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Abstract

Risk maps of dengue disease offer to the public health officers a tool to model disease risk

in space and time. We analyzed the geographical distribution of relative incidence risk of

dengue disease in a high incidence city from Colombia, and its evolution in time during the

period January 2009—December 2015, identifying regional effects at different levels of spa-

tial aggregations. Cases of dengue disease were geocoded and spatially allocated to cen-

sus sectors, and temporally aggregated by epidemiological periods. The census sectors are

nested in administrative divisions defined as communes, configuring two levels of spatial

aggregation for the dengue cases. Spatio-temporal models including census sector and

commune-level spatially structured random effects were fitted to estimate dengue incidence

relative risks using the integrated nested Laplace approximation (INLA) technique. The final

selected model included two-level spatial random effects, a global structured temporal ran-

dom effect, and a census sector-level interaction term. Risk maps by epidemiological period

and risk profiles by census sector were generated from the modeling process, showing the

transmission dynamics of the disease. All the census sectors in the city displayed high risk

at some epidemiological period in the outbreak periods. Relative risk estimation of dengue

disease using INLA offered a quick and powerful method for parameter estimation and

inference.

Introduction

Dengue is an arboviral disease caused by a Flavivirus belonging to the family Flaviviridae,
which includes virus transmitted by mosquitoes such as the yellow fever virus, the Zika virus,

the West Nile virus, among others. Dengue virus presents four distinct serotypes (DEN-1,

DEN-2, DEN-3 and DEN-4) [1] [2], affecting people in tropical and subtropical countries in

urban poor areas, suburbs and crowded neighborhoods (World Health Organization [3]).

Since 2005, in the world, dengue deaths increased by 48.7% (15.1–90.9), resulting in 18400

deaths (11800–22700) in 2015 [4].
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In Latin America, the increasing transmission intensity contributes to growing concerns

about other viruses transmitted by Aedes mosquitoes, including the Chikungunya and Zika

viruses [4], and emergent arboviral diseases such as Mayaro and Oropouche [5]. Racloz et al.
[6] describe and analyze the epidemiological models attempting to predict dengue outbreaks,

concluding that previous studies and modeling efforts have not sufficiently accounted for the

spatio-temporal features of dengue disease in the modeling process. Louis et al. [7] review

tools for surveillance, prevention, and control of dengue focused on mapping dengue risk,

finding a high diversity of dengue risk maps representing mainly descriptive and retrospective

data. Naish et al. [8] review the spatial and spatio-temporal association of dengue disease and

environmental, socioeconomic, and climatic factors. They found a diverse frame of statistical

methods not integrated to useful public health systems, suggesting the need of combining

research efforts to be efficient in dengue surveillance and control.

An specialized branch of disease mapping methods centers in the relative risk estimation

on areal data. Relative risk corresponds to the excess (or lack) of disease risk in an area given a

local and a global basal risk [9]. Relative risk could be estimated by descriptive or model based

approaches. While the first option brings relatively easy and quick results, the great variability

inherent to classical risk estimation measures makes necessary to use models to smooth risks

using information of spatial and temporal neighbors. Model-based relative risk estimation has

been carried out mainly within a hierarchical Bayesian framework in spatial and spatio-tempo-

ral disease mapping, with generalized linear mixed models playing a major role. Knorr-Held

[10] presented a framework for the spatio-temporal modeling of disease risks for areal data,

extending the spatial model of Besag et al. [11].

Relative risk estimation of dengue disease has been developed using spatial and spatio-tem-

poral data at several spatial resolutions. For example, spatial modeling of dengue data has been

applied to data from Brazil [12] and Colombia [13], while spatio-temporal dengue data have

been analyzed using relative risk models in Brazil [14–16], Ecuador [17], Thailand [18],

Colombia [19] [20], and Indonesia [21]. However, most of these analyses did not fully explore

the space-time interaction effect model framework. Additive models were considered by Lowe

et al. [14–16, 18] and Stewart-Ibarra et al. [17]. A simple spatio-temporal unstructured interac-

tion effect model was used by Wijayanti et al. [21] while Martı́nez-Bello et al. [20] applied

models of dengue relative risks with full space-time interaction terms.

