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Abstract

Background

An agent-based modeling approach has been suggested as an alternative to traditional,

equation-based modeling methods for describing oral drug absorption. It enables research-

ers to gain a better understanding of the pharmacokinetic (PK) mechanisms of a drug. This

project demonstrates that a biomimetic agent-based model can adequately describe the

absorption and disposition kinetics both of midazolam and clonazepam.

Methods

An agent-based biomimetic model, in silico drug absorption tract (ISDAT), was built to mimic

oral drug absorption in humans. The model consisted of distinct spaces, membranes, and

metabolic enzymes, and it was altogether representative of human physiology relating to oral

drug absorption. Simulated experiments were run with the model, and the results were com-

pared to the referent data from clinical equivalence trials. Acceptable similarity was verified by

pre-specified criteria, which included 1) qualitative visual matching between the clinical and

simulated concentration-time profiles, 2) quantitative similarity indices, namely, weighted root

mean squared error (RMSE), and weighted mean absolute percentage error (MAPE) and 3)

descriptive similarity which requires less than 25% difference between key PK parameters cal-

culated by the clinical and the simulated concentration-time profiles. The model and its param-

eters were iteratively refined until all similarity criteria were met. Furthermore, simulated PK

experiments were conducted to predict bioavailability (F). For better visualization, a graphical

user interface for the model was developed and a video is available in Supporting Information.

Results

Simulation results satisfied all three levels of similarity criteria for both drugs. The weighted

RMSE was 0.51 and 0.92, and the weighted MAPE was 5.99% and 8.43% for midazolam

and clonazepam, respectively. Calculated PK parameter values, including area under the
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curve (AUC), peak plasma drug concentration (Cmax), time to reach Cmax (Tmax), terminal

elimination rate constant (Kel), terminal elimination half life (T1/2), apparent oral clearance

(CL/F), and apparent volume of distribution (V/F), were reasonable compared to the referent

values. The predicted absolute oral bioavailability (F) was 44% for midazolam (literature

reported value, 31–72%) and 93% (literature reported value,� 90%) for clonazepam.

Conclusion

The ISDAT met all the pre-specified similarity criteria for both midazolam and clonazepam,

and demonstrated its ability to describe absorption kinetics of both drugs. Therefore, the val-

idated ISDAT can be a promising platform for further research into the use of similar in silico

models for drug absorption kinetics.

Introduction

Oral administration is the most popular and accepted route of delivery for medical drugs. Suc-

cessful oral therapeutics must pass through the gastrointestinal (GI) barrier to reach systemic

circulation, where the drug is distributed to its site of action. Within the GI tract, numerous

physiological processes influence the rate and extent of drug absorption. Hence, understand-

ing the mechanisms underlying bioavailability (F) is essential to the development of pharma-

ceutical products intended for oral delivery.

Current models for drug absorption: physiologically based pharmacokinetic models.

Researchers have devised numerous increasingly complex models to describe all the aspects of

PK and pharmacodynamic (PD) phenomena. One approach is in vitro–in vivo extrapolation by

using physiologically based pharmacokinetic (PBPK) models that represent human intestinal

drug absorption. A system of ordinary differential equations is derived to describe the move-

ment of drugs along the GI segments; each is represented by a PK compartment. Landersdorfer

and Jusko [1] have summarized many features of these so-called ‘mechanism-based’ models.

However, inter-individual variability, e.g., individual enzyme expression levels or variants,

spatial heterogeneity, e.g., changing luminal environment, and irregular temporal dynamics, e.
g., food intake, are difficult to be described by smooth ordinary differential equations in com-

mon PBPK models. Mechanisms, variabilities and uncertainties may be determinants of (indi-

vidual) bioavailability and bioequivalence, and therefore, an alternative to existing PBPK

models may better represent them [2].

Synthetic, agent-based biomimetic modeling. Novel research techniques and computa-

tional tools to achieve a deeper insight [3] into the mechanisms which are responsible for

intra- and inter-individual differences in bioavailability data are badly needed [4]. Recently,

synthetic, agent-based models have been suggested as a novel approach in biomedical model-

ing and simulation. Agent-based models (ABMs) employ an object-oriented, discrete-event

modeling technique centered on the behaviors and interactions of the individual autonomous

components of a system. ABMs focus on the agents’ rules and local interactions between indi-

vidual components and their environment, thereby generating a ‘virtual world’ in which in sil-
ico experiments are executed. ABMs are well suited to translate existing biomedical ontologies

into a dynamic model, and, as such, an ABM is essentially a knowledge repository for the

observations generated in in vitro, in vivo, or clinical experiments [5].

Unlike how inductive PBPK models are constructed, in ABM, abstract biomimetic software

components are assembled to form a computational analogue of the referent biological system

[6–9]. A concrete mapping exists between in silico components and assembly, and between

In silico drug absorption tract
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corresponding micro-anatomic and physiological details at corresponding levels and scales.

Hence, the design of the components is guided by current knowledge and hypotheses. As rec-

ommended by Hunt et al. [8], relational grounding will be employed for model internal con-

sistency and transparent knowledge representation. Besides pharmaceutical research, ABMs

have been used in complex multi-attribute biomedical problems, including sepsis [10], sys-

temic inflammation [11], cystogenesis [12], leucocyte activation and dynamics [13,14], and

cancer [15–17]. Hunt et al. [6,18] and Cosgrove et al. [19] have summarized the key concepts

and advantages of agent-based models.

Objectives. In this project, we aimed to develop an in silico agent-based analogue of the

human GI tract to model oral drug absorption. Assembling with abstract semi-validated proto-

typical components from previous studies [7,9,20], the model consists of agents that represent

the key aspects of the physicochemical and PK properties of the simulated drugs, and the GI

physiological features. They are validated against available human absorption data from bio-

equivalence studies for two drugs, namely, midazolam and clonazepam.

