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Abstract

As the basic carrier of air flight operation, air route network (ARN) is of great significance to

the smooth operation of flights. However, the waypoint is a core part of the route, so it is an

important topic to identify influential waypoints in ARN. In this paper, a method to identify the

influence of the node in ARN based on an improved entropy weight (IEW) method is pro-

posed. Then, centrality measures including degree, closeness, betweenness and eigenvec-

tor as the multi-attribute of ARN in IEW application. IEW method is used to aggregate the

multi-attribute to obtain the evaluation of the influence of each waypoint. To demonstrate the

effectiveness of the IEW method, three real ARNs are selected to conduct several experi-

ments with susceptible infected recovered (SIR) model. The results show the efficiency and

practicability of the proposed method.

Introduction

The airplane currently does not follow a smooth and optimized trajectory. Yet, they should fol-

low a path on a predefined grid whose nodes are called navigation points or waypoints. There-

fore, the air route network (ARN) as the basic operation carrier of air transportation, is of

great significance to the smooth operation of flights. During the ARNs, route segments (edges)

are connected by a series of air route waypoints (nodes) and the waypoints include the naviga-

tion stations, crossing points and reporting points.

With the waypoints’ help, pilots can have exact positions from the ground navaids to keep

on the right track. In addition, the waypoint is also where the flight is concentrated. For exam-

ple, according to the statistics of the Civil Aviation Administration of China (2017), the busiest

waypoint is ZHO (A waypoint). Its flight volume reached more than 1,700 vehicles daily.

Besides, the number of flights in the top-10 busy waypoints exceeded 850 vehicles daily.

Key waypoints affects the efficiency of aviation operations, moreover, they have a signifi-

cant impact on the safety and reliability of aviation operations. Therefore, identification of key

waypoints has important influence on the safety and reliability of aviation operations and at

the same time contributes to the reduction of airborne delays.

ARNs can be simplified as the undirected networks and analyzed within the framework of

complex network theory. Identifying influential nodes is a fundamental and practical topic in

the research of complex networks. Opsahl et al.[1] use generalizing degree and shortest paths

to study node centrality in weighted networks and the result has certain accuracy, but it mainly
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focus on local characteristics, lack of comprehensiveness. A semi-local centrality measure as a

tradeoff between the low-relevant degree centrality and other time-consuming measures

(betweenness or closeness) is proposed to identify influential nodes in [2]. Chen [3] design

three metrics to assess system homogeneity, diffusion speed, and diffusion scale, and investi-

gate their performance over complex systems, results show that they are locally optimal but

not necessarily globally optimal. Community structure is also used to help identify influential

nodes in [4], but the result is affected by the size of the communities. A new efficiency central-

ity (EffC) to rank the spreaders in the whole network is proposed in [5] to study influential

nodes. Besides, both the k-shells theory [6] and the message-passing approach [7] are proposed

to identify influential spreaders in complex networks. Chen et al.[8] discuss influential nodes

in large-scale directed networks by proposing a local ranking algorithm named ClusterRank,

and the theory is effective but mainly based on local information, lacking global characteristics.

Furthermore, hybrid degree centrality (HC) are used to analyze the importance of nodes in

weighted networks [9], and this theory improves the stability of the results to some extent, but

ignores the local structure of neighbors. In short, the above theory solves the issue of identify-

ing influential nodes at a different angle, and has certain accuracy and applicability. However,

most of them are singular and lack comprehensive characteristics. For example, degree is a

local centrality theory, and the betweenness and closeness are the global centrality ones. There-

fore, the theories lack of comprehensiveness and applicability to some extent.

