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Abstract

The normalized cross-correlation (NCC), usually its 2D version, is routinely encountered in

template matching algorithms, such as in facial recognition, motion-tracking, registration in

medical imaging, etc. Its rapid computation becomes critical in time sensitive applications.

Here I develop a scheme for the computation of NCC by fast Fourier transform that can

favorably compare for speed efficiency with other existing techniques and may outperform

some of them given an appropriate search scenario.

Introduction

Covariance, by definition, provides a measure of the strength of the correlation between two

sets of numbers (or time series). A serious setback of the covariance is its dependence on the

amplitude of either of the series that are compared. This dependency is eliminated if one uses

the normalized form of the covariance, referred to as the normalized cross-correlation (other-

wise known as the correlation coefficient). The simplest form of the normalized cross-

correlation (NCC) is the cosine of the angle θ between two vectors a and b:

NCC ¼ cos y ¼
a � b
jajjbj

¼

P
iaibiffiffiffiffiffiffiffiffiffiffiffiP

ia2
i

p ffiffiffiffiffiffiffiffiffiffiffiP
ib2

i

p ; � 1 � NCC � 1: ð1Þ

NCC is one of those quantities with application in a variety of research fields as diverse as

physics [1, 2], signal processing [3–7], engineering [8, 9], medical imaging [10], and statistical

finance [11].

The similarity of the mathematical expression for the numerator of the NCC (see section 1,

Eq (4)) with that of a convolution is striking and implicates that its computation must be opti-

mal in the Fourier transform space [3]. Starting from this premise, Lewis [5] conjectured and

numerically proved that the numerator of the NCC can be efficiently computed in either the

spatial or the frequency domain contingent upon the parameters of the problem. For an overall

rapid computation of the NCC it is necessary to have a likewise efficient computation of its

denominator.
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A number of techniques have been proposed by different authors for the fast computation

of the NCC. These techniques have their merits and drawbacks, most of them excelling in very

specialized cases. Here we mention three of these techniques: [5, 6] and [10].

Lewis [5] proposes the computation of the denominator of the NCC in direct space by

keeping sum-tables in order to avoid repetitive computations. The numerator of the NCC can

however be computed either in the direct space or in the frequency domain. As Lewis notes in

the introduction to [5] “Unfortunately the normalized form of correlation does not have a cor-

respondingly simple and efficient frequency domain expression”. This statement is of impor-

tance because only one or the other (spatial or frequency domain) computation can be

optimally fast given the parameters of an application. This fact is duly observed by Lewis in

section 4 of [5] where he writes, referring to searching a feature of length N in a time series of

length M:

When M is much larger than N the complexity of direct ‘spatial’ computation is approxi-

mately N2 M2 multiplications/additions and the direct method is faster than the transform

method. The transform method becomes relatively more efficient as N approaches M and

with larger M, N.

The computation of the denominator in the frequency domain is addressed in the present

paper. While the numerator of the NCC is the covariance between two different time series,

either of the two terms under the square root in the denominator represents the covariance of

that series with itself (i.e. auto-covariance) at lag zero. If an efficient computation for the

numerator in the frequency space is possible, one can expect this to be possible for the denomi-

nator as well.

Luo and Konofagou [10] propose the computation of the NCC exclusively in direct space

by keeping sum-tables for both the numerator and the denominator. While Luo’s approach

cannot outperform Lewis computation when a single feature of a given size, selected from one

time series, is exhaustively searched for throughout the other time series, it can however be

advantageous for other search scenarios [10].

Yoo and Han [6] propose a scheme for the computation of the NCC that considerably

reduces both the number and the complexity of the required computational operations as

compared with other full computing schemes. The proposed scheme is based on approxima-

tive assumptions. The gain in the computational speed is done at the expense of an algorithm

that generates false positives in a feature search scenario. The rate of false positives depends on

the noise level present in the time series, and can be minimized by tuning parameters in the

algorithm. This performance dependence on the noise level can be considered a setback when

“shoot first and ask later” approach can be a problem. It is also not clear how this algorithm

can be extended and will perform if signals were complex-valued.

