviour Science, 2008; 111: 195–200.

4. Zehner N, Umstätter C, Niederhauser JJ, Schick M. System specification and validation of a noseband

pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Computers

and Electronics in Agriculture, 2017; 136: 31–41.

5. Diosdado JAV, Barker ZE, Hodges HR, Amory JR, Croft DP, Bell NJ, Codling EA. Classification of

behaviour in housed dairy cows using an accelerometer-based activity monitoring system. Animal Bio-

telemetry, 2015; 3: 15.

6. Arcidiacono C, Porto SMC, Mancino M, Cascone G. Development of a threshold-based classifier for

real-time recognition of cow feeding and standing behavioural activities from accelerometer data. Com-

puters and Electronics in Agriculture, 2017; 134: 124–134.

7. Shahriar MS, Smith D, Rahman A, Freeman A, Hills J, Rawnsley R, Henry D, Bishop-Hurley G. Detect-

ing heat events in dairy cows using accelerometers and unsupervised learning. Computers and Elec-

tronics in Agriculture, 2016; 128: 20–26.

8. Borchers MR, Chang YM, Tsai IC, Wadsworth BA, Bewley JM. A validation of technologies monitoring

dairy cow feeding, ruminating, and lying behaviors. Journal of Dairy Science, 2016; 99 (9): 7458–7466.

https://doi.org/10.3168/jds.2015-10843 PMID: 27423949

9. Martiskainen P, Järvinen M, Skön JP, Tiirikainen J, Kolehmainen M, Mononen J. Cow behaviour pattern

recognition using a three-dimensional accelerometer and support vector machines. Applied Animal

Behaviour Science, 2009; 119: 32–38.
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