In addition, recently, the comprehensive centrality theories have also been enriched. The

comprehensive centrality measure based on the Dempster-Shafer (DS) evidence theory is pro-

posed in [10] and [11] to identify influential nodes. The results show that the DS theory is

effective, however, the DS centrality is more focused on unweighted networks, lacking univer-

sality. Li and Deng[12] modify TOPSIS centrality method with the relative entropy and the

effectiveness of the proposed method is demonstrated, but it lacks applicability more or less

because it is sometimes difficult to select the appropriate centrality measures in some specific

networks. Besides, an algorithm with weighted formal concept analysis (WFCA) is discussed

in [13] and experiments illustrate that the WFCA can rank nodes effectively. A measure

named community-based mediator (CbM) is proposed in [14], and the CbM describes how

the node is essential to connect two or more than two communities of the network. The simu-

lation shows that the theory performs well. What’s more, in [15], the Analytic Hierarchy Pro-

cess (AHP) theory is used to identify influential nodes in the network and the efficiency and

practicability of the method is proved by real networks. Nevertheless, the AHP has many sub-

jective qualitative components. Although it reflects the subjective well, but it lacks scientificity

and stability and the result is not easy to be convinced to a certain extent. Tian and Deng[16]

put forward a new measure to identify the influential nodes based on information entropy and

the theory includes not only local but global structure information. Results demonstrate that

the proposed method can successfully identify the influential nodes in networks. Similarly, in

this paper, a centrality measure based on entropy weight method is proposed. The proposed

measure is an objective weighting method and it extracts information from the sample, namely

the original data. Moreover, the deviation of the weight obtained by the method is smaller

than that of the subjective weighting method (E.g. AHP) and the proposed method can better

reflect the true importance of each evaluation index.

On the other hand, the infrastructure of aviation industry is analyzed by the universal use

of complex network theory. The network structure and nodal centrality of individual cities in

the air transport network of China are analyzed by centrality metrics in [17]. A critical infra-

structure with an enormous impact on local, national, and international economies is dis-

cussed in the worldwide air transportation network [18]. In [19], a new network model is

proposed, which takes the airport as a node and uses the airport traffic flow as the edge to
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investigate the network properties, and identifies the relevance of key airports in the network.

Based on the situation, a model of multi-objective optimization for crossing waypoints loca-

tion problem (CWLP) is built in [20], and the model is judged by the two factors of total airline

cost and total flight conflict coefficient and proceed from the economic and safe aspects of air

route network. Sun et al.[21] analyze the air navigation route system of fifteen different coun-

tries by using the following five metrics: degree, distance strength, weighted betweenness cen-

trality, weighted closeness centrality, and edge length distribution. In [22], Cai et al. study the

topology structure of the Chinese air route network (CARN) with complex network theory.

Most of the above analyses are based on the airport networks, that is, the airports are the

nodes. If there are flights between airports, then add an edge. All of them can be used as a theo-

retical guide to my work, but they all lack research on air route networks (ARNs), especially

the identification of key waypoints (nodes) where the nodes include the navigation stations,

crossing points and reporting points. Based on the research above, in this paper, we analyze

the structure characteristics of China’s three typical regional (Beijing, Shanghai and Guang-

zhou) route networks and then use a proposed improved entropy weight centrality (IEWC) as

well as other measures to study the influence of waypoints in route networks. The IEWC is a

kind of objective weight method and it uses the information entropy to calculate the entropy

weight of each index, and then modifies the weight of each index by entropy weight. Therefore,

the weight of the index is objective and accurate, which can effectively avoid the influence of

the subjective judgment (E.g. AHP) error on the weight analysis. In addition, the IEWC

method can make full use of attribute information, combine the local (degree) and global

(betweenness or closeness) characteristics of the network, and also consider the structure fea-

tures of the neighbor nodes, which can better identify the influential nodes. As a result, the

proposed measure is proved to be stable and effective by SIR model.

The structure of this paper is as follows. Some centrality measures for nodes are introduced

in section 2 and the improved entropy weight centrality (IEWC) measure is proposed in sec-

tion 3. Then in section 4, three real air route network examples are illustrated to show the effi-

ciency and practicability of the proposed method, the SIR model and Kendall’s tau coefficient

are used to evaluate the performance. Finally, section 5 concludes this paper and future work.