The algorithm presented in this paper can handle complex-value signals. It can be consid-

ered as an extension/supplement of the work done by Lewis in that the fast Fourier transform

(FFT) is used to compute both the numerator and the denominator of the NCC. The proposed

algorithm opens the possibility for the computational parallelization (FFT threads) of the pro-

cedure and may offer speed gains for appropriate template and search region size [5].

The paper is organized as follows. Section 1 exposes the mathematical formula for the 1D

complex NCC and lays the ground for developing the proposed FFT computational scheme,

which is done in Section 2. The 2D formulas can be found in Appendix C, their derivation fol-

lows exactly the same steps as the 1D. In Results, two measurements are considered as test

cases. Both of them are real-valued, the first is 1D and the other 2D. The python code devel-

oped for the computation of the NCC can handle complex-value measurements and is listed in

FFTNCC
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Appendix B. An illustrative complex valued 1D test case is provided in Supplements 1. Python

programs as well as the data sets used for the 1D and 2D illustrations can be found in the

supplements.

The time spent in computing the NCC for the 1D test case is tabulated below for several

numeralical methods/schemes used. The timing is done on optimized C++ code, it certainly is

processor dependent and is shown here to create a general comparative idea. The execution

time is averaged over 15 runs, with 5 ms wait time between runs to account for the processor

delays. The parameter values used for this 1D test can be found in the Results section. The test

shows that:

1. Lewis NCC with direct space computation of the numerator is slightly slower than when

FFT is used instead (the denominator is computed in direct space using sum-tables in both

cases), Table 1.

2. The proposed computation is slower than Lewis method with FFT computation of the

numerator for the parameter values, i.e. template and search region lengths, investigated in

this paper, Table 2. An additional test case comprising 1D complex value measurements

and of larger size is investigated in Supplement 1. Other possible computational optimiza-

tions (multi-threads, wisdom FFT) are not investigated in this work.

3. The Luo’s computation of NCC using sum-tables for the numerator is not faster than the

Lewis algorithm for the search scenario tested here, Table 3.

To have a fair comparison of the computational speed between the Lewis’ and the proposed

method, both methods are implemented for complex-value time series (requiring approxi-

mately twice as many computations as for real-value time series, see the above listed computa-

tional times of Luo’s method that handle real or complex time series). The two methods are

then however applied on real-value time series for simplicity.

Table 1. The time expendend in the computation of the NCC according to Lewis algorithm [5] when two

approaches are used.

mean time (μs) std

Lewis, numerator direct space 99.40 0.01

Lewis, numerator frequency space 26.70 0.01

https://doi.org/10.1371/journal.pone.0203434.t001

Table 2. The time expendend in the computation of the NCC according to Lewis algorithm [5] and the algorithm

proposed in this paper.

mean time (μs) std

Lewis, numerator frequency space 26.70 0.01

Proposed method 38.20 0.05

https://doi.org/10.1371/journal.pone.0203434.t002

Table 3. The time expendend in the computation of the NCC according to Lewis algorithm [5] and the algorithm

proposed by Luo [10].

mean time (μs) std

Lewis, numerator frequency space 26.70 0.01

Luo’s method, real 241.20 0.09

Luo’s method, complex 463.93 12.97

https://doi.org/10.1371/journal.pone.0203434.t003
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Section 1

Consider two, complex-value and periodic, functions of time: f(t) and g(t), both having the

same time period T. Suppose that these two functions are uniformly sampled with a time

step Δt such that T = nΔt. Using the discrete Fourier transform formalism the sampled func-

tion f(ti)� fi, where ti� iΔt, 0� i< n, can be uniquely described by a complementary set of

complex-values {αk}

fi ¼
1

n

Xn� 1

k¼0

ak e j2pki
n 0 � i < n

, ffig ¼ ifftðfakgÞ

ð2Þ

ak ¼
Xn� 1

i¼0

fi e � j2pki
n 0 � k < n

, fakg ¼ fftðffigÞ

ð3Þ

Here fft, ifft are respectively the fast Fourier transform function and its inverse as defined in

