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Abstract

Objective

In oncology, extrapolation of clinical outcomes beyond trial duration is traditionally achieved

by parametric survival analysis using population-level outcomes. This approach may not

fully capture the benefit/risk profile of immunotherapies due to their unique mechanisms of

action. We evaluated an alternative approach—dynamic modeling—to predict outcomes in

patients with advanced renal cell carcinoma. We compared standard parametric fitting and

dynamic modeling for survival estimation of nivolumab and everolimus using data from the

phase III CheckMate 025 study.

Methods

We developed two statistical approaches to predict longer-term outcomes (progression,

treatment discontinuation, and survival) for nivolumab and everolimus, then compared

these predictions against follow-up clinical trial data to assess their proximity to observed

outcomes. For the parametric survival analyses, we selected a probability distribution based

on its fit to observed population-level outcomes at 14-month minimum follow-up and used it

to predict longer-term outcomes. For dynamic modeling, we used a multivariate Cox regres-

sion based on patient-level data, which included risk scores, and probability and duration of

response as predictors of longer-term outcomes. Both sets of predictions were compared

against trial data with 26- and 38-month minimum follow-up.

Results

Both statistical approaches led to comparable fits to observed trial data for median progres-

sion, discontinuation, and survival. However, beyond the trial duration, mean survival pre-

dictions differed substantially between methods for nivolumab (30.8 and 51.5 months), but

not everolimus (27.2 and 29.8 months). Longer-term follow-up data from CheckMate 025

and phase I/II studies resembled dynamic model predictions for nivolumab.
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Conclusions

Dynamic modeling can be a good alternative to parametric survival fitting for immunothera-

pies because it may help better capture the longer-term benefit/risk profile and support

health-economic evaluations of immunotherapies.

Introduction

Immune checkpoint antibodies—a relatively new class of oncology treatments—act by block-

ing inhibitory checkpoints, thus restoring function to the immune system, which can then

attack the tumor [1–3]. Immune checkpoint antibodies currently available include pro-

grammed death-1 (PD-1) blocking antibodies, such as nivolumab [4] and pembrolizumab [5];

PD-1 ligand 1 (PD-L1) blocking antibodies, such as atezolizumab [6] and avelumab [7]; and

cytotoxic T-lymphocyte antigen 4 blocking antibodies, such as ipilimumab [8]. Such immuno-

therapies have demonstrated beneficial effects on objective response rates, progression-free

survival (PFS), and overall survival (OS) in various cancers [9–15].

Outcomes such as treatment response, PFS, and OS are key endpoints to ascertain the clinical

and economic benefits of oncology treatments and are used in health economic evaluations [16–

19]. Estimating treatment duration, PFS, and OS with immunotherapies over patient lifetimes is

critical for understanding their overall value. This typically requires extrapolating clinical trial find-

ings over patient lifetimes, and for this, parametric survival analyses traditionally are used [20].

However, there are several reasons why this approach may not be suitable for immunotherapies.

First, survival, treatment duration, and progression risk are heterogeneous—some patients have a

strong antitumor response, while others do not. Therefore, using a weighted average of OS for

responders and nonresponders using a single parametric fit may not adequately capture the thera-

peutic value. Second, the response from immunotherapy tends to be highly durable, resulting in

long-term efficacy for some patients and hence, a plateau in survival curves [9,21]. Third, immuno-

therapy can result in nonstandard survival curves with inflection points showing decelerations of

hazards [13,22], which cannot be accounted for using single parametric distributions. Thus, to fully

assess the potential value of immunotherapies, alternative approaches may have to be considered—

e.g., piecewise fitting, landmark analysis, pre- versus post-progression survival, parametric mixture

models, spline-based models, and dynamic modeling [23]—as the approach used is likely to affect

the value assessment substantially, especially the long-term predictions with immunotherapies.

We conducted a case study that illustrates clinical outcomes using the traditional standard

parametric survival analysis approach versus an alternative approach (dynamic modeling) to

understand differences in extrapolation results. Dynamic modeling was selected because it

allows real-time prediction of events using time-dependent factors (such as response). For this

study, we modeled outcomes (progression, treatment discontinuation, and survival) and com-

pared them against clinical data from patients who received nivolumab or everolimus for treat-

ment of advanced renal cell carcinoma (RCC) in a recent phase III study [12]. We also

compared the predicted outcomes using both statistical models against extended trial follow-

up from the same phase III study.