Centrality measures for nodes

In every system in nature, there are always one or more elements that occupy a very important

position. If you remove them, the system will be greatly affected in terms of structure, stability,

and even survival. Therefore, the importance of each node in a complex network abstracted by

a complex system is different. In a variety of complex networks, using a quantitative analysis

method to find which node is the most important in a large-scale network, or the importance

of a node relative to one or more other nodes, is a fundamental issue in the study of complex

networks. The measure of the importance of nodes is the node centrality, which is used to

quantitatively indicate that some nodes in the network are more important or more central

than other nodes. This indicator is used to determine the relationship between the location of

an individual in the network and its influence or appeal in the group.

Complex network centrality analysis focuses on the importance evaluation measures of the

nodes, and on this basis reflects the degree of centralization of the entire network. According

to the theory of complex networks, there are several measures for characterizing the centrality

of a node in a graph, which are degree, closeness, betweenness and eigenvector centrality.

For a simple network G = (V,E) with N(= |V|) nodes and M(= |E|) edges, it can be described

by an adjacency matrix A = {aij}, where aij = 1 if node vi is connected with node vj, and aij = 0

otherwise.

A measure of identifying influential waypoints in ARN

PLOS ONE | https://doi.org/10.1371/journal.pone.0203388 September 18, 2018 3 / 19

https://doi.org/10.1371/journal.pone.0203388


Degree of node vi is defined as the number of edges connected to node vi.The degree cen-

trality (DC) of node vi, denoted by DE(vi) is [23, 24]

DEðviÞ ¼
XN

i¼1

aij ð1Þ

Betweenness of node vi is defined as the fraction of shortest paths between node pairs that

pass through the node of interest, which reflects the role and influence of the node in the entire

network [25, 26]. The betweenness centrality (BC) of node vi, denoted by B(vi) is expressed as

follow

BðviÞ ¼
X

s6¼i6¼t2V

nstðviÞ
nst

ð2Þ

where nst is the number of shortest paths between nodes vs and vt, and nst(vi) denotes the num-

ber of shortest paths between vs and vt which pass through node vi.
Closeness centrality (CC) [27, 28], CC(vi) of node vi is defined as the reciprocal of the sum

of geodesic distances to all other nodes of V, and calculated by the following formula

CCðviÞ ¼ ½
X

j¼1;j6¼i

dij�
� 1

ð3Þ

where dij is the geodesic distance between vi and vj.
Dangalchev (2006) modified the definition to a general form, called residual closeness in

[29]. Residual closeness is able to reflect the effects of node removal even if this removal does

not result in disconnected components, and it is expressed as

CRðviÞ ¼
X

j¼1;j6¼i

2� dij ð4Þ

A represents the adjacency matrix of graph (and λ1,λ2,� � �,λN are the eigenvalues of matrix

A. The maximum eigenvalue of matrix A is λmax, and its corresponding eigenvector is e = [e1,

e2,� � �eN]T. The formula is obtained as follow

lmaxei ¼
XN

j¼1

aijej ð5Þ

The eigenvector centrality (EC) of node vi, denoted as CE(vi) is computed by [30, 31]

CEðviÞ ¼ l
� 1

max

XN

j¼1

aijej ð6Þ

Improved entropy weight method

Entropy weight centrality

Entropy is a physics concept that can be used as a measure of the degree of confusion within

the system. In general, the larger the system entropy, the more microscopic states the system

has in its macro state, and the more chaotic and unordered it is. On the contrary, the less the

microscopic state of the system, the more uniform the internal state of the system, the more

ordered, the smaller the entropy.

When there are h items to be evaluated and the evaluation indexes are g, forming original

evaluation matrix O = (oij)h×g (i = 1,2,� � �,h; j = 1,2,� � �,g), then for each index oj, the Information
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entropy is

ej ¼ �
Xh

i¼1

pij � ln pij; where; pij ¼ oij=
Xh

i¼1

oij ð7Þ

If the entropy ej of an index is small, it shows that the larger variability value of the index,

the more information is provided, the bigger effect of this index in the comprehensive evalua-

tion, and the greater the weight. Otherwise, if the entropy ej of an index is big, it shows that the

smaller variability value of the index, the less information is provided, the smaller effect of this

index in the comprehensive evaluation, and the smaller the weight.