MATLAB, j represents the imaginary unit, i, k, p, q will represent integer variables, and n, m
are integer parameters. Similarly, we symbolically write

fgig ¼ ifftðfbkgÞ

fbkg ¼ fftðfgigÞ

Consider two subsets of consecutive data points of the same length m extracted from the dis-

crete time series {fi} and {gi}, as shown in Fig 1. Hereafter p, q 2 [0, n − m + 1].

The normalized cross-correlation (NCC) between these two subsets is defined as

NCC ¼
1

m

Xpþm� 1

i¼p
ðfi � f Þ� � ðgiþq� p � gÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xpþm� 1

i¼p
jfi � f j2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xqþm� 1

i¼q
jgi � g j2

r
ð4Þ

where f � 1

m

Ppþm� 1

i¼p fi and g � 1

m

Ppþm� 1

i¼p giþq� p ¼
1

m

Pqþm� 1

i¼q gi. Introducing the notations

jf j 2 � 1

m Spþm� 1

i¼p jfij
2
, jgj 2 � 1

m Sqþm� 1

i¼q jgij
2
, and f �g� 1

m

Ppþm� 1

i¼p f �i giþq� p it can be rewritten as

NCC ¼
f �g � ðf Þ�g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jf j2 � jf j2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgj2 � jg j2
q ð5Þ

Fig 1. Schematic of two subsets of samples of length m drawn from the T-periodic time series f(t) and g(t),

uniformly sampled with n samples per period.

https://doi.org/10.1371/journal.pone.0203434.g001
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In the following section I present the scheme for computing the NCC using the fast Fourier

transform.

Section 2

Start by calculating

f ¼
1

m

Xpþm� 1

i¼p

fi ¼
1

n

Xn� 1

k¼0

ak
1

m

Xpþm� 1

i¼p

e j2pki
n

¼
1

n

Xn� 1

k¼0

ak e j2p
kp
n

1

m

Xm� 1

i¼0

e j2pki
n

�
1

n

Xn� 1

k¼0

akgk e j2p
kp
n ¼ ifftðfakgkgÞjp

ð6Þ

where

gk �
1

m

Xm� 1

i¼0

e j2pki
n ¼

1

m
e j2pkm

n � 1

e j2pk
n � 1

ð7Þ

is the Dirichlet kernel. Next calculate

jf j2 ¼
1

m

Xpþm� 1

i¼p

jfij
2

¼
1

m

Xpþm� 1

i¼p

1

n

Xn� 1

k¼0

a�ke� j2pki
n

1

n

Xn� 1

k0¼0

ak0e
j2pk0 i

n

¼
1

n2

Xn� 1

k;k0¼0

a�kak0e
j2p
ðk0 � kÞp

n
1

m

Xm� 1

i¼0

ej2p
ðk0 � kÞi

n

ð8Þ

By variable substitution k = n − 1 − k@ and relabeling obtain

jf j2 ¼
1

n2

Xn� 1

k;k0¼0

a�n� 1� kak0ej2p
ðkþk0þ1Þp

n

1

m

Xm� 1

i¼0

e j2p
ðkþk0þ1Þi

n

 !

�
1

n2

Xn� 1

k;k0¼0

ak;k0ej2p
ðkþk0þ1Þp

n

ð9Þ

where

ak;k0 � a�n� 1� kak0
1

m

Xm� 1

i¼0

e j2p
ðkþk0þ1Þi

n ð10Þ

The dependency of ak, k0 on m is left out of notation for clarity. In the following I transform the

double sum to a single sum. Fig 2 helps with visualizing the procedure.