Methods

Simulation model

A simulation model (Fig 1) was developed in Microsoft Excel using the discretely integrated

condition event (DICE) method, which served as the framework that accommodated both the
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standard parametric approach and dynamic modeling as the underlying predictive equations

within the same model structure and set of assumptions [24].

The model predicted health outcomes over patient lifetimes (25 years), more specifically times

to treatment discontinuation (TTD), progression (TTP), and death (TTDeath) for patients with

advanced or metastatic clear-cell RCC who had received one or two prior antiangiogenic therapy

regimens. In addition to TTP, TTD, and TTDeath, the dynamic modeling also included estima-

tions of times to response and to loss of response for patients with an objective response, as these

measures were identified as time-dependent parameters that influence long-term outcomes.

Data source

Data for analysis were taken from the randomized, phase III CheckMate 025 study [12], in

which 821 patients with advanced or metastatic clear-cell RCC who had previously received

one or two antiangiogenic regimens were randomized to nivolumab (3 mg/kg intravenously

every 2 weeks) or to everolimus (10 mg orally once daily). Data were from a June 2015 cutoff

date (minimum follow-up, 14 months). The modeled outcomes were compared with the

observed Kaplan–Meier (KM) curves from CheckMate 025 for TTD, TTP, and TTDeath

[12,25]. KM curves were also stratified to ascertain the impacts of treatment effect, objective

response (complete or partial response), and Memorial Sloan Kettering Cancer Center

(MSKCC) risk group [26] on clinical outcomes.
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Fig 1. Simulation model structure. Note: Impact of response achievement and loss of response on progression,

discontinuation, and death is only considered for the dynamic modeling approach.

https://doi.org/10.1371/journal.pone.0203406.g001
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Standard parametric survival analysis

Parametric distributions—Weibull, exponential, log-normal, log-logistic, Gompertz, and gen-

eralized gamma [27,28]—were fitted to the observed trial data. We tested the fits of distribu-

tions based on [27] graphical assessment (visual inspection, parametric plots, and probability

plots), goodness-of-fit measures (Akaike’s information criterion and Bayesian information cri-

terion (AIC/BIC) [20]), and clinical plausibility of fits.

Dynamic modeling

Dynamic modeling allows real-time prediction of time-to-events using longitudinal markers

as time-dependent covariates in a Cox regression model [23,29]. Of the available projection

techniques, dynamic modeling [23] was selected to enable 1) incorporation of the impact of

important prognostic factors (MSKCC risk group); 2) incorporation of the impact of objective

response achievement (partial response or better according to Response Evaluation Criteria In

Solid Tumors [RECIST] 1.1 criteria) and duration of response as time-dependent predictors

[30], as this is an important outcome of the mechanism of action of immunotherapies [31,32];

and 3) accounting for the unique shape of the KM curves, which can show deceleration of haz-

ards at single or multiple inflection points for immunotherapies.

To account for these features, we conducted a Cox regression analysis, as Cox models do

not rely on any specific assumption on the parametric shape of the hazard function. In this

analysis, the objective response is treated as a time-dependent indicator, which helps to avoid

any bias that may occur if objective response was treated in the same way as a baseline predic-

tor, as it fails to account for the fact that patients had to survive long enough to achieve an

objective response.

Cox regression analysis was conducted to determine the impact of objective response

and MSKCC risk on TTD, TTP, and TTDeath in the treatment arms. Analyses were con-

ducted using univariate and multivariate approaches. In the univariate approach, each pre-

dictor was tested alone in the regression model to assess univariate effects on the outcome.

Subsequently, a multivariate model was implemented where treatment arm, objective

response, and MSKCC risk group were included. Additionally, a proportional hazards

assumption for the Cox regression models was assessed. As the proportional hazard

assumption was violated, a piecewise hazard ratio (HR) model was implemented to assess

the inflection point at which the hazards differed. Based on this assessment, a model using a

time-dependent treatment HR of 0 to 3 and >3 months was used. Since the proportional

hazards assumption was not met, we used time-dependent HRs to allow application of Cox

regression analysis to the reference arm (comprising patients receiving everolimus with no

response and poor MSKCC risk group).