The entropy weight method is used to quantify the information for each item (network

nodes) to be evaluated and gives the weight of each index (such as degree, betweenness and

closeness, etc.) to simplify the evaluation process. Objective weight of each index can be deter-

mined by using entropy weight method firstly, and then the subjective weight can be revised

by objective weight. The theory analysis is described as follows.

To express the IEW model, several new symbols and their definitions are introduced in

Table 1.

Firstly, in this section, the evaluation indicators are determined and the initial decision

matrix (xij)n×k is obtained as follow

X ¼

x11 x12 � � � x1k

x21 x22 � � � x2k

..

. ..
. ..

. ..
.

xn1 xn2 � � � xnk

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

n�k

ð8Þ

where xij is the jth index value of the ith network node, which i = 1,2,3,� � �,n and j = 1,2,3,� � �,k.

To make indexes of matrix X being dimensionless, and then we get the nondimensionalized

factor, denoted by yij is [32]

yij ¼
xij

Xn

i¼1

Xij

; ðj ¼ 1; 2; 3; � � � ; kÞ ð9Þ

where xij is the element of matrix X.

Table 1. New symbols and their definitions.

Symbols Definitions

xij The elements of index matrix, it means the value of the ith node is measured by jth centrality measure

which i 2 (1,2,3,� � �n), j 2 (1,2,3,� � �k).

n The number of network nodes to be evaluated.

k The types of centrality measures.

Y The normalized form of the matrix X.

yij The elements of matrix Y.

μ The adjustment coefficient, which μ = 1/log(n).

H(Z) Entropy value of the element yij, which i 2 (1,2,3,� � �n), j 2 (1,2,3,� � �k).

wj
Weight value of the jth type of centrality measure, which

Xk

j¼1

wj ¼ 1.

I The synthetic entropy weight matrix.

https://doi.org/10.1371/journal.pone.0203388.t001
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The normalized decision matrix Y is

Y ¼

y11 y12 � � � y1k

y21 y22 � � � y2k

..

. ..
. ..

. ..
.

yn1 yn2 � � � ynk

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

n�k

ð10Þ

Before the entropy weight of the index is determined, the following formula is defined.

HðZjÞ ¼ � m
Xn

i¼1

yijlogðyijÞ; j ¼ 1; 2; 3; � � � ; k ð11Þ

where μ is the adjustment coefficient, that is, μ = 1/log (n).

The entropy weight of index, denoted by wj is computed by

wj ¼
1 � HðZjÞ

k �
Xk

j¼1

HðZjÞ
; j ¼ 1; 2; 3; � � � ; k ð12Þ

where 0� wj� 1 and
Xk

j

wj ¼ 1.

The entropy weight has the following characteristics.

1. The entropy weight is not determined by human subjectivity and it is determined objec-

tively by information entropy, avoiding the randomness of human factors.

2. When the value of each node on index j (centrality measure) is nearly equal, the entropy

value is also close to the maximum value 1 and the entropy weight is close to 0. This means

that the index can not provide sufficient information to the decision maker and the index

can be ignored.

3. On the other hand, when the value of each node on index j differs greatly, the entropy is

small and the entropy weight is large. This shows that the index provides more information

for decision makers and this index should be focused on.

4. The entropy weight is not an important coefficient in the actual sense of the index, but is a

relatively fierce degree in the competitive sense of each index under given networks and

indexes.

5. From the perspective of information theory, entropy weight represents how much useful

information an index provides.

At last, the entropy weight matrix W of indices is described as follow

W ¼ ½w1;w2;w3; � � � ;wk�
T

ð13Þ

The improved entropy weight centrality (IEWC) of node v, denoted by Ic(v) is obtained by

multiplying Y and W.

ICðvÞ ¼ YW ð14Þ

where Ic(v) = [Ic(v1),Ic(v2),Ic(v3),� � �,Ic(vn)]T.
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Example demonstration

In this section, a simple network with 8 nodes is built (see Fig 1). The application of the pro-

posed method is explained by calculating DC, BC, CC and EC of the nodes in the graph by

turns, and analyzing the IEWC of the network.