Colombia is an endemic country for dengue disease. This can be attributed to high density

of people living in cities and towns, with environmental and climatic conditions favouring the

dengue vector development [22]. The city of Bucaramanga is one of the Colombian cities with

the highest annual incidence of dengue disease in the period 2009-2015, being one of the cities

where dengue vaccines have been tested [23] [24] with some criticism from some Colombian

researchers [25]. While Colombia presented an incidence rate of 624 cases per 100,000 inhabi-

tants in 2010, Bucaramanga reported an incidence rate of 1322.1 per 100,000 inhabitants. Data

on incident cases of dengue disease (dengue and severe dengue) were obtained from the SIVI-

GILA (Colombian public health surveillance system) for the urban area of Bucaramanga for

the period from January 2009 to December 2015, and a battery of spatio-temporal models

including two-level spatial effects were fitted [26] [27]. Ugarte et al. [28, 29] also used spatio-

temporal models with two-level spatial effects for analysing the evolution of young people’s

brain cancer mortality in Spanish provinces, and for studying the temporal trends of brain

cancer incidence in the municipalities of two regions located in the North of Spain,

respectively.

The aim of the study is to analyze the geographical distribution of relative incidence risk of

dengue disease in the city of Bucaramanga and its evolution in time during the period January

2009—December 2015, identifying regional effects at different levels of spatial aggregations.
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Materials and methods

Cases of dengue disease from Bucaramanga, Colombia

Dengue cases from the city of Bucaramanga were geocoded and allocated to one of the 94 cen-

sus sectors. A census sector is a cartographic unit obtained from the aggregation of census sec-

tions which at the same time are the aggregation of census blocks. A census block is “a lot of
built or unbuilt land bounded by vehicular or pedestrian traffic roads of a public nature”, a cen-

sus section is “a cartographic bounded urban division approximately equal to 20 contiguous cen-
sus blocks and belonging to a urban sector”, while a census sector is a “census cartographic
division at urban level, generally equivalent to a neighbor (in the principal cities), comprising
between 1 to 9 census sections” (definitions adapted from [30]). The census sectors are nested in

communes. The commune is an administrative division in the municipality, representing cen-

sus sectors sharing similar geographical and physical characteristics. The city of Bucaramanga

covers an urban area of 27 km2, with a population of 527,913 people (projection 2016) living

in 94 census sectors nested in 17 communes. The city is located at 959 m above sea level with

the coordinates 7˚700700 N—73˚0605800 W.

The inclusion of the commune as a second level of aggregation is justified by two reasons.

First, a great burden of the analysis and intervention of the notification diseases at municipal

level is undertaken by the health authorities employing the geographical division comprised by

the communes. However, the key health event corresponding to the dengue case occurs at

house or household level. For the cases at hand, working at house or household level is chal-

lenging from the computational side, then the cases were aggregated at census sector for the

sake to represent the dengue risk at small spatial scale. Secondly, as expressed above, the com-

mune corresponds to a physical division of the city by neighborhoods and city blocks delim-

ited by clear spatial divisions. If we include the vector biology of the disease (the mosquito

Aedes aegypti) within the risk estimation of dengue, we could think that the vector is confined

to small areas sharing special conditions for the mosquito development, which is accounted

with a second level of aggregation such as the commune.

The geocoding process followed the next protocol: dengue cases data were obtained from

the surveillance system of public health (SIVIGILA) for the period January 2009 to December

2015. The SIVIGILA database is an online system allowing the Colombian health institutions

to register the diseases of obligatory notification. The dengue data included address, sex, age,

and an identification code that anonymizes the name and personal identity of the case to the

geocoder. The geocoding process started with a database checked for duplicates of 39,775 rec-

ords corresponding to the notified dengue cases from health institutions in Bucaramanga.

Only the records with address of residence belonging to Bucaramanga were considered, dis-

carding cases without address, with rural address or wrong addresses. An R software [31] script

sent batches of addresses to the web geocoding service of ArcGIS server. The web server

returned JSON files, which were checked and accepted, or revised for a new geocoding cycle.

At the end of the process, we successfully geocoded to the urban area of Bucaramanga a total

of 25,365 cases. Then, the coordinates obtained from the geocoding process belonging to every

dengue case were allocated to census sectors using the cartography generated by the National

Geostatistical Framework, 2005 [30]. In addition, the cases were temporally aggregated in epi-

demiological periods, composed by four epidemiological weeks, for the entire study period.

The epidemiological period is the common time measure employed by the health offices in

South and Central America, with a total of 91 epidemiological periods between January 2009

and December 2015 (13 epidemiological periods by year, and 7 epidemiological years).