Results

Study outcomes

CheckMate 025 showed that patients receiving nivolumab versus everolimus had improve-

ments in objective response rates (25% vs 5%; odds ratio 5.98; 95% confidence interval [CI]

3.68–9.72; P<0.001) and median OS (25.0 vs 19.6 months; HR for death 0.73, 98.5% CI, 0.57–

0.93; P = 0.002), but similar median PFS (4.6 vs 4.4 months; HR 0.88, 95% CI, 0.75–1.03;

P = 0.11) [12]. Worsening MSKCC risk adversely affected OS in both arms [25] and objective

response achievement in the everolimus arm only (Table 1) [25]. OS and objective response

were better in the nivolumab versus everolimus arms in all MSKCC risk groups (Table 1) [25].
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Standard parametric survival analysis

Based on AIC/BIC measures, log-cumulative hazard plots, parametric plots, and visual inspec-

tion, none of the parametric distributions provided a better fit to the observed trial data.

Hence, Weibull distributions were selected to model TTD, TTP, and TTDeath because they

provide a good benchmark for comparison as they have recently been used in oncology model-

ing, especially with immuno-oncology therapies [33–35]. The parameters associated with

TTD, TTP, and TTDeath are listed in S1 Table.

Multivariate Cox regression analysis

TTD, TTP, and TTDeath for the reference arm (everolimus, no response, poor MSKCC risk)

were modeled using Weibull distributions; times to response and to loss of response were

modeled using log-normal and Gompertz distributions, respectively (S2 Table).

Achievement of response, MSKCC risk group, and treatment were influential predictors for

progression, treatment discontinuation, and death (Table 2).

It is important to note that there is a correlation between treatment and its duration with

response levels achieved. Objective response achievement significantly reduced risk of

Table 1. CheckMate 025 study results.

OS, Median (95% CI), Months Objective Response, % (SE)

Nivolumab Everolimus Nivolumab Everolimus

Overall [12] 25.0 (21.8–NE) 19.6 (17.6–23.1) 25 (2) 5 (1)

MSKCC riska [25]

Favorable NE (NE–NE) NE (24.7–NE) 21 (3) 7 (2)

Intermediate 21.4 (18.3–NE) 17.7 (15.6–19.9) 27 (3) 5 (2)

Poor 18.2 (10.2–26.7) 8.5 (5.2–11.5) 27 (6) 0 (0)

NE, not estimable; SE, standard error.
aBased on interactive voice response system (i.e., randomization stratification level assignment).

https://doi.org/10.1371/journal.pone.0203406.t001

Table 2. Multivariate Cox regression analysis–dynamic modeling.

Progression

HR (95% CI)

Discontinuation

HR (95% CI)

Death

HR (95% CI)

Response levels (time dependent)

Objective response (vs nonresponse) 0.40 (0.30–0.54)��� 0.18 (0.12–0.27)��� 0.06 (0.02–0.19)���

Post-objective response (vs nonresponse) NA 1.34 (0.96–1.88) 0.49 (0.30–0.80)�

MSKCC risk

Favorable (vs poor) 0.63 (0.50–0.81)�� 0.64 (0.51–0.80)��� 0.29 (0.22–0.39)���

Intermediate (vs poor) 0.79 (0.62–0.99)� 0.79 (0.64–0.98)� 0.61 (0.47–0.79)��

Treatment (time dependent)a

Nivolumab �3 months (vs everolimus�3 months) 1.19 (0.94–1.50) 0.73 (0.62–0.85)���a 0.50 (0.28–0.90)�

Nivolumab >3 months (vs everolimus>3 months) 0.88 (0.70–1.11) –a 0.94 (0.76–1.16)

Data are hazard ratio (95% CI).

NA, not applicable.

�P<0.05.

��P<0.001.