Materials and methods

Clinical bioequivalence study

Subjects and study protocol. The bioequivalence studies were conducted under study pro-

tocol approved by the Joint Clinical Research Ethics Committee of The Chinese University of

Hong Kong and New Territories East Cluster (CUHK-NTEC). All subjects were non-smoking

subjects and were treated at The Prince of Wales Hospital, Hong Kong in accordance with cur-

rent Good Clinical Practices between August 2008 and July 2009. Written informed consent

was obtained from all subjects before initiation of these two studies. The data from two clinical

bioequivalence studies on midazolam and clonazepam provide the referent data to which com-

parisons are made. These two drugs were chosen because of availability of densely sampled

data, and the marked differences in their concentration-time profiles. Separate approval from

the clinical research ethics committee was obtained to access and analyze the archived data.

The referent products used in the clinical studies were Dormicum (midazolam) 15 mg tab-

lets and Rivotril (clonazepam) 2 mg tablets. Each bioequivalence study was a two-treatment,

two-period, two-sequence crossover design involving 15 (midazolam) or 14 (clonazepam) sub-

jects (one subject is excluded from the data analyses for taking alcohol).

Blood collection and sample assay. Following the oral administration of the drug, blood

samples (approximately 5 mL of blood per sample) were taken at 0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10,

12, and 24 hours post drug administration for both studies. In addition, two additional time

points for midazolam (0.25, 2.5 hours) and three additional samples for clonazepam (48, 72, 96

hours) were taken. All blood samples were centrifuged immediately after collection and sepa-

rated plasma samples were stored at -80˚C until assay.

Plasma concentrations of midazolam and clonazepam were determined by validated Liquid

Chromatography-Mass Spectrometry (LC-MS-MS) methods with respect to precision, accuracy,

specificity and sensitivity before application. Quality control samples for midazolam were at con-

centrations of 2.5, 25 and 200 ng/mL and 1.6, 10 and 40 ng/mL for clonazepam, which were

utilized for assay validation. The LC-MS-MS system consisted of a Perkin-Elmer liquid chroma-

tography and Q-Trap mass spectrometer (Perkin-Elmer Norwalk, CT, USA). Chromatography

was carried out using a Waters XBridge C18 column (4.6 mm × 250 mm, 5 μm), which was pro-

ceeded with a Waters XBridge C18 guard column (4.6 × 20 mm, 5 μm). The mobile phase con-

sisted of 10 mM ammonia acetate and acetonitrile, run by a gradient program. The electrospray

ionization for midazolam was performed in the positive mode, with multiple reaction monitoring

(MRM) of m/z 326!291 for midazolam and 301!255 for internal standard temazepam.

In silico drug absorption tract
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Meanwhile, for clonazepam, the electrospray ionization was performed in the negative mode,

with multiple reaction monitoring (MRM) of m/z 314!278 for clonazepam and 269!241 for

internal standard nordazepam. The detailed assay method is also described in reference [21].

Synthetic, agent-based biomimetic modeling

The objective of the current study was to construct a synthetic, agent-based, biomimetic model

that can reproduce, and therefore help to explain, the observed absorption and disposition

phenomena for midazolam and clonazepam. The successfully validated model would then

serve as an executable knowledge embodiment about their PKs [6,7,19]. Briefly, the modeling

approach was as follows. Taking the multi-scale, middle-out approach, we started by designing

and developing biomimetic components that represent biological entities involved in human

GI drug absorption. We then assembled and connected these components into a larger in silico
experimental system that is analogous to the human GI tract in a context of a bioavailability

PK study. We also identified a set of targeted attributes based on observations from the refer-

ent experiment and sought to reproduce these targeted attributes by execution of the model,

i.e., simulating the experiment. We adopted relational grounding in parameterizing our model

[7,8] and iteratively refined the model by adjusting the model parameters, and changing the

rules and logic of the components and their interactions, until pre-specified similarity criteria

were met. In other words, the successful model can produce observations that are analogous

to, and statistically indistinguishable from, those from the referent experiment. Therefore, the

model stands as a plausible mechanism-based explanation of the observed PK phenomena.

Components, events and rules. To avoid confusion between in vitro or in vivo biology

and its in silico counterparts, SMALLCAPS are used when referring to components and processes

in the in silico systems, and italics are used for their parameters.

SPACES and MEMBRANES. SPACES are three-dimensional grids that map to referent gastric, intesti-

nal, hepatic and blood spaces. MEMBRANES are two-dimensional grids that represent the physical

permeation barriers between SPACES. SPACES and MEMBRANES are assembled to form the structure

of ISDAT; into each SPACE and MEMBRANE, components representing drugs, enzymes, transporters,

and binders are added. The SPACES and MEMBRANES used in the ISDAT are shown in Fig 1.

DRUG objects and their movement. DRUG objects are autonomous [13] and independent/het-

erogeneous [20,22] agents. Four types of DRUG objects were used: midazolam; clonazepam; and one

metabolite for each. Each DRUG object was given properties that reflects its physicochemical and PK

properties. The physicochecmical properties include:molecularWeight (determine its movement

speed); logP (determine its innate membrane permeability); and pKa (determine its ionization sta-

tus). The PK properties include the DRUG’S substrate specificity (both are substrates of CYP3A4),

affinity to ENZYMES and affinity to BINDERS. Within a SPACE, a DRUG object moves randomly in all

directions. Directional flow (for example, movement of the luminal content) is implemented by

two processes: firstly, within each SPACE, DRUG objects move in a biased random walk and secondly,

between connected SPACES, a fraction of OBJECTS on the edge of the origin SPACE will FLOW to the adja-

cent destination SPACE. For the transition between the MEMBRANE-separated SPACES, when a DRUG

object is near a MEMBRANE INTERFACE, the DRUG is given an opportunity to cross–PERMEATE–the MEM-

BRANE and to enter the SPACE on the other side of the MEMBRANE. This PASSIVE PERMEATION process is

probabilistic, and this probability parameter is chosen in respect of the partition equilibrium,

which is in turn determined by the drug’s innate permeability and ionization status. A more

detailed description of the implementation was presented in our previous reports [7,9,20].