As shown in Fig 1, the network is symmetrical. Intuitively, the centrality of node 1 is equal

to node 2 and the same with nodes 4 and 5, respectively. Based on the proposed algorithm

above, the initial decision matrix X of the network in Fig 1 is as follow

X ¼

nodes DC BC CC EC

node1 3 0:01587 0:5 0:14735

node2 3 0:01587 0:5 0:14735

node3 4 0:03175 0:5385 0:18737

node4 4 0:23016 0:6364 0:17973

node5 4 0:23016 0:6364 0:17973

node6 3 0:47619 0:6364 0:11307

node7 2 0:28571 0:4667 0:03528

node8 1 0 0:3333 0:01011

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð15Þ

The matrix X is normalized by Eq (8), then we can get the matrix Y

Y ¼

nodes DC BC CC EC

node1 0:42857 0:01587 0:5 0:14735

node2 0:42857 0:01587 0:5 0:14735

node3 0:57143 0:03175 0:5385 0:18737

node4 0:57143 0:23016 0:6364 0:17973

node5 0:57143 0:23016 0:6364 0:17973

node6 0:42857 0:47619 0:6364 0:11307

node7 0:28571 0:28571 0:4667 0:03528

node8 0:14286 0 0:3333 0:01011

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð16Þ

Fig 1. A simple network.

https://doi.org/10.1371/journal.pone.0203388.g001
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According to Eq (11), the entropy weight matrix W of indices is

W ¼ ½ 0:3191 0:1662 0:3084 0:2063 �
T

ð17Þ

On the basis of the Eq (13) above, the IEWC of the graph in Fig 1 is shown in Table 2

In Table 2 node4 and node 5 are ranked as the most influential node in the IEWC method

and this result is evident in Fig 1. In addition, it can be seen from Fig 1 that nodes1 and 2 are

symmetrical so, the sorting position is equal to each other. Although the degree of node3 is

greater than node 6, it is obvious that the position of 6 is more important. So the rank of node

6 is relatively high. Simultaneously, the centrality of node7 higher than 8. The above shows

that the IEWC model can better reflect the importance of nodes to some extent. Thus, the

objectivity, accuracy, and applicability of the proposed measure for nodes are demonstrated by

the example.

Experimental discussion

Air route network data

In this section, the Chinese air route network (CARN) provided by the Air Traffic Manage-

ment Bureau (ATMB) of China is selected as experimental data to verify the validity of the pro-

posed model. The topology layout of CARN is shown in Fig 2.

As depicted in Fig 2, the blue solid line represents the air route segments and they are con-

nected to a series of air route waypoints (red nodes in Fig 2) where the waypoints (that is,

nodes) include the airport navigation stations (not the airports), navigation points, crossing

points and reporting points. Therefore, ARN can be simplified as an undirected complex net-

work. According to the daily flight count statistics of the Civil Aviation Administration of

China in 2017, the three busiest airspace regions in China are Beijing, Shanghai and Guang-

zhou regions triangle respectively (As shown in Fig 2, Beijing, Shanghai and Guangzhou

regions are marked by pink ellipse, rectangle and triangle respectively.). In order to satisfy the

need of the experiment, the detailed topology of top-3 subnets of CARN is shown in Fig 3.

Fig 3(A), 3(B) and 3(C) give a detailed representation of Beijing, Shanghai and Guangzhou

air route networks respectively. By analyzing the network structure of each region in Fig 3, we

can get the basic topological features of the three real air route networks (see Table 3).

Table 3 makes a simple comparison of the basic characteristics of the top-3 air route net-

work. The average degree of the three networks is about 4, indicating that on average, the way-

point contains four route segments. Because of the similar clustering coefficients, the

clustering effect of the air route networks is close to each other. Assortativity coefficients of the

networks Beijing and Guangzhou are negative, which means that large-degree nodes are more

likely to link the small-degree nodes to some degree. However, the parameter of Shanghai air

route network is positive, that is, the large-degree nodes tend to connect large-degree ones.