���P<0.0001.
aTreatment discontinuation outcome did not utilize a time-dependent treatment effect. The treatment comparison reflects nivolumab vs everolimus across the entire

follow-up.

https://doi.org/10.1371/journal.pone.0203406.t002
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progression (HR 0.40; 95% CI, 0.30–0.54), treatment discontinuation (HR 0.18; 95% CI, 0.12–

0.27), and death (HR 0.06; 95% CI, 0.02–0.19) compared with nonresponse. Loss of response

increased risk of discontinuation and death compared with response achievement. However,

patients who achieved and then lost response had a significantly lower risk of death (HR 0.49;

95% CI, 0.30–0.80), but similar risk of discontinuation (HR 1.34; 95% CI, 0.96–1.88) than

those not achieving response. Favorable and intermediate MSKCC risk significantly reduced

risk of progression (HR 0.63; 95% CI, 0.50–0.81 and HR 0.79; 95% CI, 0.62–0.99, respectively),

discontinuation (HR 0.64; 95% CI, 0.51–0.80 and HR 0.79; 95% CI, 0.64–0.98), and death (HR

0.29; 95% CI, 0.22–0.39 and HR 0.61; 95% CI, 0.47–0.79) compared with poor MSKCC risk

(Table 2).

Compared with everolimus, nivolumab increased the risk of progression within 3 months

of follow-up. However, with>3 months of follow-up, nivolumab slightly reduced the risk of

progression compared with everolimus (both not significant at 0.05 level) (Table 2). The risk

of progression on nivolumab may have been higher in the first 3 months compared with after

3 months because patients on nivolumab can experience a delay in clinical benefit during the

early stages of treatment [36]. Patients on nivolumab were significantly less likely to discon-

tinue treatment (HR 0.73; 95% CI, 0.62–0.85; P<0.0001) and less likely to die during the first 3

months (HR 0.50; 95% CI, 0.28–0.90; P = 0.02) than those on everolimus (Table 2).

Comparison of dynamic modeling versus standard parametric survival

analysis

For TTP, dynamic modeling showed a better fit to the observed trial data compared with the

standard parametric fit, particularly for nivolumab (Table 3, Fig 2A).

This is because dynamic modeling accounts for varying HRs across the follow-up (e.g.,�3

vs>3 months), thus enabling better modeling of the nivolumab treatment effect. The piece-

wise HR also allows the capture of the higher risk of progression during the first 3 months ver-

sus after 3 months. For TTD, dynamic modeling showed a better fit to the observed trial data

compared with the standard parametric fit for nivolumab and everolimus (Table 3, Fig 2B).

Similarly to TTP, the Cox regression accounted for time-dependent changes in treatment

effect. For TTDeath, both standard parametric survival analysis and dynamic modeling com-

pared well versus the observed portion of the trial data (Table 3, Fig 2C).

Beyond the trial duration, mean TTDeath predictions for everolimus were similar with

both methods, but differed substantially between the parametric and dynamic methods for

nivolumab (30.8 and 51.5 months, respectively) due to the estimated role of key clinical events

on TTDeath (Table 3, Fig 2C).

Table 3. Descriptive statistics summary for TTD, TTP, and TTDeath (25-Year horizon).

TTP TTD TTDeath

Nivolumab Everolimus Nivolumab Everolimus Nivolumab Everolimus

Months, median

Trial-reported [12,25] 4.6 4.3 5.4 3.7 25.0 19.6

Standard parametric analysisa 5.0 5.0 7.0 5.0 24.0 19.0

Dynamic modelinga 4.4 3.6 6.2 4.1 27.0 19.2

Months, mean

Standard parametric analysisa 9.8 8.0 11.8 7.8 30.8 27.2

Dynamic modelinga 12.8 7.3 10.2 6.0 51.5 29.8

aBased on time-to-event summaries.

https://doi.org/10.1371/journal.pone.0203406.t003
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Discussion

This case study provides a comparison of a standard parametric approach that is commonly

used in health economic modeling studies and dynamic modeling for fitting survival curves in

patients with advanced RCC. Dynamic modeling showed better or similar fits to the observed

trial data than the standard parametric approach for median treatment discontinuation, pro-

gression, and OS in both the nivolumab and everolimus arms. This is most likely because

dynamic modeling can account for patient characteristics and varying hazards, thus matching

the observed trial data to the unique shape of the KM curves using a Cox regression analysis.