ENZYMES, TRANSPORTERS and BINDERS. In silico ENZYME objects (CYP) are placed in ENTEROCYTES

and HEPATOCYTE to represent the metabolic capacities of these cells. Drug TRANSPORTERS are

placed on an apical MEMBRANE of ENTEROCYTES and they facilitate the EFFLUX of DRUGS across this

In silico drug absorption tract
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MEMBRANE. However, the TRANSPORTERS are functionally unnecessary in this study because both

midazolam and clonazepam are highly permeable. BINDERS are placed in SYSTEMIC BLOOD and

OTHER ORGANS to represent the nonspecific binding capacity in the blood and other organs. To

be noted, drug elimination is modeled as metabolism by CYP and thus renal excretion of the

parent drugs or the metabolites is not modeled.

DRUG METABOLISM in the ISDAT is a three-step process. Firstly, when a DRUG is in the NEIGH-

BORHOOD of the ENZYME, it may BIND to the ENZYME. BINDING is a probabilistic process character-

ized by the parameter affinity. Secondly, once bound, the ENZYME may convert the parent DRUG

into its METABOLITE. This metabolic step is also probabilistic, and is governed by the parameter

metabolizeProb of the ENZYME. Finally, regardless of whether METABOLISM has happened or not,

the bound DRUG (or METABOLITE) may be RELEASED from the ENZYME, a probabilistic process con-

trolled by the parameter releaseProb. The logic of BINDERS is similar, with the exception that a

BINDER may not METABOLIZE its SUBSTRATE (i.e.,metabolizeProb = 0 for BINDERS). More details on

the implementation of enzymes, transporters, and binders were presented in our previous

reports [7,9].

In summary, simulation with the ISDAT is fundamentally different from the traditional math-

ematical equation-based PBPK models. In ISDAT, simulation advances in time steps, spaces are

represented as discrete SPACE, and processes and interactions between components are represented

as events. (Whereas, in the PBPK models, compartments are thought to be continuous and

homogenous, movement and processes are expressed as rate constants, and time is continuous.)

Fig 1. Model structure in two-dimensional schematic.

https://doi.org/10.1371/journal.pone.0203361.g001
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Simulated bioavailability experiment

The assembled ISDAT served as an experimental device; executing it simulated an in silico bio-

availability experiment. Briefly, the analogue consisted of five SPACES corresponding to the GI

tract: STOMACH, DUODENUM, JEJUNUM, ILEUM, and COLON/EGESTED SPACE—where the DRUG can lon-

ger be absorbed. Adjacent to the small intestinal lumen spaces are the ENTEROCYTES SPACES

which line the intestinal LUMEN. At the start of the experiment, DRUG objects were put in the

STOMACH space, representing oral drug administration. Then, they moved along the GI TRACT,

got absorbed via the ENTEROCYTES and entered the PORTAL VEIN. After that, they passed through

the SINUSOID, which are lined by HEPATOCYTES, where a portion was EXTRACTED by the HEPATOCYTE

before arriving at the SYSTEMIC BLOOD. From there, they recycled to the PORTAL VEIN and SINUSOID

for further EXTRACTION, or distributed to OTHER ORGANS where BINDERS are present.

The experiments were run for 2,500 steps (mapped to 25 hours) for midazolam and 10,000

steps (mapped to 100 hours) for clonazepam. Each experiment was repeated for 15 or 14 times

according to test subject numbers for each drug to simulate stochastic variability from run to

run. Supporting simulation framework and graphical user interface are also built for visualiza-

tion purposes (S1 Video). At selected steps, corresponding to the time points in the clinical

studies, we took measurements of the DRUG amount in the SYSTEMIC BLOOD, simulating measure-

ment of drug levels in the blood.

Smoothing procedure. Due to inherent stochasticity in each step, measurements at one

single step is highly variable. Therefore, a smoothing procedure is adopted to mitigate the

step-to-step variation, which ultimately generate simulation results with more precision.

For each individual simulation, the smoothed amount of DRUG at a specific step (except for

Step 0) is calculated using the following equation

Smoothed Amount at Step S ¼
1

2N þ 1
�

XSþN

i¼S� N
Amount at Step i ð1Þ

where S denotes the intended measurement step and N denotes the interval for smoothing. In

the current study, N is 10 (steps). The smoothed amount at each specific step for each individ-

ual is then used for the calculation of simulated mean values.

Targeted attributes, similarity criteria and iterative refinement. The primary targeted

attribute was the mean concentration-time profiles from the two clinical bioequivalence studies.

The time course of the mean amount of DRUG in the SYSTEMIC BLOOD in ISDAT is mapped to the

concentration-time profiles by using two parameters, namely, the TimeScale and theMeasureS-
cale. Ideally, when all the mean concentration values of simulated profiles at each sampling time

point locate within the interval, i.e., mean ±1 SD of the referent clinical profiles, then it is

regarded as meeting the first level of similarity, which is to ensure the visual matching.

In addition to visual inspection on the simulated profiles, the similarity between the mean

concentration values from simulated experiments and the clinical studies was also quantified

to the second level by using two similarity indices: weighted RMSE, and weighted MAPE,

weighted RMSE ¼
1
ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n

1

s2
ðClinical mean value � Simulated mean valueÞ2

r

ð2Þ

weighted MAPE ¼
1

n

X

n

1

s

�
�
�
�
Clinical mean value � Simulated mean value

Clinical mean value

�
�
�
�� 100% ð3Þ

where n denotes the repeat times of simulation (and corresponding test subject numbers) and

s denotes the observed standard deviation (SD) in the clinical data. In other words, the weights

used were the SD2 and SD for RMSE and MAPE, respectively. The acceptable similarity

In silico drug absorption tract
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thresholds for the weighted RMSE and the weighted MAPE are 2.5 and 33%, respectively.

These thresholds were selected based on the observed variation in the referent clinical data.

