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Abstract

Purpose

To identify disease-specific cytokine profile differences in the aqueous humor (AH) (other

than the vascular endothelial growth factor) between patients with dry and treated wet age-

related macular degeneration (AMD) and healthy controls.

Methods

This retrospective study drew on a case-series of patients diagnosed with dry AMD (n = 25)

and treated wet AMD (n = 19), as well as on healthy controls (no systemic therapy; n = 20)

undergoing phacoemulsification or vitrectomy. Samples of AH and serum were collected in

parallel at the beginning of surgery. The levels of 43 cytokines were simultaneously deter-

mined using the Bio-Plex® multiplex beads system. Differences between the three groups

were statistically compared using the Kruskal-Wallis H-Test after applying the Bonferroni

correction for multiple comparisons (p<0.0012).

Results

The concentrations of three cytokines were elevated in the AH of patients with dry AMD

(CXCL6; p = 0.00067) and treated wet AMD (CXCL5, CXCL6, MIG/XCXL; all p<0.001) rela-

tive to those in the healthy controls. No other differences between the three groups were

identified. The AH levels of seven cytokines (16%), including CXCL6, ranged below the

lower limit of quantitation of the assay. Without the correction for multiple comparisons

(p<0.05), the levels of 31 of the 43 cytokines in the AH of patients with AMD would have dif-

fered significantly from those in the control. The systemic cytokine profiles (serum) were

similar in all three groups.

Conclusions

No systematic differences in the AH cytokine environment were identified between patients

with dry AMD and those with treated wet AMD. This finding might indicate that AMD is either

the result of a persistent imbalance in the physiological tissue milieu, or that the localized
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process induces no significant change in the cytokine environment of the anterior ocular

segment.

Introduction

Age-related macular degeneration (AMD), particularly advanced stages of the disease, such as

choroidal neovascularization (CNV) and geographic atrophy (GA), is the most common cause

of irreversible vision loss in elderly individuals [1, 2, 3].

In clinical terms, the distinction between “wet” and “dry” forms of the disease is based

upon the manifestation of either CNV or atrophy of the retinal pigment epithelium (RPE), the

choriocapillaris and the overlying photoreceptors, respectively [4, 5]. Despite its convenience,

this dichotomization does not reflect the continuum of the underlying progressive pathology

of the macula with advanced age. Whereas wet AMD can be impeded (to a certain degree) by

intravitreal treatment with the anti-vascular endothelial growth factor (anti-VEGF), the dry

AMD component of the disease cannot be therapeutically influenced which indeed seems to

be somewhat clinically distinct [1, 4, 6, 7]. However, the underlying reason for the switch

towards either the atrophic, dry or the neovascular, wet form of the disease is not fully under-

stood [8]. Since wet AMD is typically preceded by more or less prominent changes that are

attributed to dry AMD, its presence could be considered as a risk factor [7]. Furthermore,

advanced manifestations of both dry and wet AMD may coexist in the same eye, which argues

in favor of a continuous rather than a dichotomatous process [7, 9]. Correspondingly, there

exist significant overlaps in the mechanisms that underlie these seemingly disparate clinical

conditions [4, 10], which is not a surprising finding for such a multifactorial disease [2] that is

influenced by aging, oxidative stress, mitochondrial dysfunction, environmental factors and

chronic, age-related low-grade inflammation [1]. Close correlations between AMD and vari-

ous immunological/inflammatory gene polymorphisms have been reported, thereby suggest-

ing the involvement of immune mediated processes (e.g., complement activation) and

inflammation [2]. Changes in the cytokine and chemokine concentrations at both the local

and the systemic levels, predominantly in patients with wet AMD, have been also documented

[1, 11–17]. These cytokines appear to play an integral role in the initiation, perpetuation or

subsequent down-regulation of the immune response, eventually leading to wound healing by

the formation of a fibrotic scar [18, 19]. Correspondingly, histological investigations in eyes

with early AMD (e.g., drusen) have revealed chronic inflammation at the RPE/choroidal inter-

face [20]. Furthermore immunocompetent cells, such as lymphocytes and macrophages [3, 21,

22], have been observed in chorioretinal tissue that had been derived from eyes with wet AMD

[2]. Generally, the molecular mechanisms that underline the development and progression of

CNV, the hallmark of wet AMD, are better understood than those that are involved in the evo-

lution of the dry form of the disease [23, 24].