Overview of SIR model

The SIR model is one of the most classic models in the epidemic model and can be used to

identify the influential nodes in complex networks. According to [33], SIR model has three

Table 2. IEWC of the nodes in Fig 1.

Fig 1 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node7 Node8

IEWC 0.3240 0.3240 0.3923 0.4539 0.4539 0.4355 0.2899 0.1505

Rank node 4 = node 5 > node 6 > node 3 > node 1 = node 2 > node 7 > node 8

https://doi.org/10.1371/journal.pone.0203388.t002

A measure of identifying influential waypoints in ARN

PLOS ONE | https://doi.org/10.1371/journal.pone.0203388 September 18, 2018 8 / 19

https://doi.org/10.1371/journal.pone.0203388.t002
https://doi.org/10.1371/journal.pone.0203388


states: (a) Susceptible, denoted by S(t) are generally the healthy individuals, but can be infected

by viruses; (b) Infected I(t) is the individuals who have been infected with the virus and have

the ability to infect other healthy individuals;(c) Recovered R(t) is the individuals who has

never had the ability to infect other healthy individuals and is not infected by other infected

individuals. Initially, let a test node infect, then each step will randomly infected susceptible

neighbors, the probability of infection is γ. After a long period of time, due to the lack of sus-

ceptible individuals, the infected nodes gradually decreased. When no node is infected, the

infection process ends. The total number of infected nodes and recovered nodes represented

by time t, denoted by F(t), may be considered as an index for evaluating the influence of the

tested node at time t. As time t continues to increase, F(t) increases and eventually remains sta-

ble. Where td indicates the terminal time when there is no infected node. Therefore, the final

coverage of the node i, denoted by Fi(td), is used to represent the true propagation capabilities

of i, where node i is set to initial infection. The influence of the node i is related to the value of

Fi(td). The higher the value of Fi(td), the more impact the node has.

Kendall’s tau coefficient

In order to evaluate the performance of different identifying influential nodes algorithms,

Kendall’s tau coefficient, denoted by τ is introduced to measure the influence of node

Fig 2. Chinese air route network.

https://doi.org/10.1371/journal.pone.0203388.g002
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spreading effects on the correlation of the above five methods. Kendall’s tau coefficient is a sta-

tistic used to measure the correlation of two random variables.

Suppose two random variables are X and Y (also can be seen as two sets). Their number of

elements is N, and the ith (1�i�N) values taken by the two random variables are denoted by

Xi and Yi respectively. The corresponding elements in X and Y form an element pair set XY,

which contains elements (Xi,Yi) (1�i�N). When Xi> Xj and Yi> Yj, or Xi< Xj and Yi< Yj,
these two elements are considered to be consistent. When Xi> Xj and Yi< Yj, or Xi< Xj and

Yi> Yj, these two elements are considered inconsistent. When Xi = Xj and Yi = Yj, these two

elements are neither concordant nor discordant. Kendall’s tau coefficient is defined as follow

[34, 35]

t ¼
Nc � Nd

0:5nðn � 1Þ
; ð� 1 � t � 1Þ 18

Where Nc and Nd are the number of concordant and discordant pairs, respectively. The

higher the τ value, the more accurate the list of rankings the method can generate.

Effectiveness

In this section, we use the above theories in sections 2and 3 to obtain the top-10 waypoints of

the three air route networks and compare the results. The SIR model mentioned in section 4.2

is also used to identify the influential nodes and the results are obtained by over 100 indepen-

dent runs. Lists of top-10 influential waypoints for the three real networks are shown in Table 4.