Next, the key PK parameters from both the clinical profiles and the smoothed simulated

profiles were calculated for the third level of summary descriptive similarity. These PK param-

eters included area under the curve (AUC), peak plasma drug concentration (Cmax), time to

reach Cmax (Tmax), terminal elimination rate constant (Kel), terminal elimination half life (T1/

2), apparent oral clearance (CL/F), and apparent volume of distribution (V/F), by using non-

compartmental analysis. The acceptable similarity criterion was less than 25% difference

between the clinical and the simulated values for each PK parameter.

The ISDAT was iteratively refined by changing a small subset of model parameters, includ-

ing the affinities of the drugs, and the expression levels of ENZYMES and BINDERS, until achieving

the similarity criteria specified above. The system parameters were held to be the same for

both drugs, and their relative magnitudes were referred to known physiology, whereas the

physicochemical properties parameters for both drugs were fixed to the literature reported val-

ues. The iterative refine protocol is detailed in reference [7].

Predicted bioavailability. After the ISDAT was parameterized to meet all the above simi-

larity criteria, simulated PK experiments were conducted to predict bioavailability.

Instead of dosing the DRUG in the STOMACH space, we started the in silico PK experiment with

the DOSE directly in the SYSTEMIC BLOOD, thus simulating an intravenous dose. The AUC value

was calculated, and the absolute bioavailability was calculated by

F ¼
AUCoral dose

AUCintravenous dose
� 100% ð4Þ

In addition, determinants of oral bioavailability can be described mathematically by the fol-

lowing equation

F ¼ Fa � Fg � Fh ð5Þ

where Fa is the fraction of the dose that is absorbed from the intestinal lumen to the intestinal

enterocytes; Fg is the fraction of the dose that escapes pre-systemic intestinal first pass elimina-

tion; and Fh is the fraction of the dose that passes through the liver and escapes pre-systemic

hepatic first-pass elimination [23]. Fa × Fg can then be estimated by comparing AUCs when

the COMPOUND is given orally and via a cannulated hepatic portal vein; similarly, Fh can be esti-

mated by comparing AUCs when the COMPOUND is given via hepatic portal vein directly and

intravenously.

Fa � Fg ¼
AUCoral dose

AUChepatic portal vein dose
� 100% ð6Þ

Fh ¼
AUChepatic portal vein dose
AUCintravenous dose

� 100% ð7Þ

The ISDAT-predicted F, Fa × Fg and Fh were then compared to literature reported values.

These predicted bioavailability numbers can serve as the fourth level of predictive similarity.

Software and graphical user interface (GUI). Validated components from previous ABMs

were reused [7,9,24–27]. Our model was written in Java (Java 8) by using the MASON library,

mason.19.jar, [28] (http://cs.gmu.edu/~eclab/projects/mason/), which is a fast discrete-event

multi-agent simulation library. Models were developed, assembled and simulated within Net-

Beans IDE (https://netbeans.org/) and Eclipse (https://eclipse.org). The source code is pro-

vided in the Supporting Information. Output data files were processed, graphed, and analyzed

In silico drug absorption tract
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via R (R3.1.1) (http://www.r-project.org/) within RStudio (http://www.rstudio.com/). The plyr

package was used for data manipulation [29], the PK package for PK analyses [30], and the

ggplot2 package for data visualization [31].

A graphical user interface was developed by using the MASON library, mason.19.jar, to bet-

ter visualize every aspect of the in silico experiment. The GUI included a console for simulation

start, pause and stop functions, an overview of the ISDAT, and a real-time chart for the

amount of DRUG and METABOLITE in the SYSTEMIC BLOOD space. A GUI-enabled simulation video

is available in the Supporting Information. Readers are strongly advised to view the video for

better understanding of the model.

Results

Model structure and parameters

The model structure of ISDAT is depicted in Fig 1. Snapshots of ISDAT during a single simu-

lation is presented in Fig 2. Model parameters of the system are presented in Table 1; they are

held to be the same for both DRUGS. Drug-specific parameters are presented in Table 2. Experi-

ment-related parameters are shown in Table 3.

Fig 2. Snapshots of model during a single simulation run (using oral CLONAZEPAM administration as an example). (A) At the start of the simulation, DRUG objects

(yellow dots) are placed in the STOMACH; CYPS in ENTEROCYTES and HEPATOCYTE, and BINDERS in SYSTEMIC BLOOD and OTHER ORGANS. (B) DRUGs moving across the ENTEROCYTEs

and towards SYSTEMIC BLOOD, simulating oral absorption. (C) At around Cmax, most DRUGS are present in the SYSTEMIC BLOOD, being bound to BINDERS. (D) During

elimination, DRUGs objects are being converted into METABOLITE (white dots), predominantly in the HEPATOCYTE.

https://doi.org/10.1371/journal.pone.0203361.g002
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Simulated profiles for midazolam and clonazepam

ISDAT is aimed to simulate the mean concentration-time profiles from clinical studies. After a

dose of COMPOUND was administered to the STOMACH space, measurements of the amount of

COMPOUNDS present in the SYSTEMIC BLOOD were made, with the sampling time points corre-

sponding to those in the clinical studies. These serve as the raw simulation profiles (Figs 3 and

4), which have great step-to-step variations. Therefore, a smoothing (±10 steps) procedure is

taken, which reduces SD around the mean concentration values (Figs 5 and 6).

Table 1. Final model parameters–system parameters.

