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Abstract

The normalized cross-correlation (NCC), usually its 2D version, is routinely encountered in
template matching algorithms, such as in facial recognition, motion-tracking, registration in
medical imaging, etc. Its rapid computation becomes critical in time sensitive applications.
Here | develop a scheme for the computation of NCC by fast Fourier transform that can
favorably compare for speed efficiency with other existing techniques and may outperform
some of them given an appropriate search scenario.

Introduction

Covariance, by definition, provides a measure of the strength of the correlation between two
sets of numbers (or time series). A serious setback of the covariance is its dependence on the
amplitude of either of the series that are compared. This dependency is eliminated if one uses
the normalized form of the covariance, referred to as the normalized cross-correlation (other-
wise known as the correlation coefficient). The simplest form of the normalized cross-
correlation (NCC) is the cosine of the angle 6 between two vectors a and b:

a-b _ Ziaibi
albl VS aysE

NCC = cosf) = ~1<NCC< L (1)

NCC is one of those quantities with application in a variety of research fields as diverse as
physics [1, 2], signal processing [3-7], engineering [8, 9], medical imaging [10], and statistical
finance [11].

The similarity of the mathematical expression for the numerator of the NCC (see section 1,
Eq (4)) with that of a convolution is striking and implicates that its computation must be opti-
mal in the Fourier transform space [3]. Starting from this premise, Lewis [5] conjectured and
numerically proved that the numerator of the NCC can be efficiently computed in either the
spatial or the frequency domain contingent upon the parameters of the problem. For an overall
rapid computation of the NCC it is necessary to have a likewise efficient computation of its
denominator.
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A number of techniques have been proposed by different authors for the fast computation
of the NCC. These techniques have their merits and drawbacks, most of them excelling in very
specialized cases. Here we mention three of these techniques: [5, 6] and [10].

Lewis [5] proposes the computation of the denominator of the NCC in direct space by
keeping sum-tables in order to avoid repetitive computations. The numerator of the NCC can
however be computed either in the direct space or in the frequency domain. As Lewis notes in
the introduction to [5] “Unfortunately the normalized form of correlation does not have a cor-
respondingly simple and efficient frequency domain expression”. This statement is of impor-
tance because only one or the other (spatial or frequency domain) computation can be
optimally fast given the parameters of an application. This fact is duly observed by Lewis in
section 4 of [5] where he writes, referring to searching a feature of length N in a time series of
length M:

When M is much larger than N the complexity of direct ‘spatial’ computation is approxi-
mately N> M> multiplications/additions and the direct method is faster than the transform
method. The transform method becomes relatively more efficient as N approaches M and
with larger M, N.

The computation of the denominator in the frequency domain is addressed in the present
paper. While the numerator of the NCC is the covariance between two different time series,
either of the two terms under the square root in the denominator represents the covariance of
that series with itself (i.e. auto-covariance) at lag zero. If an efficient computation for the
numerator in the frequency space is possible, one can expect this to be possible for the denomi-
nator as well.

Luo and Konofagou [10] propose the computation of the NCC exclusively in direct space
by keeping sum-tables for both the numerator and the denominator. While Luo’s approach
cannot outperform Lewis computation when a single feature of a given size, selected from one
time series, is exhaustively searched for throughout the other time series, it can however be
advantageous for other search scenarios [10].

Yoo and Han [6] propose a scheme for the computation of the NCC that considerably
reduces both the number and the complexity of the required computational operations as
compared with other full computing schemes. The proposed scheme is based on approxima-
tive assumptions. The gain in the computational speed is done at the expense of an algorithm
that generates false positives in a feature search scenario. The rate of false positives depends on
the noise level present in the time series, and can be minimized by tuning parameters in the
algorithm. This performance dependence on the noise level can be considered a setback when
“shoot first and ask later” approach can be a problem. It is also not clear how this algorithm
can be extended and will perform if signals were complex-valued.