It has been postulated that in the aging eye, the dysregulation of reparative (para-)inflam-

matory mechanisms, particularly the down-regulation of pro-inflammatory cytokines and the

up-regulation of anti-inflammatory cytokines by the RPE [e.g., in response to stimulation by

the deposition of advanced glycation end products (AGEs)] [25], might induce and perpetuate

the low-grade chronic inflammatory process that contributes to the progression of AMD [1].

However, whether these factors are the cause or the effect of the low-grade inflammation that

is associated with the progression of AMD remains to be determined [2, 6, 26].

In an attempt to understand the pathological process, changes in many different cytokines

compared to healthy controls have been reported [6, 27]. Since the role of the abundancy of a
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single agent in the pathogenesis of AMD is difficult to estimate, we monitored and compared

cytokine environmental changes by a maximally broad panel of 43 inflammatory and pro-

fibrotic biomarkers in the aqueous humor (AH) and sera of patients with dry and treated wet

AMD and in healthy controls. By implementing the Bonferroni correction for multiple com-

parisons, we endeavored to identify the most relevant beyond all significant intergroup

changes in this context.

Patients and methods

Patients

This retrospective case series included patients with either dry or treated wet AMD or healthy

controls without any relevant systemic or ocular disease (apart from senile cataract or macular

hole (MH)), who were scheduled for phacoemulsification surgery and/or vitrectomy. Clinical

data regarding ophthalmologic and systemic diagnoses and findings, systemic and local medi-

cations, as well as duration of the ocular symptoms (e.g., visual distortion, if manifested) were

collected. For the purpose of this study, the preoperative Snellen’s best-corrected visual acuity

(BCVA) was converted into Early Treatment Diabetic Retinopathy Study (ETDRS)-letter

scores (with 85 letters representing a BCVA of 1.0). Samples of blood serum and AH were col-

lected at the beginning of ocular surgery at the Berner Augenklinik am Lindenhofspital,

between August 2013 and January 2016. The grading of macular changes was based upon clini-

cal findings and OCT diagnostics in dependence on the Clinical Age-Related Maculopathy

Staging System (CARMS) [28]. The following stages were distinguished: healthy controls (no

chorioretinal changes), dry AMD (�15 intermediate drusen or any large drusen, no intra- or

sub-retinal fluid or hemorrhages), and treated wet AMD (signs of exudative AMD, such as

serous retinal detachments, non-drusenoid RPE detachments, CNV with sub-RPE or subret-

inal exudations or fibrosis prior to the onset of anti-VEGF therapy, or the presence of scars

consistent with AMD-treatment) [28].

Exclusion criteria included a history of systemic malignant, vascular or inflammatory co-

morbidities, namely, diabetes mellitus or rheumatic diseases; a history of any previous intraoc-

ular surgery or ocular trauma in the affected eye or of intraocular inflammation; the presence

or history of vitreal/(sub-)retinal hemorrhage; any ocular vascular occlusive disease; or myopia

of more than 6 diopters.

The informed and written consent of all individuals concerned was obtained, in strict

accordance with the tenets of the Declaration of Helsinki. The present study was approved by

the local Ethics Commission of the University of Bern in Switzerland (reference number: 152/

08).

Collection of aqueous humor

Samples of aqueous humor were collected at the onset of phacoemulsification surgery. About

150 to 200 microliters of undiluted aqueous humor was obtained via aspiration through a

30-gauge needle. The samples were stored within 4 hours at -20˚C for maximally 2 months

and thereafter at -80˚C until the time of the analysis.