Parameters Remarks SPACE Values

systemSize Size of all SPACEs 20 × 20 × 20

spacepH In silico pH of SPACEs GI lumen 2.5–6.0 a

Cell and Blood 7.4

flowRate Flow rate as biased movement in X direction in grid points per step GI lumen 0.01–1.0 a

Blood 1.0–5.0 a

poresFrac Pores / tight junction on membrane as proportion of membrane area GI lumen / Enterocytes 0.02

flowParams Flow parameters: Depth of liquid flow between SPACEs as a proportion of space width STOMACH to DUODENUM 0.5

GI lumen 0.001–0.2 a

Blood 0.5–1.0 a

Flow parameters: Fraction of liquid flow between SPACEs as a proportion of flow area STOMACH to DUODENUM 0.9

GI lumen 0.125–0.2 a

Blood 0.3–1.0 a

TransitParams Transit parameters: fraction of space adjacent to membrane interface as proportion of SPACE height GI lumen / Enterocytes 0.5–0.8 a

Enterocytes / Portal Vein 0.8

Hepatocyte / Sinusoid 0.1

Transit parameters: membrane leakiness as a fraction of membrane area GI lumen / Enterocytes 0.5–0.8 a

Enterocytes / Portal Vein 0.8

Hepatocyte / Sinusoid 0.1

Transit parameters: cellular uptake frequency as probability per step GI lumen / Enterocytes 0.0

Sinusoid / Hepatocyte 0.2

Transit parameters: cellular uptake fraction as proportion of membrane area GI lumen / Enterocyte 0.0

Sinusoid / Hepatocyte 0.2

Enzymes CYP expression levels (number of CYP objects) Enterocytes 1, 2, 2

Hepatocyte 60

maxActiveSites (maximum METABOLIC capacity per CYP object per step) CYP 1

Neighborhood (number of grids in the neighborhood of the CYP) CYP 9

Transporters PGP expression levels (number of PGP objects) Enterocytes 1, 5, 5

maxActiveSites (maximum TRANSPORT capacity per PGP object per step) PGP 1

Neighborhood (number of grids in the neighborhood of the PGP) PGP 9

Binders BINDER expression level (number of BINDER objects in SYSTEMIC BLOOD) SYSTEMIC BLOOD 200

maxActiveSites (maximum BINDING capacity per BINDER object in SYSTEMIC BLOOD) BINDER 3

Neighborhood (number of grids in the neighborhood of the BINDER in SYSTEMIC BLOOD) BINDER 3

BINDER expression level (number of BINDER objects in OTHER ORGANS) OTHER ORGANS 500

maxActiveSites (maximum BINDING capacity per BINDER object in OTHER ORGANS) BINDER 1

Neighborhood (number of grids in the neighborhood of the BINDER in OTHER ORGANS) BINDER 1

a: The ranges include all the values of a vector of parameters and for each individual parameter, its value is fixed.

https://doi.org/10.1371/journal.pone.0203361.t001
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PK parameters and similarity criteria

PK parameters were calculated in both the clinical bioequivalence study and the in silico simu-

lated experiment, which are presented in Table 4 using the smoothed (±10 steps) profiles. Key

PK parameters are comparable between the simulated experiment and clinical study. Similarity

criteria at the pre-specified levels are presented in Table 5.

Predicted bioavailability

Finally, the ability of the ISDAT to predict bioavailability, namely, Fa × Fg, Fh and F was also

assessed by dosing DRUG in PORTAL VEIN and SYSTEMIC BLOOD (Fig 7).

However, since the bioavailability are not provided in the referent bioequivalence studies, val-

ues reported in literatures are referred to (Table 6). The predicted Fa × Fg was 93% (±30%) for

midazolam (referent value: 48–76%) and 98% (±61%) for clonazepam (referent value: 93–95%)

[32,33]; the predicted Fh was 48% (±7%) for midazolam (referent value: 36–57%) and 103%

(±15%) for clonazepam (referent value: 95–97%) [33]; the predicted F was 44% (±11%) (referent

value: 31–72%) for midazolam and 93% (±39%) (referent value:� 90%) for clonazepam [34,35].

In all cases, there is overlap in the range between the literature reported values and the mean ±1

SD interval of the simulated data, therefore all predicted bioavailability values are acceptable.

Discussion

Prototype for in silico drug absorption simulation

In this project, a prototypical device, ISDAT, is built to simulate oral drug absorption in

human. The device incorporates important multi-level physicochemical, physiological and PK

processes, namely, passive permeation, intestinal motility, blood circulation, intestinal

Table 2. Final model parameters–drug parameters.

Parameters Remarks Midazolam Clonazepam

MW In silicoMolecular weight 325.7 315.7

logP In silico Logarithm of partition coefficient 3.6 2.41

Pka In silico acid/base equilibrium constant 6.1 1.86, 11.89

pgpSubstrate Substrate of PGP true true

AffinityPgp Affinity to PGP as probability of binding 0.1 0.1

releaseProbPgp Release from PGP as probability of release 1.0 1.0

cypSubstrate Substrate of CYP True True

AffinityCYP Affinity to CYP as probability of binding 0.2 0.2

releaseProbCyp Release from CYP as probability of release 1.0 1.0

metabolizeProbCyp Metabolic rate as probability of metabolism 0.4 0.02

binderSubstrate Substrate of BINDER True True

AffinityBinder Affinity to BINDER as probability of binding 1.0 1.0

releaseProbBinder Release from BINDER as probability of release 0.05 0.05

https://doi.org/10.1371/journal.pone.0203361.t002

Table 3. Final model parameters–experiment parameters.

Parameters Remarks Midazolam Clonazepam

Steps Simulation experiment duration: counterpart for time 2500 10000

TimeScale (h) Scaling factor between simulation steps and time 0.01 0.01

numSolutes Number of DRUG objects: counterpart for dose administered 3274 500

MeasureScale (ng/mL) Scaling factor between in silico amount and concentration 0.82 0.948

https://doi.org/10.1371/journal.pone.0203361.t003
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Fig 3. Referent and raw simulated profiles for midazolam. Graphed are mean (±1 SD) midazolam concentration profile from the referent clinical bioequivalence study,

and the simulated mean midazolam concentration profile from the ISDAT.

https://doi.org/10.1371/journal.pone.0203361.g003

Fig 4. Referent and raw simulated profiles for clonazepam. Graphed are mean (±1 SD) clonazepam concentration profile from the referent clinical bioequivalence

study, and the simulated mean clonazepam concentration profile from the ISDAT.