The double sum suggests that we sum along columns per each row, and then sum all terms

so obtained. Chose, instead, to first sum along the secondary diagonals per each secondary

diagonal, and then sum all obtained terms. By doing this the k + k0 + 1 = l mod n remains

FFTNCC
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constant during the first summation and the exponential term depending on p is factorized.

Therefore

jf j2 ¼
1

n

Xn� 1

l¼0

zl ej2p
lp
n ¼ ifftðfzlgÞjp ð11Þ

with

zl ¼

(
1

n

Pn� 1

k¼0
ak;n� 1� k l ¼ 0

1

n

Pl� 1

k¼0
ak;l� 1� kþ

�

Pn� 1

k¼l ak;nþl� 1� k

�
1 � l < n

Straightforward calculations using definitions and index relabeling reveal that

Xn� 1

k¼0

ak;n� 1� k ¼
Xn� 1

k¼0

a�kak ð12Þ

Fig 2. Sketch visualizing the transformation of a double sum performed along the columns then along the rows,

to a sum of the sums performed along the secondary diagonals.

https://doi.org/10.1371/journal.pone.0203434.g002
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Xl� 1

k¼0

ak;l� 1� k þ
Xn� 1

k¼l

ak;nþl� 1� k

 !

¼ gl
1

n

Xn� l� 1

k¼0

a�kalþk þ
Xn� 1

k¼n� l

a�kalþk� n

 ! ð13Þ

Now,

1

n

Xn� 1

k¼0

a�kak ¼
Xn� 1

i¼0

jf j2i

¼
Xn� 1

i¼0

jf j2i e� j2pli
n; l ¼ 0

ð14Þ

Xn� l� 1

k¼0

a�kalþk

¼
Xn� 1

i;i0¼0

f �i fi0 e � j2pli0
n
Xn� l� 1

k¼0

e j2p
kði� i0Þ

n

ð15Þ

Xn� 1

k¼n� l

a�kalþk� n

¼
Xn� 1

i;i0¼0

f �i fi0 e � j2pli0
n
Xn� l

k¼n� l

e j2p
kði� i0 Þ

n

ð16Þ

therefore

1

n

Xn� l� 1

k¼0

a�kalþk þ
Xn� l

k¼n� 1

a�kalþk� n

 !

¼
Xn� 1

i¼0

jf j2i e� j2pli
n; 1 � l < n

ð17Þ

Relabeling, noting that γ0 = 1, and condensing

zk ¼ gk

Xn� 1

i¼0

jf j2i e� j2pki
n ; 0 � k < n

¼ fftðfjf j2i gÞjkgk

ð18Þ

Then

jf j2 ¼ ifftðffftðfjf j2i gÞjkgkgÞjp ð19Þ

Similar calculations hold for g and jgj2 .
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Finally calculate the remaining term that completes the computation of NCC using the fast

Fourier transform

f �g¼
1

m

Xpþm� 1

i¼p

f �i giþq� p ¼
1

m

Xm� 1

i¼0

f �iþpgiþq

¼
1

n

Xn� 1

k¼0

a�k
1

m

Xm� 1

i¼0

giþq e � j2pki
n

 !

e � j2p
kp
n

�
Xn� 1

k¼0

a�kZk e � j2p
kp
n ¼ fftðfa�kZkgÞjp

ð20Þ

where

Zk ¼
Xm� 1

i¼0

giþq

n m
e � j2pki

n

�
Xn� 1

i¼0

hi e � j2pki
n ¼ fftðfhigÞjk

ð21Þ

with

hi ¼

( giþq=ðn mÞ 0 � i < m

0 m � i < n

Then

f �g¼ fftðfa�kfftðfhigÞjkgÞjp ð22Þ

Results

The method is illustrated with two examples, both drawn from MRI measurements.