The algorithm presented in this paper can handle complex-value signals. It can be consid-
ered as an extension/supplement of the work done by Lewis in that the fast Fourier transform
(FFT) is used to compute both the numerator and the denominator of the NCC. The proposed
algorithm opens the possibility for the computational parallelization (FFT threads) of the pro-
cedure and may offer speed gains for appropriate template and search region size [5].

The paper is organized as follows. Section 1 exposes the mathematical formula for the 1D
complex NCC and lays the ground for developing the proposed FFT computational scheme,
which is done in Section 2. The 2D formulas can be found in Appendix C, their derivation fol-
lows exactly the same steps as the 1D. In Results, two measurements are considered as test
cases. Both of them are real-valued, the first is 1D and the other 2D. The python code devel-
oped for the computation of the NCC can handle complex-value measurements and is listed in
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Table 1. The time expendend in the computation of the NCC according to Lewis algorithm [5] when two
approaches are used.

mean time (us) std
Lewis, numerator direct space 99.40 0.01
Lewis, numerator frequency space 26.70 0.01

https://doi.org/10.1371/journal.pone.0203434.t001

Table 2. The time expendend in the computation of the NCC according to Lewis algorithm [5] and the algorithm
proposed in this paper.

mean time (us) std
Lewis, numerator frequency space 26.70 0.01
Proposed method 38.20 0.05

https://doi.org/10.1371/journal.pone.0203434.1002

Appendix B. An illustrative complex valued 1D test case is provided in Supplements 1. Python
programs as well as the data sets used for the 1D and 2D illustrations can be found in the
supplements.

The time spent in computing the NCC for the 1D test case is tabulated below for several
numeralical methods/schemes used. The timing is done on optimized C++ code, it certainly is
processor dependent and is shown here to create a general comparative idea. The execution
time is averaged over 15 runs, with 5 ms wait time between runs to account for the processor
delays. The parameter values used for this 1D test can be found in the Results section. The test
shows that:

1. Lewis NCC with direct space computation of the numerator is slightly slower than when
FFT is used instead (the denominator is computed in direct space using sum-tables in both
cases), Table 1.

2. The proposed computation is slower than Lewis method with FFT computation of the
numerator for the parameter values, i.e. template and search region lengths, investigated in
this paper, Table 2. An additional test case comprising 1D complex value measurements
and of larger size is investigated in Supplement 1. Other possible computational optimiza-
tions (multi-threads, wisdom FFT) are not investigated in this work.

3. The Luo’s computation of NCC using sum-tables for the numerator is not faster than the
Lewis algorithm for the search scenario tested here, Table 3.

To have a fair comparison of the computational speed between the Lewis’ and the proposed
method, both methods are implemented for complex-value time series (requiring approxi-
mately twice as many computations as for real-value time series, see the above listed computa-
tional times of Luo’s method that handle real or complex time series). The two methods are
then however applied on real-value time series for simplicity.

Table 3. The time expendend in the computation of the NCC according to Lewis algorithm [5] and the algorithm
proposed by Luo [10].

mean time (us) std
Lewis, numerator frequency space 26.70 0.01
Luo’s method, real 241.20 0.09
Luo’s method, complex 463.93 12.97

https://doi.org/10.1371/journal.pone.0203434.t003
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Section 1

Consider two, complex-value and periodic, functions of time: f{(t) and g(¢), both having the
same time period T. Suppose that these two functions are uniformly sampled with a time
step At such that T = nAt. Using the discrete Fourier transform formalism the sampled func-
tion f(t;) = f,, where t; = iAt, 0 < i < n, can be uniquely described by a complementary set of
complex-values {o}

1 n—1 o

f= 7Zocke’2"k7 0<i<n
n k=0
< {f} = ifft({o})

(2)

- e i 0<k<n
2/ =ks )
& {0} = f({f})