The extrapolation techniques help quantify the treatment value over patient lifetime, which

cannot be estimated with limited follow-up clinical trial data. Predictive models were devel-

oped using observed trial data (minimum follow-up 14 months) and validated against

extended data cuts (minimum follow-up 26 and 38 months).

Mean OS predictions with dynamic modeling were similar to those obtained with the standard

parametric approach for everolimus (29.8 and 27.2 months, respectively), but for nivolumab,

there was a large difference between the approaches (51.5 and 30.8 months, respectively). Accu-

racy and proximity of estimates to the observed mean OS cannot be confirmed until long-term

trial data beyond 5 years become available. However, using data from a later data cutoff date from

CheckMate 025 (May 2016 data cutoff, minimum follow-up 26 months, and June 2017 data cut-

off, minimum follow-up ~38 months) [37,38], the predicted survival curve using the dynamic

approach produced a fit to the observed KM curve that was better than the standard parametric

approach curve (S1 Fig). Longer follow-up of patients with advanced RCC treated with nivolumab

are available from phase I (N = 34) and II (N = 167) studies [39]. The phase I study reported 3-

and 5-year OS rates of 41% and 34%, respectively (minimum follow-up, 50.5 months); the phase

II study reported 3-year OS of 35% (minimum follow-up, 38 months) [39]; and CheckMate 025

reported 3-year OS rates of 39% [38]. Dynamic modeling of CheckMate 025 data predicted 3- and

5-year OS rates of 41% and 28%, similar to the phase I and II data and the later data cut from

CheckMate 025 [38]. In contrast, the standard parametric approach predicted 3- and 5-year OS

rates of 30% and 10%, and although the 3-year estimate was similar to the trial data, the 5-year

estimate was much lower. These longer-term follow-up data indicate that dynamic modeling may

be more suitable than the standard parametric approach for nivolumab in advanced RCC. This

further supports the need for alternative modeling methods for immunotherapies, to account for

their unique mode of action. In the context of immunotherapies, response levels and durations

seem to a play very important role in predicting longer-term outcomes.

As the accuracy of survival curve estimates can vastly affect subsequent cost-effectiveness

analysis results, the choice of survival modeling method is very important. In a recent cost-

effectiveness evaluation of nivolumab as a second-line treatment for advanced RCC, Wan et al.

[40] used a partitioned survival model to estimate costs, life-years, and quality-adjusted life-

years. The authors used data from CheckMate 025 [12], but did not have access to individual

patient data. They therefore used a method published by Hoyle and Henley [41] to estimate

the underlying individual patient data from the numbers at risk from the overall population

KM graphs. The survival curves were then fitted using a Weibull distribution. This resulted in

mean PFS and OS estimates of 9.3 and 30.9 months, respectively, for nivolumab and 7.3 and

27.0 months, respectively, for everolimus [40]. These values are all similar to our standard

parametric results (Table 3), with the largest difference being 0.7 months (for everolimus PFS).

However, the OS estimate for nivolumab was substantially shorter than our dynamic estimate

Fig 2. Comparison of KM curves (CheckMate 025 study data), standard parametric analysis, and dynamic modeling

curves for (A) progression, (B) treatment discontinuation, and (C) overall survival.

https://doi.org/10.1371/journal.pone.0203406.g002

Dynamic modeling for survival estimation in advanced renal cell carcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0203406 August 30, 2018 8 / 13

https://doi.org/10.1371/journal.pone.0203406.g002
https://doi.org/10.1371/journal.pone.0203406


(30.9 vs 51.5 months) [40]. While the long-term predictions from Wan et al. cannot be vali-

dated against the longer follow-up data presented here, dynamic modeling estimates compare

well against the phase I/II trial data.

Different modeling approaches for the extrapolation of survival curves, performed with a

view to performing cost-effectiveness analyses related to immunotherapies for indications

other than advanced RCC, were compared earlier by Bohensky et al. [42]. In that study, the

authors compared Weibull, log-logistic, and a Weibull mixture cure model for estimating sur-

vival in previously untreated patients with advanced melanoma treated with nivolumab versus

ipilimumab. Estimated 3-year survival results from the three models varied widely. Bohensky

et al. concluded that the choice of model would have a substantial impact on predicted effec-

tiveness and cost-effectiveness, hence they recommended that different models should be con-

sidered in sensitivity analyses. While this point can be argued more generally for studies that

project short-term outcomes into the future, it is particularly important for immunotherapies

due to their unique mechanism of action: immunotherapies tend to have higher and more

durable response rates than traditional chemotherapies or targeted therapies, which is likely to

impact treatment discontinuation, progression, and survival. The observed KM curves from

trials also suggest that immunotherapies may be associated with varying hazards over time,

which show signs of deceleration at some points that requires careful exploration of inflection

points and adjustments for changes in hazard before/after these time points.