https://doi.org/10.1371/journal.pone.0203361.g004

In silico drug absorption tract

PLOS ONE | https://doi.org/10.1371/journal.pone.0203361 August 31, 2018 11 / 21

https://doi.org/10.1371/journal.pone.0203361.g003
https://doi.org/10.1371/journal.pone.0203361.g004
https://doi.org/10.1371/journal.pone.0203361


Fig 5. Referent and smoothed (±10 steps) simulated profiles for midazolam. Graphed are mean (±1 SD) midazolam concentration profile from the referent clinical

bioequivalence study, and the smoothed (±10 steps) simulated mean midazolam concentration profile from the ISDAT.

https://doi.org/10.1371/journal.pone.0203361.g005

Fig 6. Referent and and smoothed (±10 steps) simulated profiles for clonazepam. Graphed are mean (±1 SD) clonazepam concentration profile from the referent

clinical bioequivalence study, and the smoothed (±10 steps) simulated mean clonazepam concentration profile from the ISDAT.

https://doi.org/10.1371/journal.pone.0203361.g006
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metabolism, and hepatic extraction, which is then validated against the clinical data of midazo-

lam and clonazepam. ISDAT can produce systemic phenomena acceptably similar to the clini-

cal data, as measured by mean concentrations, PK parameters, as well as by pre-specified

similarity criteria. In sum, ISDAT stands as a computational, yet biomimetic, analogue of

human GI tract for simulation of oral drug absorption.

Two drugs, one system

Importantly, although the drug-specific parameters reflected the properties of two test drugs,

the system parameters held the same for both. Also, the range of concentration and time for

the two drugs were very different: 24 hours with a Cmax of 90.21 ng/mL for midazolam, and 96

Table 4. PK parameters (Mean ±1 SD) for midazolam and clonazepam.

PK Parameters Midazolam (N = 15) Clonazepam (N = 14)

Referent Simulated b Referent Simulated b

AUC_po (ng�h�mL-1) 295.81 ± 125.50 318.83 ± 31.01 529.08 ± 80.79 523.71 ± 74.48

Cmax (ng�mL-1) 101.39 ± 33.04 77.81 ± 7.30 16.20 ± 4.28 15.96 ± 3.30

Tmax (h) a 0.5 1.00 1.50 1.50

Kel (h-1) 0.28 ± 0.07 0.28 ± 0.04 0.021 ± 0.004 0.018 ± 0.005

T1/2 (h) 3.74 ± 0.96 3.71 ± 0.66 49.02 ± 7.79 60.86 ± 18.12

CL/F (L�h-1) 57.72 ± 19.31 47.47 ± 4.72 3.88 ± 0.68 3.89 ± 0.55

V/F (L) 205.20 ± 56.75 175.86 ± 35.60 186.84 ± 25.25 230.06 ± 46.81

AUC_iv (ng�h�mL-1) - 687.72 ± 36.56 - 657.64 ± 93.20

AUC_hpv (ng�h�mL-1) - 329.16 ± 24.62 - 574.73 ± 56.62

a: Median, instead of mean ±1 SD, is calculated for Tmax.

b: Simulated results being smoothed for ±10 steps.

https://doi.org/10.1371/journal.pone.0203361.t004

Table 5. Similarity criteria for midazolam and clonazepam.

Similarity Criteria Midazolam Clonazepam

1. Qualitative similarity—Visual match of data points in the concentration-time profiles

Simulated mean concentration within the mean ±1 SD range of referent values? Met by all simulated data points. Met by most simulated data points a.

2. Quantitative similarity

Weighted RMSE 0.51 0.92

Weighted MAPE 5.99% 8.43%

3. Descriptive similarity b—Absolute difference (Relative difference)

Difference between AUC 23.02 ng�h�mL-1 (7.8%) -5.37 ng�h�mL-1 (1.0%)

Difference between Cmax -23.58 ng�mL-1 (23.3%) -0.24 ng�mL-1 (1.5%)

Difference between Tmax 0.5 h c 0.0 h

Difference between Kel 0.0 h-1 (0.0%) -0.003 h-1 (14.3%)

Difference between T1/2 -0.03 h (0.8%) 11.84 h (24.2%)

Difference between CL/F -10.25 L�h-1 (17.8%) 0.01 L�h-1 (0.3%)

Difference between V/F -29.34 L (14.3%) 43.22 L (23.1%)

a: There are 4 data points (27%) of the simulated mean profiles falling out of the mean ±1 SD range of the referent clinical profiles, namely, at 3, 10, 12, and 48 hour.

b: Differences between PK parameters are calculated with the referent clinical data as the baseline values. Simulated PK parameters are calculated based on the

smoothing procedure (±10 steps).

c: Only absolute difference is shown for Tmax because the time to reach Cmax is quick after oral administration of midazolam and clonazepam yet highly variable based

on the referent clinical data.

https://doi.org/10.1371/journal.pone.0203361.t005

In silico drug absorption tract

PLOS ONE | https://doi.org/10.1371/journal.pone.0203361 August 31, 2018 13 / 21

https://doi.org/10.1371/journal.pone.0203361.t004
https://doi.org/10.1371/journal.pone.0203361.t005
https://doi.org/10.1371/journal.pone.0203361


hours with a Cmax of 13.48 ng/mL for clonazepam. Of note, although the number of metabolic

enzymes in ISDAT was the same in experiments for both drugs, the calculated clearance values

were 47.47 ± 4.72 L/h and 3.89 ± 0.68 L/h for midazolam and clonazepam (simulation data

smoothed ± 10 steps), respectively. The difference in clearance can be explained by different

affinities and access to the enzymes, and hence different metabolic rates. Therefore, it can be

concluded that this model is not only adequate for a single drug, but also for two markedly dif-

ferent drugs, over different time horizons, and may also be useful for other drugs as well.