We obtained disaggregated data by census sector, sex, and five-years age groups from the

Colombian Census 2005, and calculated a cumulative crude incidence rate according to these
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variables. We computed cumulative expected dengue cases per area (census sectors and com-

munes) and the seven-years period as the product of the cumulative crude incidence rate and

the population at risk by age-groups and sex in every census sector and commune. Then, we

added the cumulative expected cases per census sector and commune by age-group and sex,

obtaining the cumulative expected cases per area. Finally, the cumulative expected dengue

cases were divided by the number of epidemiological periods to obtain expected cases per area

and epidemiological period.

Two-level spatially structured models in space-time disease mapping

Let us assume that the city of Bucaramanga is divided into n census sectors labeled as i = 1, . . .,

n, that are nested intom communes labeled as j = 1, . . .,m. For each census sector i, data are

available for different epidemiological periods labeled by t = 1, . . ., T. Let Oit, eit, and rit denote

the number of observed dengue cases, the number of expected dengue cases, and the relative

risk of dengue disease for census sector i and epidemiological period t, respectively. Then, con-

ditional on the relative risk, the number of counts is assumed to be Poisson distributed with

mean μit = eitrit, that is,

Oitjrit � Poissonðmit ¼ eitritÞ ð1Þ

log mit ¼ log eit þ log rit: ð2Þ

Depending on the specification of log rit several models could be defined. Most of the

research in space-time disease mapping is based on conditional autoregressive (CAR) priors

for both spatial and temporal effects (Knorr-Held [10]). Extensions of these models were pro-

posed by Ugarte et al. [27] for analyzing small area data that are naturally grouped into larger

regions. The models include two-level of spatially structured random effects, identifying

regional effects and modeling space-time interactions at different levels of spatial aggregations.

In what follow, we briefly describe some of these models.

First, a model with census sector level space-time interaction has been considered (hereafter

TL-Model A), where the log-risk is modeled as

log rit ¼ Zþ xi þ cjðiÞ þ gt þ dit; ð3Þ

where j(i) denotes that census sector i belongs to the commune j = 1, . . .,m. Here η is an inter-

cept representing an overall level of risk, ξi and ψj(i) are census sector and commune level spa-

tially structured random effects respectively, γt is a temporally structured random effect, and

δit is the space-time interaction effect that models the dependence between the census sectors

and the epidemiological periods. If the interaction term is dropped, an additive model is

obtained. A Leroux et al. [32] CAR (LCAR) prior distribution is given to both spatial random

effects, that is,

ξ ¼ ðx1; . . . ; xnÞ
0

� Nð0; ½txðlxRx þ ð1 � lxÞInÞ�
� 1
Þ; ð4Þ

c ¼ ðc1; . . . ;cmÞ
0

� Nð0; ½tcðlcRc þ ð1 � lcÞImÞ�
� 1
Þ; ð5Þ

where τξ and τψ are precision parameters, λξ and λψ are spatial smoothing parameters taking

values between 0 and 1, In and Im are identity matrices of dimension n × n andm ×m respec-

tively, Rξ is the n × n neighborhood matrix of the census sectors, and Rψ is them ×m neighbor-

hood matrix of the communes. Note that spatial independence is assumed when the spatial

smoothing parameters are equal to zero, while intrinsic CAR prior distributions are
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considered when these parameters are equal to one. A first order random walk (RW1) prior

distribution is given for the temporally structured random effect, that is,

γ ¼ ðg1; . . . ; gTÞ
0

� Nð0; ½tgRg�
�
Þ: ð6Þ

Here τγ is a precision parameter and Rδ is the T × T structure matrix of a RW1.

Finally, the following prior distribution is assumed for the space-time interaction random

effect δ = (δ11,. . .,δ1T,. . .,δn1,. . .,δnT)0

δ � Nð0; ½tdRd�
�
Þ: ð7Þ

Here τδ is a precision parameter and Rδ is the nT × nT matrix obtained as the Kronecker

product of the corresponding spatial and temporal structure matrices. Note that a commune

level interaction effect can be also considered in the model of Eq (3), modeling the log-risks as

(hereafter TL-Model B)

log rit ¼ Zþ xi þ cjðtÞ þ gt þ djðiÞt: ð8Þ

As proposed by Knorr-Held [10], four types of space-time interactions can be defined for

TL-Model A and TL-Model B (see Table 1).