Various statistical techniques—piecewise fitting, landmark analysis, pre- versus post-progres-

sion survival, parametric mixture models, and spline-based models [23]—are considered for

extrapolation of clinical outcomes. These methods may address one or multiple nuances of

immunotherapy mechanism of action. Due to its flexibility and adaptability, dynamic modeling

is a promising alternative methodology that can address most of the intricacies immunotherapies

introduce; hence, it was compared with standard parametric survival analysis. The comparability

of alternative extrapolation techniques can be considered for future research. Dynamic modeling

allows the incorporation of the impact of patient heterogeneity; varying hazards over time, such

as deceleration of hazards seen after 3 months in this example; and interdependencies of clinical

outcomes. For instance, in our example, the separation of KM curves for responders and nonre-

sponders for treatment discontinuation, progression, and survival suggest—not surprisingly—

that these subgroups have varying risks (S2 Fig). Furthermore, achieving response is positively

correlated with survival despite losing response later, which can be captured with dynamic

modeling using response as a time-dependent predictor in estimations.

In this case example, the dynamic model incorporated MSKCC risk, objective response

achievement and duration of response (both time-dependent predictors), and deceleration of

hazards for patients with advanced RCC. The objective of our model was to provide inputs

relating to TTP, TTD, and TTDeath for use in a health economic analysis to assess the eco-

nomic consequences associated with the management of advanced RCC using different treat-

ment sequences, the results of which will be presented elsewhere.

Limitations

One limitation of our dynamic model is in not accounting for all patient characteristics. Only

MSKCC risk group—which incorporates time from diagnosis to treatment, hemoglobin levels,

calcium levels, lactate dehydrogenase levels, and Karnofsky performance status—was consid-

ered, but other patient characteristics may also impact outcomes. Furthermore, MSKCC risk

group was not modeled dynamically; only baseline MSKCC risk score was considered, rather

than including this as a time-dependent factor. Finally, MSKCC risk group has only been vali-

dated in targeted therapies, not in checkpoint inhibitors.
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For the standard parametric approach, we tested various distributions, but as none pro-

vided a particularly good fit to the trial data, Weibull distributions were used, as these have

been used in various economic analyses of targeted therapies in metastatic RCC [33–35]. We

only compared the dynamic modeling approach versus the Weibull parametric approach, and

did not compare against other distributions.

We cannot be sure that inflection points in the survival curves are true effects of nivolumab

or simply aberrations. Also, long-term extrapolations of the dynamic model are suggestive of

cure potential with nivolumab for advanced RCC. However, long-term follow-up data are not

available to validate the curative potential. This also makes it impossible to know whether the

longer OS estimate for nivolumab using the dynamic approach is more—or less—realistic than

the one obtained with the standard parametric approach. However, the good match of the

dynamic results with data from a later data cutoff point (3 years) from CheckMate 025 [37,38]

and longer-term follow-up data from phase I and II studies [39] are encouraging in this regard.

Lastly, we chose to study the dynamic approach, and did not compare this with possible

other approaches, such as piecewise fitting, landmark analysis, pre- versus post-progression

survival, parametric mixture models, and spline-based models. Further studies could be

undertaken to examine whether these approaches might be suitable for predicting survival

curves in patients taking immunotherapies.

Conclusions

Based on the current study, different statistical approaches can predict considerably different

potential long-term benefits for immunotherapies, particularly in terms of TTDeath, which

could have an important impact on predicted clinical and economic values of the therapy.

Dynamic modeling—which can account for patient heterogeneity and time-dependent disease

milestones implemented in flexible platforms (e.g., DICE)—could be a good alternative to sur-

vival partition models for immunotherapies.
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