Here fft, ifft are respectively the fast Fourier transform function and its inverse as defined in
MATLAB, j represents the imaginary unit, i, k, p, g will represent integer variables, and n, m
are integer parameters. Similarly, we symbolically write

&} = ifft({B})
{8} = f{e})

Consider two subsets of consecutive data points of the same length m extracted from the dis-
crete time series {f;} and {g;}, as shown in Fig 1. Hereafter p, g € [0, n — m + 1].
The normalized cross-correlation (NCC) between these two subsets is defined as

NCC =
ST Gy D) )
\/ me 1[f 7 \/ qu 1
where f = L ya Tl fandg =1 pjpm 'g, e = ?+qu1 g Introducing the notations

Iflz = 12”’” 1[f| g2 = 12“’” 'lg|*,and frg=1 e 8., it can be rewritten as

fe-()g

NCC = r (5)
VIP = 7P lel” - &P
m
fil ___l o L o
0 1 p p+m-1 n-1
m
g - L l___ #___
0 1 q g+m-1 n-1

Fig 1. Schematic of two subsets of samples of length m drawn from the T-periodic time series f(f) and g(t),
uniformly sampled with n samples per period.

https://doi.org/10.1371/journal.pone.0203434.9001
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In the following section I present the scheme for computing the NCC using the fast Fourier

transform.
Section 2
Start by calculating
_ 1 P 1ok el
_ I - '2117‘
f o= =, 2
i=p k=0 i=p
1 n—1 ) 1 m—1 o
==) o eﬂ“k?p—Zeﬂ“kW (6)
n'= ma=
1 n—1 jznk_p )
==Y e = ifi({u b,
k=0
where
182 le™t—1
= _ ey - =
W=t = T )
is the Dirichlet kernel. Next calculate
— 1 p+m—1 )
T
i=p
1 p+m—1 1 n—1 ki 1 n—1 .
=— =Y ae PN oy (8)
m i=p nkZO: nk’Z;
1 &=L . ei?n(k/,k)p 1 feﬂnm
= — akak/ n JE— n
n2 kk'=0 m i=0

By variable substitution k = n — 1 — k” and relabeling obtain

1 (kK +1)
2 otk +1)p
P == o e

n?
1220 e
- e]Zn# 9
(o) B

k.k'=0
i=0

n—1
1 a .zﬂ(k+k1+l)p
Py kK "
k,k'=0

n?

where

m—1

1 o (kK +1)i
=gt - Jam———
e = 10 E e (10)

i=0

The dependency of g, on m is left out of notation for clarity. In the following I transform the
double sum to a single sum. Fig 2 helps with visualizing the procedure.

The double sum suggests that we sum along columns per each row, and then sum all terms
so obtained. Chose, instead, to first sum along the secondary diagonals per each secondary
diagonal, and then sum all obtained terms. By doing this the k + k' + 1 = I mod n remains
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Fig 2. Sketch visualizing the transformation of a double sum performed along the columns then along the rows,
to a sum of the sums performed along the secondary diagonals.

https://doi.org/10.1371/journal.pone.0203434.9002

constant during the first summation and the exponential term depending on p is factorized.
Therefore

VF =23 g e = iuciey, )
with

1Nl —
" Do Benoik 1=0
o 1 -1
G=\. < k=0 Fet1-k T

n—1
k=1 ak,n+l—1—k> 1<I<n

Straightforward calculations using definitions and index relabeling reveal that

n—1 n—1

I *
Zak,n—l—k = Zakak (12)
k=0 k=0
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-1 n—1
E Ay t+ E Ani-1-k
k=0 =
1 n—I—1 n—1
- _ * *
=N " o0y T+ ZakaHk—n

k= k=n—1

(13)

o

Now,
1 n—1 n—1 )
* fr—
n E % = E If1;
k=0 i=0
. (14)
2 _ioql
= E |f|ie 127[;«:’ l:o
i=0
n—Il—1
*
L
k=0
= -1 i (15)
S Taa
i,i'=0 k=0
n—1
*
E XLy
k=n—1
(16)
— E ff e7]27[7 E e]an(x 7)
i,i' =l k=n—1
therefore

| =

n—I-1
(ZO‘ Ut Z“ ke n>
k

0

n—1
2 o
Iflje, 1<Il<n
pry

Relabeling, noting that y, = 1, and condensing

n—1
b= “/kZVI?e”?”%, 0<k<n
=0
= ATl

(18)