Parameter search and values

The model developed here has three sets of parameters: system parameters related to the

modeling of GI physiology; drug parameters related to the properties of administered drugs;

and experiment parameters related to the clinical bioequivalence study. For the experiment

parameters, only the TimeScale and theMeasureScale parameters were chosen with consider-

ation of achieving similarity; others were chosen to simulate the referent experiments, and

therefore all of them were fixed throughout the model’s development. The choice of the system

and drug parameters values are mostly based on a priori knowledge and assumption about the

Fig 7. DRUG ADMINISTRATION in the PORTAL VEIN and SYSTEMIC BLOOD. (A) At the start of the simulation, DRUG objects (yellow dots) are placed in the PORTAL VEIN; (B)

At the start of the simulation, DRUG objects (yellow dots) are placed in the SYSTEMIC BLOOD.

https://doi.org/10.1371/journal.pone.0203361.g007

Table 6. Predicted bioavailability for midazolam and clonazepam.

Bioavailability Midazolam (N = 15) Clonazepam (N = 14)

Referent a Simulated Referent a Simulated

Fa × Fg 48–76% 93% ± 30% 93–95% 98% ± 61%

Fh 36–57% 48% ± 7% 95–97% 103% ± 33%

F 31–72% 44% ± 11% >90% 93% ± 39%

a: Values reported in references [32–35].

https://doi.org/10.1371/journal.pone.0203361.t006
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drugs and GI physiology. Because relational grounding was adopted [8], it is the relative mag-

nitude of the parameters that mattered. For example, as represented by the transit parameters

of the GI TRACT, JEJUNUM, when compared to DUODENUM, has higher effective absorption area.

Therefore, the absorptive process is expected to be more extensive in the JEJUNUM, which ref-

lects the knowledge about drug absorption and GI physiology. However, we did not attempt to

map the model parameters, by one-to-one correspondence, to the actual physical flow rates

and surface areas of the human GI tract; this is because such mapping would require absolute

grounding, which would in turn limit the further development of future iterations of the

model [8]. As such, we are cautious about directly interpreting the model parameters in the

absolute sense, or about making predictions or comparisons based on their absolute values;

rather, our focus is on the overall assembly of the components to form a consistent ISDAT that

can mimic oral drug absorption of two drugs.

Validation

ISDAT was validated to different degrees. To start with, each of the components was verified

individually to ensure that they functioned as designed. In terms of face validation, the assem-

bly, as a whole, was inspired by our knowledge about human anatomy and physiology, as well

as by the general principles of drug absorption to ensure that the components were working as

intended.

Then, meeting the similarity criteria in the specified three levels, qualitative-quantitative-

descriptive stands as the functional validation. All of them were within 25% of the correspond-

ing mean referent values from the clinical data, except for Tmax, which is inherently highly var-

iable. Hence, on top of the similarity of sampled time points between the clinical data and the

simulated results, the PK parameters, as summary indicators for the whole concentration-time

profile, were similar as well.

Last but not least, predicated bioavailability values, Fa × Fg, Fh and F, being similar to litera-

ture reported ones gave yet another degree of predictive validation. With these, we argue that

although our model may not be a one-to-one mapping to actual human gastrointestinal physi-

ology, it is nevertheless consistent with, and complementary to, current models about pharma-

cokinetics of oral drug absorption.

We recognize that more rigorous validation strategies are possible, for example, with divid-

ing the data into training and validation datasets, with a third drug, or with more stringent

similarity criteria. However, each of the above strategies has its own limitation. For instance,

matching a smaller subset of observations (as required in dividing the data into training and

validation sets) is much easier than matching the whole available data. Using a third drug

could introduce bias if that third drug has vastly different PK properties, say, it being a sub-

strate of additional enzymes or transporters. Meeting more stringent similarity criteria could

mean underrepresenting the interindividual variability presented in the clinical data.

In all, we think that the current validation is adequate for the prototypical device.

Limitations

There are a few limitations in our model, though. Firstly, the drugs were implemented as fully

soluble, and so there was no solubility limit in the simulation. However, in both the referent

clinical data and simulated data, both midazolam and clonazepam exhibited rapid absorption,

and the solubility did not appear to limit the drug absorption extent. The possible solubility

limit in blood for clonazepam was simulated with extensive protein binding. Hence, we argue

that, for the two test drugs, the solubility limit was not a concern. In the future research, the

implementation of a solubility limit for poorly soluble drugs will need to be a priority.
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Secondly, wide stochastic variability between simulations was shown in our simulations. This

is a limitation of agent-based simulations, when compared to simulations based on systems of

differential equations. It was not uncommon to see simulated results varied by > 15% from

run to run, comparable to previous reports [7,9,36]. This degree of variability is consistent

with our other projects involving agent-based simulations, as well as with other researchers’

experiments. Stochasticity, inherent in ABM, can be classified as run-to-run stochasticity and

step-to-step stochasticity. Therefore, we chose to repeat our simulations by 15 or 14 times

mapping to 15 or 14 test subjects to ensure that the overall mean values were reliable consider-

ing run-to-run stochastic effect. In addition, we adopted the smoothing procedure to minimize

step-to-step variability while maintaining the precision of measurements. Currently simulated

data are smoothed at 10 steps, which traverses 20 steps in total and maps to 0.2 hour, less than

the minimum sampling interval (0.25 hour) in the referent studies.

Still, we did not represent the observed interindividual variability from the clinical data.

Although we demonstrated the ability to simulate interindividual variability in a different

study, by setting different system parameters for each individual, in this study we simulated

only to match the mean values of referent data because our primary focus in the current study

was to show that the model was capable of simulating two drugs even if the system parameters

were the same. A logical next step would be to simulate each of the individual concentration-

time profiles with slightly different systems parameters, so that we can better simulate the

observed inter-individual variability.