A sensible modification of these models is to account for spatial variability only

among those census sectors belonging to the same commune. In this case, the census

sector level random effects are distributed as ξ� � Nð0; ½txðlxR
�

x
þ ð1 � lxÞInÞ�

� 1
Þ, where

R�
x
¼ blockdiagðRx1

; . . . ;Rxm
Þ is a block-diagonal matrix and Rxj

is the neighborhood matrix

of census sectors within the jth commune. Both census sector or commune level space-time

interactions can be considered, defining the following models

TL-Model C : log rit ¼ Zþ x
�

i þ cjðiÞ þ gt þ d
�

it ;

TL-Model D : log rit ¼ Zþ x
�

i þ cjðiÞ þ gt þ djðiÞt:
ð9Þ

Again, four different types of space-time interaction can be defined for the models of

Eq (9), obtained as the Kronecker product of the corresponding spatial and temporal structure

matrices.

Table 1. Specification for the different types of space-time interactions.

Interaction Structure

Type Rδ Spatial Temporal

Two Level-Model A

I In 
 IT − −
II In 
 Rγ − ✓

III Rξ
 IT ✓ −
IV Rξ
 Rγ ✓ ✓

Two Level-Model B

I Im
 IT − −
II Im
 Iγ − ✓

III Rψ 
 IT ✓ −
IV Rψ
 Iγ ✓ ✓

https://doi.org/10.1371/journal.pone.0203382.t001
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Model inference and estimation

Different spatio-temporal models of relative risk described above were fitted using the inte-

grated nested Laplace approximation (INLA) technique, an approximate method for Bayesian

inference for latent Gaussian models developed by Rue et al. [33]. INLA provides reliable

results in short computational time when the precision matrices of the random effects are

sparse, allowing to make Bayesian inference without running long and complex Markov chain

Monte Carlo (MCMC) algorithms. Spatio-temporal models of relative risk using LCAR priors

for the spatially structured effects have been fitted by Ugarte et al [26] using INLA, while two-

level spatio-temporal models have been formulated and implemented in INLA by Ugarte et al.

[27]. This technique can be used in the free statistical software R through the R-INLA package.

Appropriate identifiability constraints have been considered for each model, which are derived

by re-parameterizing the random effects using the spectral decomposition of their precision

matrices (see Goicoa et al. [34]). Non-informative prior distributions were assigned to the

model hyperparameters as follows

Z � Normalð0; 1000Þ; ð10Þ

lx; lc � Uniformð0; 1Þ; ð11Þ

1
ffiffiffiffi
tx

p ;
1
ffiffiffiffiffi
tc

p ;
1
ffiffiffiffi
tg

p ;
1
ffiffiffiffi
td

p � Uniformð0;1Þ: ð12Þ

Some model selection criteria were considered to compare the different models in terms of

model fitting and complexity. The deviance information criterion (DIC) (Spiegelhalter et al.
[35]) is the most commonly used measure of model fit based on the deviance for Bayesian

models, which is computed as the sum of the posterior mean of the deviance �D (a measure of

goodness of fit) and the number of effective parameters pD (a measure of model complexity).

Although the use of the DIC has been widespread during the last years, it has been criticized

by several authors in the literature. It is recognized that the DIC values may underpenalize

complex models containing random effects in disease mapping, so the corrected version of the

DIC proposed by Plummer [36] was also considered in this paper. It is also known that the

DIC can produce negative estimates of the effective number of parameters in a model. Some

authors recommend the use of the Watanabe-Akaike information criterion (WAIC) (Wata-

nabe [37]) instead of the DIC (see for example, Gelman et al. [38]; Vehtari et al. [39]). The

WAIC criterion was also computed here. Finally, we provide the cross-validate logarithmic

score (LS) (Gneiting and Raftery [40]) as a criterion based on the model posterior predictive

distribution.