Then

1" = ift (AR D D, (19)

Similar calculations hold for g and W
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Finally calculate the remaining term that completes the computation of NCC using the fast
Fourier transform

1 ptm—1 m—1

1
Fe=— ;ﬁ*g,-+w == fislia

i=0

m—1

1 n—1 1 ok » nk_P
- ; ZO(;: <E Zqu € ﬂnl;) ¢ s (20)
k=0

i=0

n—1
* —j nk—P *
= Zo‘k’?ke Pt :.ﬁt({o‘k’?k}ﬂp
k=0

where
m—1
8ivg ok
M = ;I’I_f:l e 2
o (21)
=Y e = fi({h )],
i=0
with
{gw/(nm) 0<i<m
i 0 m<i<n
Then
fg=f{offr({h )}, (22)
Results

The method is illustrated with two examples, both drawn from MRI measurements.

The first example is 1D and relates to a rigid phantom, the intensity profile of which is mea-
sured at two different positions, 30 mm apart (as read on the landmark meter of the scanner)
along the bore of the magnet. The two profiles differ partly because the static magnetic field in
the scanner deviates even so slightly from homogeneity and partly because of the non-linearity
of the gradients. The contribution of the measurement noise to the profiles’ difference is of a
less consequence. In this measurement the field of view (FOV) is 300 mm and the resolution
xres = 128. The intention is to find the phantom’s displacement by using only the information
provided by these two intensity profiles. This is done by selecting a template, which represents a
feature of interest, in one of the profiles, say the dashed, black line in Fig 3a. In our example the
start position and the length of the selected template are g = 80 and m = 27 samples respectively.
We then search for the presence of a similar feature in the other profile, the navigator, plotted
as the solid, red line in Fig 3a. Because the two profiles are different, the degree of similarity
between the template and chunks of the same size extracted exhaustively from the navigator
profile is determined from the value of the normalized cross-correlation (NCC). The similarity
of the chunk to the template is higher the larger the value of NCC between the two is, with the
chunk being identical to the template for NCC = 1. The total number of chunks that can be con-
strued from the navigator profile is n — m + 1. Here n = xres = 128, and n — m + 1 = 102. The
NCC values are plotted in Fig 3b and show that the feature of interest is located at the start
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Fig 3. (a) Two intensity profiles, a template of m = 27 samples is selected on one of them (the dashed, black line). (b)
The template is slid along the other profile (the solid, red line) and the normalized cross-correlation (NCC) is
computed for each possible position. NCC is then plotted as a function of the position of the left extremity of the
template. (c) The template is drawn on top of the most similar chunk.

https://doi.org/10.1371/journal.pone.0203434.9003

position max = 67 where NCC reaches it maximum value. Fig 3c shows how the template visu-
ally compares with the most similar chunk if drawn on top of it. From the difference between
the start positions of the template and the most similar chunk we can compute the translational
distance between the two intensity profiles as: FOV - (q — max)/xres ~ 30 mm, in good agree-
ment with what the landmark meter on the scanner displayed. A python version of the code
generating the data used in the plots is listed in Appendix B and can be downloaded from the
supplements.