Cytokine analysis

Within four hours of collection, the aliquots of AH and serum were frozen at -20˚C and stored

at this temperature for up to two months, thereafter at -80˚C until the time of analysis, which

was conducted simultaneously for all samples.
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The Bio-Plex1 multiplex immunoassay beads system (Bio-Plex 100 array reader and Bio-

Plex Manager software, version 6.1, Bio-Rad, Hercules, CA, USA) was used to simultaneously

quantify the concentrations of 43 cytokines and chemokines according to the manufacturer

instructions, as previously described [18]. A concentration standard was run in parallel on

each test plate. It represented the average of triplicate standard dilutions of each corresponding

chemokine/cytokine. A standard curve was generated and the sample concentrations were

determined by curve-fitting. The assays were performed in a blinded manner by an experi-

enced technician [29].

Statistical analysis

Quantitative data are presented as mean values together with the standard deviation (SD).

According to the standard curve, the lower limit of quantitation (LLOQ) of the assay working

range was typically about 1 pg/ml (http://www.biorad.com). The concentrations of several

cytokines ranged below the curve fit of the standards (out of range). To avoid a bias that would

have been introduced by excluding these values, they were set at half of the lowest quantified

level for the particular cytokine in question. Outliers were identified by a box-plot analysis

(box-whisker plot). Extreme outliers (viz., values that lay 3 box-lengths beyond the box-edges)

were excluded from the statistical analysis.

To ascertain whether or not the data were normally distributed the Shapiro-Wilk test was

applied. Since the data did not meet the criteria of a normal distribution, the non-parametric

Kruskal-Wallis H-Test was applied for the intergroup comparisons, using the level of statistical

significance of p�0.05. To counteract the Type I error that was attributable to the multiple

comparisons, the Bonferroni correction was implemented to the level of significance, which

resulted in a critical value for significance of p<0.0012 [30]. The statistical analyses were per-

formed using the open source software R (Version 3.3.2–2016 RStudio, Inc.; psych package)

and SPSS (version 23.0; IBM SPSS Statistics, Armonk, NY, USA) [18, 29].

Results

Patients

The analysis included 64 eyes from 64 patients. They were allocated to one of three groups:

healthy controls (n = 20); dry AMD (n = 25); treated wet AMD (n = 19; Table 1). The patients

with dry AMD and those with treated wet AMD were of similar age (p>0.05), whereas healthy

controls were younger (p = 0.0005). The proportion of females was higher than that of males

in each group (63.2% to 76.0%; chi-square test: p = 0.65).

The BCVAs of the healthy controls and of the patients with dry AMD differed from those

of the individuals with treated wet AMD (p = 0.002 and p = 0.02, respectively). The central

retinal thickness (CRT) and choroidal thickness were similar in all groups (p>0.10 for all

comparisons).

Table 1. Demographics: Patient characteristics and clinical data for the corresponding groups.

Baseline characteristics Healthy controls Dry AMD Treated wet AMD

Number of participants, n (%) 20 (31.2) 25 (39.1) 19 (29.7)

Number of females, n (%) 14 (70.0) 19 (76.0) 12 (63.2)

Age at sample collection, y mean (SD) 74.7 (5.6) 83.5 (6.9) 84.9 (5.1)

Best-corrected visual acuity, ETDRS-letter score, mean (SD) 68.2 (11.2) 61.8 (19.7) 46.9 (22.0)

Central retinal thickness, μm, mean (SD) 237.8 (30.3) 226.2 (46.3) 236.5 (63.9)

Choroidal thickness, μm, mean (SD) 172.5 (59.3) 142.4 (56.7) 147.8 (61.2)

https://doi.org/10.1371/journal.pone.0203337.t001
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In patients with treated wet AMD, the mean time that elapsed between the last anti-VEGF

injection and the collection of the samples was 14.9 ± 20.9 months. No differences in the cyto-

kine levels were observed between patients who had received the last anti-VEGF injection

within 6 months prior of the collection of the samples and those who had received the injec-

tion heretofore.