Results

Summary statistics

A total of 25,365 dengue cases were successfully geocoded to the city area of Bucaramanga. As

shown in Fig 1A, three main outbreaks were experienced in the city during the period January

2009 to December 2015: in the first semester of 2010 with around 940 cases, and in the first

semester of 2013 and 2014 presenting near to 550 cases each. Fig 1B shows the age-groups [5–

9] and [10–14] years presenting the highest annual average cumulative incidence of dengue

disease for the study period (1,349 and 1,238 cases by 100,000 inhabitants, respectively). The

maximum number of dengue cases per census sector and commune were 47 and 97 cases

respectively.
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Fig 2 provides the cumulative standardized incidence rate (SIR) of dengue disease in the

293 census sectors and 94 communes for the 7-year time period (2009–2015). The cumulative

SIR of dengue is an indirect method of adjustment for age and sex, acting as a measure to com-

pare dengue cases in each area and time point with the whole city during the study period. The

cumulative SIR per census sector (Fig 2A) shows a diffuse incidence pattern with a few high

incidence census sectors to the west of the city, while the cumulative SIR per commune (Fig

2B) reveals high incidence to the south and central communes of the city.

Results from the selected model

Table 2 shows the results from fitting the models described above with R-INLA using the sim-

plified Laplace approximation strategy. In general, the models with census sector level interac-

tion effect are better than those considering a commune level interaction effect. Nevertheless,

from a computational point of view, the latter models are much faster because the space-time

Fig 1. Descriptive analysis of dengue disease cases in the city of Bucaramanga, Colombia. (A) Cases by

epidemiological period. (B) Annual average cases per 100.000 inhabitants by age-groups.

https://doi.org/10.1371/journal.pone.0203382.g001

Fig 2. Cumulative standardized incidence rates (SIRs) of dengue disease by communes and census sectors. (A) SIR

of dengue cases by census sector. (B) SIR of dengue cases by commune.

https://doi.org/10.1371/journal.pone.0203382.g002
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precision matrix (Rδ) has lower dimension and less identifiability constraints are needed. In

addition, according to the different model selection criteria, the model with the usual spatial

neighborhood structure performs better than TL-Models C and D that incorporate a more

complex neighborhood structure between areas. As reported in Table 2, TL-Model A with

completely structured (Type IV) interaction random effect shows the lowest values for all the

model selection criteria considered here (almost 80 units less than TL-Model A and C with

Type II interaction effect in terms of DIC and WAIC, and 150 units less in terms of corrected

DIC).

Finally, Table 2 shows that the number of effective parameters decreases for Type II and IV

interaction models in comparison with Type I and III. This might seem counterintuitive since

a Type IV interaction model is more complex in terms of the covariance structure induced for

the space-time neighboring points. However, we note that the number of effective parameters

is also an indicator of the degree of smoothness induced by the model. As the random effects

of the model induce more smoothness, i.e., as the shrinkage towards zero (the mean) is stron-

ger, the more we move away from the saturated model, and therefore the model is less com-

plex. This seems the be the reason why models with Type I or III interaction random effects,

that do not induce smoothing effects between temporal neighbors, shows higher values of pD.

Table 3 shows the summary statistics for the precision parameters from the selected model.

The posterior mean of the spatial smoothing parameter of the LCAR prior distribution for the

Table 2. Model selection criteria for the best fitted models in INLA: Mean deviance ( �D), number of effective parameters (pD), deviance information criterion (DIC),

corrected DIC (DICc), Watanabe-Akaike information criterion (WAIC) and logarithmic score (LS).

TL-Model A: log rit = η + ξi + ψj(i)+ γt + δit
Space-time interaction �D pD DIC DICc WAIC LS

Additive model 30256.0 162.8 30418.8 30423.1 30552.6 15276.8

Type I 26300.3 2282.4 28582.7 30711.9 28604.0 14816.0

Type II 26792.8 1266.2 28059.0 28406.8 28251.7 14196.6

Type III 26762.0 1733.1 28495.1 29652.5 28709.7 14706.5

Type IV 26885.7 1095.4 27981.1 28256.1 28167.3 14138.8

TL-Model B: log rit = η + ξi + ψj(i) + γt + δj(i)t
Space-time interaction �D pD DIC DICc WAIC LS