The second example is 2D and relates to a patient resting on the scanner’s table while MR
images are being taken. There is no gross motion of the patient, but there is motion of his bow-
els. The intention is to track the motion of a region of interest from one time frame to the next.
Here we display two time frames and select a template on the first. We search throughout the
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Fig 4. Two 2D images (a, c) taken at two different time points show the reconfiguration of the patient’s internals. (a) A
template of size 48x54 is selected on the first image. (b) The template is slid along the second image and the normalized
cross-correlation (NCC) is computed for every possible position. The NCC map is plotted as a function of the top left
corner of the template’s position. The template region and the most similar chunk are plotted as the solid and the dashed
square respectively. (c) The most similar chunk is drawn as the dashed square on the second image.

https://doi.org/10.1371/journal.pone.0203434.g004

second frame to find where the most similar (with the template) 2D chunk is located. This test
case is one of the most complicated for motion tracking as there is displacement of the region
of interest out of the 2D fixed plane where images are being taken into the third dimension as
well as nonrigid transformation, i.e. deformation, of the tissues. NCC is not the most suitable
metric to be used for feature tracking in cases like this, at least not without any adaptation [7].
However the method performs reasonably well given that the bowels reconfigure considerably
from one frame to the next, as evidenced by the low value (0.67 vs. 1) of the maximum NCC.
The result is presented in Fig 4. A python version of the code used can be downloaded from
the supplements. Motion tracking using the NCC would perform better the smaller the topo-
logical difference between consecutive time frames is. Unfortunately this is not always possible
with MR Images in spatial domain: the spatial resolution of an MR image is directly related to
the time spent collecting data for its reconstruction. If the topological difference between two
consecutive time frames is large, motion tracking using the NCC can encounter a “glitch”
where a chunk of irrelevant anatomy is selected as the most similar region with the template.
This encounter will result either with a lost track or a return to the track after the abrupt excur-
sion away from the track (hence the term “glitch”).

Comments in the listed code are kept to a minimum with the understanding that the code
flow and variable labeling closely follows the derivations presented in the text of this paper. In
the code, the computations related to the template are separated from other cross-correlation
computations. This is done to increase the computational efficiency since the parameters
related to the template need to be computed only once while the rest of NCC computation
might need to be performed over a multitude of navigators (i.e. time frames). The code for
computing the 1D NCC with Lewis’ [5], and Luo’s [10] algorithms is listed as well so that a
comparison of the NCC values obtained with these methods can be done. The provided
python code cannot however be used to compare the time efficiency of these numerical meth-
ods. Their time performance comparison is done by this author using optimized C++ code.

Conclusion

In this paper I have demonstrated an algorithm for the computation of the normalized cross-
correlation (NCC) using the FFT. It is shown that, for the data sets investigated, the computa-
tion of the NCC fully in the transform space is not faster than the optimized algorithm
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proposed by Lewis (in the Lewis optimized algorithm the numerator of the NCC is computed
in the transform space and the denominator in the direct space). The comparative computa-
tional speed between the two algorithms seems to be unaffected by the template and the search
window sizes with the Lewis’ algorithm always performing faster. This finding is somewhat of
a surprise considering that the physical nature of the numerator and denominator in the NCC
formula is almost “identical” with the numerator standing as the correlation between two time
series (cross-correlation) and the denominator involving the correlation of a time series with
itself (auto-correlation). A final comparison of the computational speed between these two
algorithms (Lewis’ optimized algorithm and the one proposed here) would be their thread
parallelization.

Appendix A

Define the sum-table for the numerator of the NCC according to [10], as

0 i=0
Si,d:{ , 0<d<n

Si1d +fi8a 15i<n+1

with d the lag between the template fand the navigator chunk g. I will use the n-periodicity of
the navigator to keep the indexing in the chunk relevant. Denoting with p, g € [0, n — m + 1]
the positioning of the template and the navigator chunk from their respective time series ori-
gins, and using the definition of s; ; above, we write

m—1 ptm—1 ptm—1
Zfiipgiﬂ = Zfi*gHH = Zf"*g"*d (here d = q —P)
i=0 i=p i=p

pt+m—1

= Z (5i+1.d - Si,d)
i=p

= (5p+m,d - Sp+m—1,d> + (Sermfl.d - 5p+mfzd) .ot (Sp+1.d - Sp,d)

=S

p+md S

p.d

Appendix B

The 1D results presented are generated using the python code listed below. The “navigators.
dat” file that is loaded from the main subroutine, is plain text. It contains three columns of
length 128, separated from each other by “\t”. The first column is indexing from 1 to 128 into
two other columns, the second column is the samples of the template, the third column is the

samples of the navigator.