Potential applicability

Altered physiology, time-variant systems, what-if scenarios. Because of the inherent

variability in the ABM as well as the clinical data, we do not expect that our model can give

quantitatively accurate predictions at this stage. Also, we did not attempt to use ISDAT as an

analysis tool to replace the conventional PBPK or noncompartmental analysis for bioequiva-

lence. Rather, we argue that the model is more useful for in vitro–in vivo translation, or for

qualitative exploration of what-if scenarios, and to provide concrete actionable answers to

what-if questions that arise during the research and development of orally administered thera-

peutics. There are scenarios that are difficult to test in the clinical setting, yet they could be

clinically relevant in altering drug absorption and disposition. For example, what if the subject

has a GI motility disease where the contents of the GI tract move slower than normal? The

flow parameters can be decreased. What if the subject is an extensive metabolizer? The

enzyme’s metabolic parameters can be changed. What if hepatic enzyme amount is reduced in

liver injury or intestinal enzyme amount happens to be higher in some individuals? The

enzyme’s expression levels can be altered. For all these above examples, the ISDAT can offer a

qualitative prediction, by simulating with simple changes in a few model parameters. We pres-

ent these in Supporting Information (S1–S6 Figs). More importantly, because of the stochastic

nature of the ABM, the expected variation could be simulated naturally as well. In contrast,

simulation of the above with a set of developed, continuous differential equation-based models

may prove highly complicated, if not intractable. Therefore, ISDAT can be further developed

to serve as an informative virtual laboratory, complementary to common PK modeling and

simulation strategies, in helping to answer what-if questions.

Knowledge integration. Further-developed ISDAT is also expected to provide concrete

instances of mechanisms for us to assemble, test, and verify or reject, mechanism-based

hypotheses about the determinants of bioavailability [7]. By continuously and iteratively

updating these mechanism-based analogues, we incrementally assemble better and better

mechanism-based hypotheses–we accumulate current knowledge (and ignorance) about drug
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absorption, and have them represented in computational analogues with biomimetic algo-

rithms [6,9,37]. The model allows us to gain deeper insights into the relevant, causal, mecha-

nism-based details underlying and accounting for the unique, individual-specific PKs and

bioavailability of different drugs and formulations. Successfully validated models can represent

currently best theory for multiple aspects of system function instantiated. Knowledge, as well

as uncertainty, could be progressively represented and integrated. Thus, resulting models

become shared, interactive and observable pharmacology knowledge embodiments. These

knowledge embodiments will complement the existing equation-based modeling and simula-

tion methods and wet-lab models. When the current best theory fails to validate, we would

have identified important gaps in the current theory. Together, they will be one further step in

the shift of pharmaceutical research towards a rational, learn-and-confirm paradigm [38] and

model-based drug development approach [39].

Overall significance

In summary, we have developed a prototypical ISDAT, an in silico device which is capable of

modeling oral drug absorption in human. The model can generate concentration-time profiles

and PK parameters with an acceptable similarity to the clinical data. We believe that modeling

and simulations with ISDAT will provide insights that cannot be achieved by in vitro, animal,

and human experiments alone. In the long run, models like ISDAT can represent and integrate

our knowledge about mechanisms about drug absorption into a dynamic executable platform.

Conclusions

ISDAT, an agent-based model describing human oral drug absorption, was successfully devel-

oped to simulate clinical data of midazolam and clonazepam with acceptable similarity. Being

a model complementary to the conventional equations, ISDAT is expected to serve as an

invaluable platform in further research into the mechanisms of oral drug absorption.

Supporting information

S1 Video. A video for GUI demonstration of ISDAT.

(MP4)

S1 Fig. Smoothed (±10 steps) simulated profiles for midazolam in case of retarded (to 1%)

STOMACH FLOW. Graphed are mean (±1 SD) concentration profile from the baseline simulated

study (green triangles), and the smoothed (±10 steps) simulated results in the speculated sce-

nario (red circles): retarded STOMACH FLOW.

(TIF)

S2 Fig. Smoothed (±10 steps) simulated profiles for clonazepam in case of retarded (to 1%)

STOMACH FLOW. Graphed are mean (±1 SD) concentration profile from the baseline simulated

study (green triangles), and the smoothed (±10 steps) simulated results in the speculated sce-

nario (red circles): retarded STOMACH FLOW.

(TIF)

S3 Fig. Smoothed (±10 steps) simulated profiles for midazolam in case of enhanced (to

200%) CYP ACTIVITY. Graphed are mean (±1 SD) concentration profile from the baseline simu-

lated study (green triangles), and the smoothed (±10 steps) simulated results in the speculated

scenario (red circles): enhanced CYP ACTIVITY.

(TIF)
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S4 Fig. Smoothed (±10 steps) simulated profiles for clonazepam in case of enhanced (to

200%) CYP ACTIVITY. Graphed are mean (±1 SD) concentration profile from the baseline simu-

lated study (green triangles), and the smoothed (±10 steps) simulated results in the speculated

scenario (red circles): enhanced CYP ACTIVITY.

(TIF)

S5 Fig. Smoothed (±10 steps) simulated profiles for midazolam in case of reduced (to 50%)

HEPATIC CYP AMOUNT. Graphed are mean (±1 SD) concentration profile from the baseline simu-

lated study (green triangles), and the smoothed (±10 steps) simulated results in the speculated

scenario (red circles): reduced HEPATIC CYP AMOUNT.

(TIF)

S6 Fig. Smoothed (±10 steps) simulated profiles for clonazepam in case of reduced (to

50%) HEPATIC CYP AMOUNT. Graphed are mean (±1 SD) concentration profile from the baseline

simulated study (green triangles), and the smoothed (±10 steps) simulated results in the specu-

lated scenario (red circles): reduced HEPATIC CYP AMOUNT.

(TIF)

S1 Table. Concentration-time profiles of midazolam.

(DOCX)

S2 Table. Concentration-time profiles of clonazepam.

(DOCX)

S3 Table. PK parameters of midazolam.

(DOCX)

S4 Table. PK parameters of clonazepam.

(DOCX)

S5 Table. PK parameters of midazolam at speculated scenarios.

(DOCX)

S6 Table. PK parameters of clonazepam at speculated scenarios.

(DOCX)

S1 File. Raw referent clinical data.

(XLS)

S2 File. Simulation data.

(RAR)

S3 File. Source code of ISDAT.

(RAR)
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