The first example is 1D and relates to a rigid phantom, the intensity profile of which is mea-

sured at two different positions, 30 mm apart (as read on the landmark meter of the scanner)

along the bore of the magnet. The two profiles differ partly because the static magnetic field in

the scanner deviates even so slightly from homogeneity and partly because of the non-linearity

of the gradients. The contribution of the measurement noise to the profiles’ difference is of a

less consequence. In this measurement the field of view (FOV) is 300 mm and the resolution

xres = 128. The intention is to find the phantom’s displacement by using only the information

provided by these two intensity profiles. This is done by selecting a template, which represents a

feature of interest, in one of the profiles, say the dashed, black line in Fig 3a. In our example the

start position and the length of the selected template are q = 80 and m = 27 samples respectively.

We then search for the presence of a similar feature in the other profile, the navigator, plotted

as the solid, red line in Fig 3a. Because the two profiles are different, the degree of similarity

between the template and chunks of the same size extracted exhaustively from the navigator

profile is determined from the value of the normalized cross-correlation (NCC). The similarity

of the chunk to the template is higher the larger the value of NCC between the two is, with the

chunk being identical to the template for NCC = 1. The total number of chunks that can be con-

strued from the navigator profile is n − m + 1. Here n = xres = 128, and n − m + 1 = 102. The

NCC values are plotted in Fig 3b and show that the feature of interest is located at the start

FFTNCC
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position max = 67 where NCC reaches it maximum value. Fig 3c shows how the template visu-

ally compares with the most similar chunk if drawn on top of it. From the difference between

the start positions of the template and the most similar chunk we can compute the translational

distance between the two intensity profiles as: FOV � (q − max)/xres * 30 mm, in good agree-

ment with what the landmark meter on the scanner displayed. A python version of the code

generating the data used in the plots is listed in Appendix B and can be downloaded from the

supplements.

The second example is 2D and relates to a patient resting on the scanner’s table while MR

images are being taken. There is no gross motion of the patient, but there is motion of his bow-

els. The intention is to track the motion of a region of interest from one time frame to the next.

Here we display two time frames and select a template on the first. We search throughout the

Fig 3. (a) Two intensity profiles, a template of m = 27 samples is selected on one of them (the dashed, black line). (b)

The template is slid along the other profile (the solid, red line) and the normalized cross-correlation (NCC) is

computed for each possible position. NCC is then plotted as a function of the position of the left extremity of the

template. (c) The template is drawn on top of the most similar chunk.

https://doi.org/10.1371/journal.pone.0203434.g003
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second frame to find where the most similar (with the template) 2D chunk is located. This test

case is one of the most complicated for motion tracking as there is displacement of the region

of interest out of the 2D fixed plane where images are being taken into the third dimension as

well as nonrigid transformation, i.e. deformation, of the tissues. NCC is not the most suitable

metric to be used for feature tracking in cases like this, at least not without any adaptation [7].

However the method performs reasonably well given that the bowels reconfigure considerably

from one frame to the next, as evidenced by the low value (0.67 vs. 1) of the maximum NCC.

The result is presented in Fig 4. A python version of the code used can be downloaded from

the supplements. Motion tracking using the NCC would perform better the smaller the topo-

logical difference between consecutive time frames is. Unfortunately this is not always possible

with MR Images in spatial domain: the spatial resolution of an MR image is directly related to

the time spent collecting data for its reconstruction. If the topological difference between two

consecutive time frames is large, motion tracking using the NCC can encounter a “glitch”

where a chunk of irrelevant anatomy is selected as the most similar region with the template.

This encounter will result either with a lost track or a return to the track after the abrupt excur-

sion away from the track (hence the term “glitch”).