#! /usr/bin/python

import os

import numpy as np

from numpy import arange

from numpy import zeros

from numpy import absolute as abs
from numpy import square

from numpy import real

from numpy import sqgrt

from numpy import exp

from numpy import concatenate as cat
from numpy import conjugate as conj
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from numpy.fft import fft
from numpy.fft import ifft
from math import pi
def lewis ccor (navigt, templt, N, Q, M, P):
cc = zeros (P) # normalized cross-correlation
ns = zeros (N+1) # navigator sum
ns2 = zeros (N+1) # navigator sum of squares
for i in range (N):
a = navigt [1]
ns [1+1] = a + ns [i]
ns2 [1+1] = a*a + ns2 [i]
qg=0-1
template = templt [g:g+M]
ts = sum(template) # template sum
ts2 = sum(square (template)) # template sum of squares
tm = ts/M # template mean
tv = ts2 - square (ts) /M # template variance
vl = template - tm
for i in range (P):
k = i+M
A =ns [k] — ns [i]
C = ns2 [k] — ns2 [i]
nm = A/M
nv = C - A*A/M
v2 = navigator [i:k] - nm
numerator = sum(v1*v2)
denominator = sqrt (tv'nv)
cc [i] = numerator/denominator
return cc
def luo ccor (navigt, templt, N, Q, M, P):
cc = zeros (P) # normalized cross-correlation
ns = zeros (N+1) # navigator sum
ns2 = zeros (N+1) # navigator sum of squares
tns = zeros ((N+1,N)) # template-navigator cross terms
for i in range (N):
a = navigt [1i]
ns [1 + 1] = a + ns [1]
ns2 [1 + 1] = a*a + ns2 [1]
for d in range (N) :
k = (i+d) %N
tns [i + 1] [d] = tns [1] [d] + templt [i]*navigt [k]
qg=0-1
template = templt [g:gt+tM]
ts = sum(template) # template sum
ts2 = sum(square (template)) # template sum of squares
tm = ts/M # template mean
tv = ts2 - square (ts) /M # template variance
for i in range (P):
k = i+M
A =ns [k] — ns [i]
C = ns2 [k] - ns2 [1]
nv = C - A"A/M
d = (i-g) %N
numerator = (tns [g+M,d] - tns [g,d]) - A'tm
denominator = sqgrt (tv*nv)
cc [1] = numerator/denominator
return cc
12/16
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def template functions (templt, kernel, N, Q, M, P):
templt2 = square (abs (templt))
tmp = 1fft (fft (templt)*kernel)
gc = tmp [range (P) ]
tmp = 1fft (fft (templt2)*kernel)
gg = real (tmp [range (P) ])
templt padded = cat((templt [Q-1:0+M-1],zeros (N-M)))
FTpg = fft (templt padded) /M
return gc, gg, FTpg
def complex ccor (navigt, gc, gg, kernel, FTpg, N, Q, M, P):
navigt2 = square (abs (navigt))
tmp = 1fft (fft (navigt)*kernel)
fc = tmp [range (P) ]
tmp = 1fft (f£ft (navigt2)*kernel)
ff = real (tmp [range (P)])
FTnv = fft(navigt)
tmp = fft (conj (FTnv)*FTpg) /N

fgc = tmp [range (P) ]
qg=0-1

gcq = gc [q]