Cytokine analysis

The concentrations of the different cytokines in the AH (pg/ml) spanned a broad range

(Tables 2 and 3).

After application of the Bonferroni correction, the AH-concentrations of most of the cyto-

kines (n = 40) (in particular CCL21, CXCL13, CCL27, CCL11, CCL24, CCL26, CX3CL1,

GM-CSF, CXCL1, CXCL2, CCL1, IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8/CXCL8, IL-10, Il-16,

CXCL10, CXCL11, CCL2, CCL8, CCL7, CCL13, CCL22, MIF, CCL3, CCL15, CCL20, CCL19,

CCL23, CXCL16, CXCL12, CCL17, CCL25, TNF-α, TGF-β1, TGF-β2, and TGF-β3) were sim-

ilar in all three groups [healthy controls, dry AMD and treated wet AMD (p>0.0012)].

Eyes with treated wet AMD exhibited the highest absolute AH-concentrations in 31 of the

43 analyzed cytokines (72%). In the dry AMD group, the AH-concentrations of CXCL5,

CCL11, CCL24, GM-CSF, IL-4, CCL2, CCL13, MIF, CCL19, CCL17, TGF-β2, and TGF-β3

were higher than those in either the healthy controls or the eyes with treated wet AMD (Fig 1,

Table 2).

The concentrations of three cytokines were 1.7 to 72.8-fold higher (p<0.0012) in patients

with either dry AMD [CXCL6 (p = 0.00067)] and/or treated wet AMD [CXCL5 (p = 0.00099),

CXCL6 (p = 0.00067), MIG/CXCL9 (p = 0.00019)] than in the healthy controls, with signifi-

cant intergroup differences being registered after the application of the Bonferroni correction

(Fig 2, Table 3).

No intergroup differences in the AH-concentrations of the cytokines were observed

between eyes with dry AMD and those with treated wet AMD (all p>0.01).

CXCL6 and CCL7 were the only cytokines whose AH-concentrations increased with pro-

gression of age (p = 0.0006439 and p = 0.0006956, respectively; other cytokines: p>0.0012).

In no instance were any intergroup differences observed in the serum concentrations of the

monitored cytokines [p>0.0012 (Tables 4 and 5)]. The cytokine concentrations were 1.2 to

5775.6-fold higher in the serum than in the corresponding AH samples with the following

exceptions: CXCL5 (dry AMD only), GM-CSF, CCL2, TGF-β1 (healthy controls only), TGF-

β2 and TGF-β3. No age-correlated changes in any of the cytokines were identified in the

serum samples (p>0.0012).

Discussion

Our results revealed an upregulation of CXCL5, CXCL6 and MIG/CXCL9 (p<0.0012) in the

AH of eyes with dry and stable treated wet AMD, when compared to healthy controls. These

were the only cytokines whose up-regulation remained significant after the application of the

Bonferroni correction for multiple comparison. Heretofore, an additional 31 cytokines had

qualified for this designation when considering a level of significance of p<0.05. These find-

ings indicate that an analysis of the level of a single cytokine in clinical samples may suffer

from the weakness of attempting to detect and interpret a single point change in the complex

pathomechanism of AMD. Furthermore, it is challenging to estimate modulations in the local

cytokine environment/milieu at the lesion site by specimens taken from the anterior ocular

compartment rather than from where the pathology actually takes place. It remains a matter of

speculation whether or not the AH is indeed representative of the relatively small volume of
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Table 2. Mean concentrations (pg/ml) and standard deviations (SD) of the 43 monitored cytokines in the aqueous humor of healthy controls and of patients with

either dry or treated wet age-related macular degeneration (AMD).