It can be seen from Table 4 that in Beijing, the proposed IEWC, DC and F(t)have the same

seven members in the top-10 lists, and especially the top-2 waypoints of the proposed method

and F(t) are the same; while, the same number of the top-10 nodes among BC, CC, EC and F
(t) is six. Therefore, the proposed IEWC can reflect the importance of nodes in Beijing net-

works better. In Shanghai, the same numbers in the top-10 lists among the proposed IEWC,

DC and F(t) are eight; the proposed IEWC and DC have the same seven members in the top-

10 lists; BC, CC and F(t) have the same number in the top-10 lists, but the same number of

top-10 nodes between EC and F(t) is five. In Guangzhou, the result for the proposed method

and DC is similar, because the same numbers in the top-10 lists between F(t) and the proposed

IEWC or DC is eight, simultaneously, the quantity between the proposed IEWC and DC is

seven. Both BC and CC have seven nodes with what F(t) ranked, but EC performs a little bad

with six same nodes. Obviously, node 59 is the most influential one in Guangzhou. Overall, it

can be found that the proposed method performs well in identify the influence of waypoints

among the real air route networks.

The influence of the nodes that either appear in the top-10 list by the proposed method or

others is compared with some simulations (over 100 runs). The cumulative infected nodes for

these three air route networks are shown in Figs 4, 5 and 6.

Fig 3. Top 3 subnets of CARN.

https://doi.org/10.1371/journal.pone.0203388.g003

Table 3. Basic topological features of the top-3 subnets of CARN.

Networks Nodes Edges Average degree Clustering coefficients Assortativity coefficients

Beijing 69 254 3.6812 0.1722 -0.058

Shanghai 111 220 3.9459 0.2202 0.0217

Guangzhou 84 158 3.7738 0.1682 -0.024

https://doi.org/10.1371/journal.pone.0203388.t003
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In Beijing, the result for the proposed IEWC and DC is similar, because the lines of the pro-

posed IEWC and DC almost overlap as shown in Fig 4(A). From Fig 4(B), we can find that the

average number of infected nodes by the proposed IEWC is slightly higher than BC at each

step. It is obvious that the proposed IEWC performs better than CC and EC, as presented in

Fig 4(C) and 4(D). In Shanghai, both DC and BC have similar performance with the number

of infected nodes is slightly smaller than the proposed method (see Fig 5(A) and 5(B)). As

depicted in Fig 5(C), the proposed IEWC outperforms CC. At the same time, the performance

of BC as shown in Fig 5(D) is not as good as the proposed IEWC. In Guangzhou, Fig 6(A)

illustrates the result of the proposed IEWC is slightly superior to that of DC. However, there is

no significant difference between the results of IEWC and BC (see Fig 6(B)). In Fig 6(C), it is

can be seen that the curves of CC is all below the curves of IEWC and the curves of EC is the

Table 4. The top10 waypoints of the three air route networks based on the spreading ability F(t) (t = 10 and 100 implementations) and five centrality measures men-

tioned above.

Top 10 Centrality measures

Beijing DC BC CC EC Proposed method F(t)

1 65 59 59 65 65 65

2 62 69 47 62 47 47

3 40 65 40 59 63 59

4 17 47 69 35 59 40

5 47 40 65 47 10 63

6 59 62 62 40 29 69

7 61 61 36 53 62 17

8 69 17 61 54 32 35

9 10 36 35 43 17 32

10 35 10 41 69 40 55

Shanghai

1 8 104 104 8 8 8

2 4 92 8 5 104 4

3 84 8 91 4 4 5

4 92 73 92 100 41 92

5 104 4 4 11 92 104

6 3 91 65 12 20 84

7 5 9 3 102 11 3

8 9 65 66 107 3 11

9 11 3 11 20 35 63

10 12 11 69 54 84 20

Guangzhou

1 59 59 59 59 59 59

2 64 51 51 64 6 64

3 6 66 64 51 51 51

4 51 64 66 57 40 66

5 57 42 46 46 47 57

6 66 6 32 35 64 40

7 1 1 34 61 57 6

8 40 46 57 32 39 47

9 47 39 55 55 16 46

10 30 40 61 38 32 32

https://doi.org/10.1371/journal.pone.0203388.t004
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same (see Fig 6(D)). The simulations above shows that, the proposed IEWC does well in find-

ing the key nodes of the real air route network.