999 = g9 [q]

numerator = real (fgc - conj (fc)*gcq)
denominator = sqrt ((ff - square (abs (fc)))*(ggg - square (abs (gcq))))
return numerator/denominator

if name == ' main_ ':

txl = 80

tx2 = 106

n =128

g = txl

m = tx2-tx1l+1

p = n-m+l

A = np.fromfile (“navigators.dat”, sep="“\t”).reshape (n,3)
template = []

navigator = []

for i in range (n):
template = template + [A [1] [1]]
navigator = navigator + [A [1] [2]]
k = arange (1,n)
kernel = (1.0/m) * ((exp(lJ* 2 pi*m*k/n) —1)/(exp(lj*2*
pi*k/n) - 1))
kernel = cat (([1+13*0.0], kernel))
gc, gg, FTpg = template functions(template, kernel, n, q, m, p)
cc = complex ccor (navigator, gc, gg, kernel, FTpg, n, g, m, p)
lewis cc = lewis ccor(navigator, template, n, g, m, p)
luo cc = luo ccor(navigator, template, n, g, m, p)

Appendix C

For the 2D case we have

1 n—1n'-1 y o
ikl iopl . o
- E E oy €7 e 0<i<m0<i<n
A= v (23)

e {f;}z"} = ’ﬁtQ({O‘k,k/})

fu =
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n—1n'-1 o
_ —jord , —j2rkl . / /
Uy = ZE fire e 0<k<mO0<Kk<n (24)
i=0 i'=0

g {‘xk,k'} :ﬁt2({fi,ﬂ})

where fft2, ifft2 are respectively the 2D fast Fourier transform function and its inverse as
defined in MATLAB. The 2D normalized cross-correlation is

p+m—1 p'+m' —1

NCC = mm’ o =) Giagpiig—r — &)

p+m—1 p'+m'—1 g+m—1 ql+m’—1 _9
\/mml Z Z l»f;l f‘ \/mm/ Z 1 =q |gi,i’ - g| (25)
fe-(g

T - -

wherep,q € [0,n—-m+1];p,q €[0,n' —m' + 1] and

1 ptm—1p'+m'—1

f = Z fo-f’

mm, ;. il /
i=p i'=p
1 pm—1p +m'—1 1 g+m—1q'+m'—1
= — . Sivq—pi+qd—p = - ‘ i
i=p i'=p/ i—q i'=q'
ptm—1p' +m'—1

I _mm’ Z Z lf”/|

q+m—1q'+m'—1

i'=q'

ptm—1p +m'—1

i, 1’gz+q—p i+q' —p'
i=p /—p

Introducing

and

{gi+q.i’+q’/(”m)/(”lm/) 0<i<m0<i<m

0 otherwise
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we get

f= iﬁﬂ({“k,kﬁkw 1) |‘p“p/ (27)

lf|2 = Z:ﬁ:tQ({fftQ({\f|z‘2,i’})|k,k’yk‘k’})|p‘p’ (28)

frg=fe2({offe2({hs Dlie Dl (29)

with similar terms for for g and |g|*.

The 2D result presented is generated with the 2D python code that can be found in the sup-
plements. The two files “imagel.dat” and “image2.dat” loaded from the main subroutine, are
plain text. They contain the template and navigator image respectively. Both images are
512x512 “pixels” with real-value samples scaled from 0 to 255. The code runs equally well for
other image sizes and images with complex-value samples.

Supporting information

S1 File. Supplement 1.
(PDF)

S2 File. Supplement 2. A zipped directory containing 6 files: (1)navigators.dat—1D real value
measurements of length 128 samples, (2)complex_navigators.dat—1D complex value mea-
surements of length 320 samples, (3)nccld.py—Python code used in the computation of 1D
NCC, (4)imagel.dat, (5)image2.dat—two separate 2D real value MRI images of abdomen, (6)
ncc2d.py—Python code used in the computation of 2D NCC.

(Z1P)

S1 Fig. Fig 1 illustrating the computations in Supplement 1.
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