Cytokine Healthy controls Dry AMD Treated wet AMD Assay Working Ranges

Mean (pg/ml) SD Mean (pg/ml) SD Mean (pg/ml) SD LLOQ (pg/ml) ULOQ (pg/ml)

CCL21 976.6 931.2 1’617.3 1’100.1 2’014.8 1’627.1 21.9 3’923

CXCL13 0.6 1.9 0.3 0.5 0.9 1.8 0.7 1’200

CCL27 0.3 1.3 0.4 1.3 1.9 3.4 1.2 5’000

CXCL5 47.0 74.6 3’419.0 14’656.2 635.9 2’162.5 7.3 120’000

CCL11 5.8 4.4 8.9 8.9 8.2 3.9 1.5 3’859

CCL24 11.8 11.4 42.3 93.8 18.4 9.9 6.2 4’073

CCL26 4.1 4.6 7.7 6.7 10.9 10.2 0.9 12’109

CX3CL1 33.8 20.7 51.7 38.2 55.5 34.9 4.0 11’463

CXCL6 0.1 0.0 0.3 0.3 0.7 1.2 0.8 11’135

GM-CSF 49.2 25.9 93.7 87.1 67.8 33.7 5.3 35’000

CXCL1 28.4 21.1 45.8 35.7 48.3 16.5 3.1 7’024

CXCL2 1.8 1.0 3.1 2.9 3.7 2.5 4.6 13’257

CCL1 9.4 7.7 16.6 8.8 19.1 10.9 1.8 1’015

IFN-γ 3.0 3.4 7.7 7.7 8.7 7.3 2.3 20’236

IL-1β 0.5 0.4 0.8 0.6 1.1 0.7 0.4 7’000

IL-2 0.9 1.1 1.1 1.2 1.3 0.9 0.8 13’000

IL-4 0.6 1.4 15.4 58.7 6.3 16.2 1.2 4’804

IL-6 4.7 7.1 3.4 1.8 4.9 3.8 0.7 12’000

IL-8/CXCL8 3.6 2.9 4.5 2.5 6.1 3.0 0.5 7’640

IL-10 2.3 3.9 4.6 7.2 6.2 6.8 1.3 18’708

IL-16 4.3 5.7 9.2 9.8 14.3 10.7 2.1 34’000

CXCL10 41.0 40.9 58.9 72.2 122.0 112.2 1.6 7’714

CXCL11 1.3 2.0 2.6 2.7 4.5 4.6 0.1 2’298

CCL2 300.0 102.6 351.0 336.9 340.9 87.3 0.3 4’812

CCL8 2.3 2.2 4.5 4.7 5.7 3.5 0.3 4’056

CCL7 3.1 4.6 7.7 13.4 12.5 15.0 1.9 20’133

CCL13 0.5 0.4 1.8 3.6 1.2 0.8 0.2 3’368

CCL22 6.8 4.6 12.3 13.2 13.4 5.9 0.9 14’649

MIF 50’207.1 96’380.3 128’907.2 363’701.7 112’391.1 116’068.9 23.1 377’721

MIG/CXCL9 7.5 12.3 32.1 59.2 81.0 119.5 1.8 19’600

CCL3 0.8 0.7 1.3 0.9 1.6 1.1 0.4 1’543

CCL15 296.3 182.7 409.9 358.1 554.0 396.6 1.7 9’100

CCL20 2.9 3.1 3.2 4.4 4.6 5.7 0.3 4’675

CCL19 2.4 2.6 5.7 10.9 5.2 5.1 3.0 48’494

CCL23 5.8 5.1 13.0 12.0 13.5 10.2 1.0 14’450

CXCL16 490.7 198.4 459.1 266.2 539.9 221.7 0.5 2’867

CXCL12 82.0 60.1 107.9 107.9 162.6 148.0 8.3 115’730

CCL17 0.2 0.3 1.4 5.2 0.4 1.3 1.7 430

CCL25 117.2 153.3 243.5 444.7 260.2 196.6 20.6 114’493

TNF-α 5.0 3.3 9.5 7.0 10.6 6.5 0.9 13’879

TGF-β1 80.6 132.4 129.1 215.8 165.5 135.4 1.7 27’616

TGF-β2 1’288.5 738.0 1’761.9 450.0 1’742.4 831.7 14.7 30’080

TGF-β3 6.0 11.9 9.7 14.2 7.5 8.5 2.8 15’031

LLOQ: Lower limit of quantitation; ULOQ: Upper limit of quantitation

https://doi.org/10.1371/journal.pone.0203337.t002
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Table 3. P-values appertaining to the 43 monitored cytokines in the aqueous humor of healthy controls and of patients with either dry or treated wet age-related

macular degeneration (AMD).