Comments in the listed code are kept to a minimum with the understanding that the code

flow and variable labeling closely follows the derivations presented in the text of this paper. In

the code, the computations related to the template are separated from other cross-correlation

computations. This is done to increase the computational efficiency since the parameters

related to the template need to be computed only once while the rest of NCC computation

might need to be performed over a multitude of navigators (i.e. time frames). The code for

computing the 1D NCC with Lewis’ [5], and Luo’s [10] algorithms is listed as well so that a

comparison of the NCC values obtained with these methods can be done. The provided

python code cannot however be used to compare the time efficiency of these numerical meth-

ods. Their time performance comparison is done by this author using optimized C++ code.

Conclusion

In this paper I have demonstrated an algorithm for the computation of the normalized cross-

correlation (NCC) using the FFT. It is shown that, for the data sets investigated, the computa-

tion of the NCC fully in the transform space is not faster than the optimized algorithm

Fig 4. Two 2D images (a, c) taken at two different time points show the reconfiguration of the patient’s internals. (a) A

template of size 48x54 is selected on the first image. (b) The template is slid along the second image and the normalized

cross-correlation (NCC) is computed for every possible position. The NCC map is plotted as a function of the top left

corner of the template’s position. The template region and the most similar chunk are plotted as the solid and the dashed

square respectively. (c) The most similar chunk is drawn as the dashed square on the second image.

https://doi.org/10.1371/journal.pone.0203434.g004
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proposed by Lewis (in the Lewis optimized algorithm the numerator of the NCC is computed

in the transform space and the denominator in the direct space). The comparative computa-

tional speed between the two algorithms seems to be unaffected by the template and the search

window sizes with the Lewis’ algorithm always performing faster. This finding is somewhat of

a surprise considering that the physical nature of the numerator and denominator in the NCC

formula is almost “identical” with the numerator standing as the correlation between two time

series (cross-correlation) and the denominator involving the correlation of a time series with

itself (auto-correlation). A final comparison of the computational speed between these two

algorithms (Lewis’ optimized algorithm and the one proposed here) would be their thread

parallelization.

Appendix A

Define the sum-table for the numerator of the NCC according to [10], as

si;d ¼

(
0 i ¼ 0

si� 1;d þ f �i� 1
gi� 1þd 1 � i < nþ 1

; 0 � d < n

with d the lag between the template f and the navigator chunk g. I will use the n-periodicity of

the navigator to keep the indexing in the chunk relevant. Denoting with p, q 2 [0, n − m + 1]

the positioning of the template and the navigator chunk from their respective time series ori-

gins, and using the definition of si,d above, we write

Xm� 1

i¼0

f �iþpgiþq ¼
Xpþm� 1

i¼p

f �i giþq� p �
Xpþm� 1

i¼p

f �i giþd ðhere d � q � pÞ

¼
Xpþm� 1

i¼p

ðsiþ1;d � si;dÞ

¼ ðspþm;d � spþm� 1;dÞ þ ðspþm� 1;d � spþm� 2;dÞ þ . . .þ ðspþ1;d � sp;dÞ

¼ spþm;d � sp;d

Appendix B

The 1D results presented are generated using the python code listed below. The “navigators.

dat” file that is loaded from the main subroutine, is plain text. It contains three columns of

length 128, separated from each other by “\t”. The first column is indexing from 1 to 128 into

two other columns, the second column is the samples of the template, the third column is the

samples of the navigator.
#! /usr/bin/python
import os
import numpy as np
from numpy import arange
from numpy import zeros
from numpy import absolute as abs
from numpy import square
from numpy import real
from numpy import sqrt
from numpy import exp
from numpy import concatenate as cat
from numpy import conjugate as conj
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from numpy.fft import fft
from numpy.fft import ifft
from math import pi
def lewis_ccor (navigt, templt, N, Q, M, P):
cc = zeros(P) # normalized cross-correlation
ns = zeros(N+1) # navigator sum
ns2 = zeros(N+1) # navigator sum of squares
for i in range(N):
a = navigt [i]
ns [i + 1] = a + ns [i]
ns2 [i + 1] = a�a + ns2 [i]