Type I 28451.1 851.1 29302.2 29521.0 29713.3 14917.3

Type II 28526.7 578.3 29105.0 29186.1 29388.4 14711.6

Type III 28560.7 821.9 29382.5 29587.5 29794.5 14955.6

Type IV 28572.1 575.1 29147.2 29231.1 29431.6 14734.1

TL-Model C: log rit ¼ Zþ x
�

i þ cjðiÞ þ gt þ d
�

it

Space-time interaction �D pD DIC DICc WAIC LS

Additive model 30256.7 162.9 30419.6 30424.0 30553.3 15277.1

Type I 26307.5 2276.7 28584.2 30699.1 28608.9 14814.8

Type II 26789.2 1269.2 28058.3 28407.9 28249.9 14196.1

Type III 28210.7 1467.5 29678.3 30453.5 30263.7 15844.3

Type IV 28255.5 899.1 29154.6 29328.6 29514.9 14790.5

TL-Model D: log rit ¼ Zþ x
�

i þ cjðiÞ þ gt þ djðiÞt

Space-time interaction �D pD DIC DICc WAIC LS

Type I 28451.3 851.8 29303.1 29522.0 29714.2 14917.8

Type II 28527.7 578.4 29106.1 29187.2 29389.5 14712.2

Type III 28561.9 821.6 29383.5 29588.1 29795.3 14955.9

Type IV 28573.2 575.1 29148.3 29232.1 29432.7 14734.7

https://doi.org/10.1371/journal.pone.0203382.t002
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census sector random effect (λξ) is 0.283, which is interpreted as small spatial dependence

between these areas. For the commune random effect, the posterior mean of the spatial

smoothing parameter (λψ) is 0.448, indicating a moderate spatial dependence between com-

munes in the same study period.

By fitting spatio-temporal models with two-level of spatial random effects, we provide a

tool to establish the association between the commune and the census sector with the relative

risk of dengue disease, accounting for those geographical factors specific to the area covered by

the commune. Fig 3 shows the maps for the census sector and commune level spatial incidence

risk patterns (constant during the whole period) derived from the selected model. These spatial

patterns, can be interpreted as the specific contribution of the area to the increase/decrease of

the relative risks rit. Fig 3A exposes some of the census sector located in the central areas of the

city showing a large mean spatially structured pattern. The probability of the census sector spa-

tial effects being greater than one is represented in Fig 3B. At commune level, a large spatial

incidence patterns is observed in the southern and western communes of the city (Fig 3C),

which is better inferred by the posterior exceedance probabilities P(exp(ψj(i))> 1|O) repre-

sented in Fig 3D.

Including two-level random effects in the model allow us to identify those census sectors

and/or communes that have a significant effect on the relative risk. For example, the commune

located further north in the city of Bucaramanga it is not a high risk area, but some of its cen-

sus sectors show a high probability that the spatial effect is significantly higher in comparison

with the whole of the sectors (see Fig 3). In this way, we are able to identify those high/low risk

areas that show behaviors associated to both levels of spatial aggregation.

The posterior mean temporal trend and 95% credible intervals by epidemiological period

(common to all areas) is shown in Fig 4, recovering the high risk pattern of dengue disease in

the first semesters of 2010, 2013, 2014, and 2015.

Mapping the relative risk estimates of dengue disease is one of the main outputs from the

modeling process. We have chosen the epidemiological periods 1 to 8 from the year 2013 to

display the estimated posterior mean values of the relative risk of dengue disease (Fig 5). Using

the relative risk implies that the one is the basal risk. The maps in Fig 5 show that in 2013, the

EP 1 and 2 present a low overall relative risk in most of the census sectors, but afterwards, the

relative risk spread from the center of the city in EP 3 and 4 to the rest of census sectors in EP

5 and 6, and finally decreasing slightly in the EP 7 and 8. To detect the areas with high relative

incidence risk, maps of the posterior exceedance probabilities P(rit> 1|O) by census sector

and epidemiological period have been represented in Fig 6. This posterior probability distribu-

tion provides a kind of Bayesian p-value, which it could be used to detect or highlight high risk

areas based on the definition of a cut point by the analyst.

Finally, we have selected eight census sector distributed across the city to plot their specific

temporal evolution of dengue incidence risk during the period Jan 2009–Dec 2015, and the

Table 3. Summary statistics for the precision parameters of the TL-Model A with type IV interaction effect for the relative risk of the Dengue, Jan 2009–Dec 2015.