In addition, the correlation between the spreading ability measured by F(t) and the corre-

sponding centrality value is analyzed by the Kendall’s tau coefficient τ in Fig 7. According to

the theory in section 4.3, Kendall’s tau coefficient can intuitively reflect the correlation among

different methods in the numerical results. In this section, the spreading probability γ of SIR

model is gradually increasing from 0.01 to 0.1, and then the Kendall’s tau coefficient of the

sorting methods and SIR model are obtained.

As shown in Fig 7(A), DC and BC perform similarly in Beijing, because the correlation

curves of them are almost coincide. The correlation τ of the proposed IEWC is slightly lower

than DC and BC, however, the performance of IEWC is relatively at upstream level in Beijing.

Though CC is better than EC, but the coefficient stability is not as good as EC (see Fig 7(A)).

Fig 4. The cumulative number of infected nodes as a function of time in Beijing with the initially infected nodes that ranked in the top-10 lists by the proposed

method or others. (a), (b), (c), (d).

https://doi.org/10.1371/journal.pone.0203388.g004
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In Shanghai, DC and the proposed IEWC do similarly when the coefficient τ< 0.04, mean-

while, the gap becomes larger, when τ> 0.04 (Fig 7(B)). The coefficient lines of BC and EC are

parallel, which means that the performance of them is virtually identical in Fig 7(B). Besides,

CC puts up a middle-level ranking correlation in Shanghai. From Fig 7(C), we know that the

proposed method performs the best in Guangzhou, simultaneously, it is closely followed by

DC. The correlation curves of BC, CC and EC in Guangzhou, are listed in the third, fourth and

fifth places respectively and they are all stable (Fig 7(C)).

In brief, the top-10 key waypoints of three real air route networks ranked using the pro-

posed method, DC, BC, CC and EC, from the results we can observe that the proposed IEWC

works well. Furthermore, the performance of the proposed method does not fluctuate up and

down in different air route networks. Thus, it can be seen that proposed IEWC is stable and

effective.

Fig 5. The cumulative number of infected nodes as a function of time in Shanghai with the initially infected nodes that ranked in the top-10 lists by the proposed

method or others. (a), (b), (c), (d).

https://doi.org/10.1371/journal.pone.0203388.g005
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Conclusions

In this paper, the basic topological properties of Beijing, Shanghai and Guangzhou air route

networks are analyzed by the complex network theory. The IEWC centrality method is pro-

posed to identify influential waypoints of air route networks. The top-K nodes are ranked by

the proposed method, degree centrality, betweenness centrality, closeness centrality and eigen-

vector centrality respectively. To evaluate the performance, the infection spreading simulations

are done by the SIR model and the rank correlation between the ranking lists is compared with

the Kendall’s tau coefficient. What’s more, this paper has the following research values:

1. The proposed IEWC is an objective weighting method and it extracts information from the

sample, namely the original data. Furthermore, the deviation of the weight obtained by the

Fig 6. The cumulative number of infected nodes as a function of time in Guangzhou with the initially infected nodes that ranked in the top-10 lists by the

proposed method or others. (a), (b), (c), (d).

https://doi.org/10.1371/journal.pone.0203388.g006
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method is smaller than that of the subjective weighting method (E.g. AHP) and the pro-

posed method can better reflect the true importance of each evaluation index.

2. The IEWC includes not only the local (degree) and global (betweenness or closeness) char-

acteristics of the network, but the structure features of the neighbor nodes, which can better

identify the influential nodes. Besides, it has a wide range of applicability.

3. The waypoint centrality identification helps us to study the efficiency, safety and reliability

of the ARN based on the existing structure. Besides, the results can provide a certain theo-

retical reference for the optimization and adjustment of the air routes. Thus they can they

help reduce airborne delays.

The experimental results show that the proposed method can successfully identify the influ-

ential waypoints in ARNs to some degree and it has stability and effectiveness. However, the

experimental data in this paper has limitations and the applicability of the theory is not well

verified. In the future, we will optimize the proposed theory and extend the research to the

national ARN or the world ARN. Besides, we will explore more reliable key waypoints identifi-

cation methods in the context of specific aviation operations.
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