q = Q-1
template = templt [q:q+M]
ts = sum(template) # template sum
ts2 = sum(square(template)) # template sum of squares
tm = ts/M # template mean
tv = ts2 − square(ts)/M # template variance
v1 = template − tm
for i in range(P):
k = i+M
A = ns [k] − ns [i]
C = ns2 [k] − ns2 [i]
nm = A/M
nv = C − A�A/M
v2 = navigator [i:k] − nm
numerator = sum(v1�v2)
denominator = sqrt(tv�nv)
cc [i] = numerator/denominator

return cc
def luo_ccor (navigt, templt, N, Q, M, P):
cc = zeros(P) # normalized cross-correlation
ns = zeros(N+1) # navigator sum
ns2 = zeros(N+1) # navigator sum of squares
tns = zeros((N+1,N)) # template-navigator cross terms
for i in range(N):
a = navigt [i]
ns [i + 1] = a + ns [i]
ns2 [i + 1] = a�a + ns2 [i]
for d in range(N):
k = (i+d)%N
tns [i + 1] [d] = tns [i] [d] + templt [i]�navigt [k]

q = Q-1
template = templt [q:q+M]
ts = sum(template) # template sum
ts2 = sum(square(template)) # template sum of squares
tm = ts/M # template mean
tv = ts2 − square(ts)/M # template variance
for i in range(P):
k = i+M
A = ns [k] − ns [i]
C = ns2 [k] − ns2 [i]
nv = C − A�A/M
d = (i-q)%N
numerator = (tns [q+M,d] − tns [q,d]) − A�tm
denominator = sqrt(tv�nv)
cc [i] = numerator/denominator

return cc
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def template_functions (templt, kernel, N, Q, M, P):
templt2 = square(abs(templt))
tmp = ifft(fft(templt)�kernel)
gc = tmp [range(P)]
tmp = ifft(fft(templt2)�kernel)
gg = real(tmp [range(P)])
templt_padded = cat((templt [Q-1:Q+M-1],zeros(N-M)))
FTpg = fft(templt_padded)/M
return gc, gg, FTpg

def complex_ccor (navigt, gc, gg, kernel, FTpg, N, Q, M, P):
navigt2 = square(abs(navigt))
tmp = ifft(fft(navigt)�kernel)
fc = tmp [range(P)]
tmp = ifft(fft(navigt2)�kernel)
ff = real(tmp [range(P)])
FTnv = fft(navigt)
tmp = fft(conj(FTnv)�FTpg)/N
fgc = tmp [range(P)]
q = Q-1
gcq = gc [q]
ggq = gg [q]
numerator = real(fgc − conj(fc)�gcq)
denominator = sqrt((ff − square(abs(fc)))�(ggq − square(abs(gcq))))
return numerator/denominator

if __name__ == ‘__main__’:
tx1 = 80
tx2 = 106
n = 128
q = tx1
m = tx2-tx1+1
p = n-m+1
A = np.fromfile(“navigators.dat”, sep=“\t”).reshape(n,3)
template = []
navigator = []
for i in range(n):
template = template + [A [i] [1]]
navigator = navigator + [A [i] [2]]

k = arange(1,n)
kernel = (1.0/m) � ((exp(1 j � 2 � pi � m � k/n) − 1)/(exp(1 j � 2 �

pi � k/n) − 1))
kernel = cat(([1 + 1 j � 0.0], kernel))
gc, gg, FTpg = template_functions(template, kernel, n, q, m, p)
cc = complex_ccor(navigator, gc, gg, kernel, FTpg, n, q, m, p)
lewis_cc = lewis_ccor(navigator, template, n, q, m, p)
luo_cc = luo_ccor(navigator, template, n, q, m, p)