Parameter Mean SD Q 0.025 Q 0.5 Q 0.975

τξ 6.08 1.93 3.31 5.73 10.81

λξ 0.28 0.156 0.058 0.27 0.60

τψ 58.82 78.04 6.72 35.59 253.68

λψ 0.44 0.24 0.06 0.43 0.89

τγ 19.20 3.23 13.51 18.99 26.16

τδ 14.19 1.18 12.04 14.14 16.66

https://doi.org/10.1371/journal.pone.0203382.t003
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posterior mean values of the estimated relative risks and 95% credible intervals by epidemio-

logical period (Fig 7). Four census sectors correspond to the central areas of the city (central

east area: Cabecera sector; central north area: San Francisco sector; central south area: Real de
Minas sector; and central west area: Campohermoso sector), and four census sectors from the

east (Morrorico sector), north (Kennedy sector), south (Provenza sector) and west (Girardot
sector) areas of the city. Although the temporal evolution of relative risks are similar to the

main temporal pattern represented in (Fig 4), subtle differences are revealed between census

sectors. The main outbreak of dengue cases observed in the city of Bucaramanga (first semester

of 2010) did not equally affect to all areas, observing significantly higher spikes in Provenza,

San Francisco, andMorrorrico sectors. In addition, quite different relative risk evolutions are

observed during the period 2013 to 2015. Sectors located in the central areas of the city show

much more moderate risks during the last years of the analyzed period than the areas located

in the suburbs of the city, where significantly high relative risks are observed in Provenza and

Girardot sectors.

Fig 3. Posterior mean estimates of spatial random effects at both census sector and commune-level, and posterior

exceedance probability of being greater than one. (A) Map of census sector level spatial incidence risk pattern exp

(ξi). (B) Posterior probability distribution P(exp(ξi)>1|O). (C) Map of commune level spatial incidence risk pattern

exp(ψj(i)). (D) Posterior probability distribution P(exp(ψj(i))> 1|O).

https://doi.org/10.1371/journal.pone.0203382.g003
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Discussion

In this work, spatio-temporal disease mapping models are applied to dengue incidence data in

the city of Bucaramanga (Colombia). Dengue cases are spatially aggregated at two different

administrative levels, census sectors and communes, and temporally aggregated in epidemio-

logical period. This is the first report where models with two-level of spatially structured

Fig 4. Overall temporal trend of dengue disease incidence relative risk by epidemiological period, exp(γt), and

95% credibility intervals.

https://doi.org/10.1371/journal.pone.0203382.g004

Fig 5. Maps with the estimated posterior mean values of the relative risk rit of dengue disease by census sector for

the epidemiological periods 1 to 8 of 2013.

https://doi.org/10.1371/journal.pone.0203382.g005
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random effects have been used to estimate dengue disease incidence relative risks in small

areas. These models permit to identify regional effects at each level of spatial aggregation, con-

sidering space-time interaction effects at census sector or commune level. We found for the

particular data at hand that the best model to report the results includes spatial random effects

for both census sector and commune levels, a temporally structured random effect for the epi-

demiological periods, and a completely structured interaction term over the census sectors

(TL-Model A with type IV interaction). Different model selection criteria have been used to

compare the behaviour of the fitted models, such as the deviance information criterion, the

Watanabe-Akaike information criterion or the cross-validate logarithmic score.

As pointed out by one reviewer, TL-Model C with type II interactions (temporally struc-

tured trends that are spatially unstructured) is the closest model to the one selected (TL-Model

A), based on the similar characteristics and the results of the model selection statistics. The dif-

ference between TL-Model A and C is that model A uses a proximity matrix which considers

the neighboring structure of adjacent census sectors independently of the commune borders,

while model C ignores the neighboring structure of census sectors between communes, so the

connection of census sectors nested in every commune are bounded by the commune borders.

Although TL-Model C is computationally faster than TL-Model A, all the model selection

criteria pointed out to TL-Model A with type IV interaction effects as the best model for ana-

lyzing the dengue data. Indeed, this final selected model seems to have a more sensible inter-

pretation than TL-Model C as it seems natural to expect that temporal trends of dengue risk in

neighbouring census sectors is similar ignoring the commune borders.

The selected model implies that the risk of dengue disease on every census sector is highly

associated to the neighboring census sectors in space and time, where the commune effect

Fig 6. Maps of the posterior probability distribution P(rit> 1|O) of dengue disease by census sector for the

epidemiological periods 1 to 8 of 2013.

https://doi.org/10.1371/journal.pone.0203382.g006
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plays an important role in the dynamics of the transmission of dengue disease across the city,

together with the risk in the census sectors directly connected to the census sectors in adjacent

communes. For the comprehension of the dengue transmission in the city, selecting the

TL-Model A means that as much the adjacency between communes as the adjacency between

census sectors in the communes having adjacent bounds are associated to those census sectors

displaying high-risk of dengue disease.

The model’s output allows creating risk maps by epidemiological period, and risk profiles

by census sector through the study period. Inspection of the risk maps permits to detect high/

low risk areas in comparison with all the census sectors of the city across the period January to

December 2015. Our analysis shows differences in dengue incidence risk between sectors situ-

ated in central areas of the city compared to sectors located in the suburbs of the city.

The present analysis extends the results shown by Martı́nez-Bello et al. [41], where the time

series of dengue disease in the city of Bucaramanga were analyzed in a weekly basis, including

meteorological covariates. The overall and sector-specific temporal trends of dengue disease

obtained from the spatio-temporal model allow the comparison of the longitudinal profiles of

dengue risk per sector.

The main novelty in the present work is the inclusion of the commune effect as a second

level of spatial aggregation in the modeling process. The primary benefit of considering models

with two-level spatial random effects is that they provide key information to the public health

policy-makers, such as the geographical distribution of dengue disease relative risks by census

sector, and the contribution of the communes to the increase/decrease of these risks. Models

with a single level of spatial dependence were considered in Martinez et al. [20] to analyze

Fig 7. Map of selected census sector to display relative risk of dengue disease for the period Jan 2009–Dec 2015

(left panel), and specific temporal evolution of the posterior mean estimates of relative risk and 95% credible

intervals (right panel).

https://doi.org/10.1371/journal.pone.0203382.g007
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dengue incidence data in the city of Bucaramanga at smaller spatial aggregation units (census

sections), including covariates obtained from satellite data. However, particular attention must

be paid on solving identifiability issues in disease mapping models when covariates are

included, because ignoring the spatial or temporal correlation between covariates and the ran-

dom effects can lead to misleading results due to confounding issues (see for example, Reich

et al. [42]; Hodges and Reich [43]; Goicoa et al. [34]). It is a matter of further research not only

how to deal with covariates in a spatio-temporal model, but also how to do it in a model that

includes spatial random effects at two-level of spatial aggregation and space-time interactions

at both first or second-level area (census sectors and communes in our data of analysis).

The models are fitted using the recently derived INLA estimation technique, reducing the

computational time in comparison with models fitted using MCMC based simulation tech-

niques. The model complexity requires a great amount of time using MCMC while INLA

offers a faster alternative, which it could be applied to programs of real-time spatiotemporal

representation of dengue risk. In addition, the results from the models applied in the present

report could also be used in combination with other statistical methods of spatial and temporal

risk representation. For example, space-time clustering methods have been also applied to den-

gue data by Fuentes-Vallejo [44] in a hyperendemic colombian city located at the center of the

country, concluding that there were not specific areas in the city driving the transmission of

dengue disease, a characteristic displayed in our results.

As limitations of the study, we account that the use of notification data can lead to under-

representation of those cases that are managed at home, without reporting to the surveillance

system [45]. Also, some of the addresses possibly were not correctly geocoded, or not geocoded

at all, due to mistakes in filling the notification form. Quantifying the percentage of correctly

geocoded cases is difficult, although we keep out of the final data those addresses with incon-

sistent data. In addition, some of the cases reported as dengue were not confirmed by labora-

tory, but confirmed by clinical diagnosis, leading to a bias difficult to quantify in our results

[45]. Furthermore, a current problem for the epidemiological studies at block, section or

sector level in Colombia is the lack of updated data from the official statistics, leading to an

additional source of bias on the results. Although we report these limitations, we also address

that dengue is a highly recognized disease within the medical staff (physicians, nurses, public

health personal) in Colombia. Currently, health authorities at city level employ the guidelines

[46] published by the Colombian Ministry of Health, the Colombia’s National Health Institute,

and the Pan American Health Organization to design and implement activities of entomologi-

cal surveillance and control of dengue transmission. The guidelines define methodological

approaches to spatial mapping of dengue cases and vector data mainly based on descriptive

statistics. The epidemiological and statistical tools like the relative risk models shown in this

study can help to decrease the dengue burden by providing risk maps and risk profiles, which

in first stages will approximate the unknown field situation, and in second stages, with the

addition of high quality data, will support an integrated approach to dengue surveillance and

control activities [47].

We finally think that further work is needed to make available to the public health policy-

makers epidemiological tools to generate real-time dengue disease incidence risk maps,

including environmental risk factors (rainfall, humidity, temperature, . . .) or other potential

explanatory variables such as vectorial ecology in the modeling process.
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