Appendix C

For the 2D case we have

fi;i0 ¼
1

n n0
Xn� 1

k¼0

Xn0 � 1

k0¼0

ak;k0 e
j2pki

n e j2pk0 i0
n0 0 � i < n; 0 � i0 < n0

, ffi;i0 g ¼ ifft2ðfak;k0 gÞ

ð23Þ
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ak;k0 ¼
Xn� 1

i¼0

Xn0 � 1

i0¼0

fi;i0 e � j2pki
n e � j2pk0 i0

n0 0 � k < n; 0 � k0 < n0

, fak;k0 g ¼ fft2ðffi;i0 gÞ

ð24Þ

where fft2, ifft2 are respectively the 2D fast Fourier transform function and its inverse as

defined in MATLAB. The 2D normalized cross-correlation is

NCC ¼

1

mm0
Xpþm� 1

i¼p

Xp0þm0 � 1

i0¼p0
ðfi;i0 � f Þ � �ðgiþq� p;i0þq0 � p0 � gÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mm0
Xpþm� 1

i¼p

Xp0þm0 � 1

i0¼p0
jfi;i0 � f j2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mm0
Xqþm� 1

i¼q

Xq0þm0 � 1

i0¼q0
jgi;i0 � g j2

r

�
f �g � ðf Þ�g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jf j2 � jf j2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgj2 � jg j2
q

ð25Þ

where p, q 2 [0, n − m + 1]; p0, q0 2 [0, n0 − m0 + 1] and

f �
1

mm0
Xpþm� 1

i¼p

Xp0þm0 � 1

i0¼p0
fi;i0

g �
1

mm0
Xpþm� 1

i¼p

Xp0þm0 � 1

i0¼p0
giþq� p;i0þq0 � p0 ¼

1

mm0
Xqþm� 1

i¼q

Xq0þm0 � 1

i0¼q0
gi;i0

jf j2 �
1

mm0
Xpþm� 1

i¼p

Xp0þm0 � 1

i0¼p0
jfi;i0 j

2

jgj2 �
1

mm0
Xqþm� 1

i¼q

Xq0þm0 � 1

i0¼q0
jgi;i0 j

2

f �g �
1

mm0
Xpþm� 1

i¼p

Xp0þm0 � 1

i0¼p0
f �i;i0giþq� p;i0þq0 � p0

Introducing

gk;k0 �
1

m m0
e j2pkm

n � 1
� �

e j2pk
n � 1

� �
e j2pk0m0

n0 � 1
� �

e j2pk0
n0 � 1

� � ð26Þ

and

hi;i0 ¼

( giþq;i0þq0=ðnmÞ=ðn0m0Þ 0 � i < m; 0 � i0 < m0

0 otherwise
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we get

f ¼ ifft2ðfak;k0gk;k0 gÞjp;p0 ð27Þ

jf j2 ¼ ifft2ðffft2ðfjf j2i;i0 gÞjk;k0gk;k0 gÞjp;p0 ð28Þ

f �g¼ fft2ðfa�k;k0 fft2ðfhi;i0 gÞjk;k0 gÞjp;p0 ð29Þ

with similar terms for for g and jgj2 .

The 2D result presented is generated with the 2D python code that can be found in the sup-

plements. The two files “image1.dat” and “image2.dat” loaded from the main subroutine, are

plain text. They contain the template and navigator image respectively. Both images are

512x512 “pixels” with real-value samples scaled from 0 to 255. The code runs equally well for

other image sizes and images with complex-value samples.

Supporting information

S1 File. Supplement 1.

(PDF)

S2 File. Supplement 2. A zipped directory containing 6 files: (1)navigators.dat—1D real value

measurements of length 128 samples, (2)complex_navigators.dat—1D complex value mea-

surements of length 320 samples, (3)ncc1d.py—Python code used in the computation of 1D

NCC, (4)image1.dat, (5)image2.dat—two separate 2D real value MRI images of abdomen, (6)

ncc2d.py—Python code used in the computation of 2D NCC.

(ZIP)

S1 Fig. Fig 1 illustrating the computations in Supplement 1.
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