Cytokine Kruskal-Wallis H-Test Kruskal-Wallis H-Test Kruskal-Wallis H-Test

Healthy controls vs. Healthy controls vs Dry AMD vs.

Dry AMD Treated wet AMD Treated wet AMD

CCL21 p = 0.034 p = 0.034 p = 0.69

CXCL13 p = 0.1546 p = 0.0082 p = 0.0113

CCL27 p = 0.075 p = 0.029 p = 0.118

CXCL5 p = 0.00265 p = 0.00099 p = 0.26924

CCL11 p = 0.13 p = 0.11 p = 0.57

CCL24 p = 0.0035 p = 0.0609 p = 0.0609

CCL26 p = 0.0079 p = 0.0079 p = 0.2915

CX3CL1 p = 0.041 p = 0.041 p = 0.67

CXCL6 p = 0.00067 p = 0.00067 p = 0.10159

GM-CSF p = 0.0014 p = 0.0866 p = 0.1096

CXCL1 p = 0.084 p = 0.015 p = 0.245

CXCL2 p = 0.0036 p = 0.0025 p = 0.0812

CCL1 p = 0.0093 p = 0.0093 p = 0.5295

IFN-γ p = 0.02 p = 0.019 p = 0.529

IL-1β p = 0.059 p = 0.008 p = 0.126

IL-2 p = 0.533 p = 0.067 p = 0.261

IL-4 p = 0.0091 p = 0.0093 p = 0.9518

IL-6 p = 0.39 p = 0.31 p = 0.68

IL-8/CXCL8 p = 0.082 p = 0.019 p = 0.082

IL-10 p = 0.086 p = 0.016 p = 0.129

IL-16 p = 0.0829 p = 0.0023 p = 0.0773

CXCL10 p = 0.784 p = 0.0078 p = 0.022

CXCL11 p = 0.0127 p = 0.0031 p = 0.169

CCL2 p = 0.66 p = 0.17 p = 0.1

CCL8 p = 0.0424 p = 0.0026 p = 0.0698

CCL7 p = 0.012 p = 0.002 p = 0.135

CCL13 p = 0.0048 p = 0.0014 p = 0.5613

CCL22 p = 0.0607 p = 0.0028 p = 0.0773

MIF p = 0.222 p = 0.023 p = 0.222

MIG/CXCL9 p = 0.06656 p = 0.00019 p = 0.02358

CCL3 p = 0.0218 p = 0.0048 p = 0.1441

CCL15 p = 0.081 p = 0.023 p = 0.081

CCL20 p = 0.91 p = 0.65 p = 0.65

CCL19 p = 0.72 p = 0.61 p = 0.61

CCL23 p = 0.014 p = 0.0059 p = 0.4767

CXCL16 p = 0.38 p = 0.56 p = 0.36

CXCL12 p = 0.982 p = 0.024 p = 0.056

CCL17 p = 0.2 p = 0.2 p = 0.62

CCL25 p = 0.0869 p = 0.0051 p = 0.0972

TNF-α p = 0.0057 p = 0.0057 p = 0.5613

TGF-β1 p = 0.16 p = 0.04 p = 0.16

TGF-β2 p = 0.0037 p = 0.1705 p = 0.6544

TGF-β3 p = 0.16 p = 0.16 p = 0.81

https://doi.org/10.1371/journal.pone.0203337.t003
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the macular RPE/Bruch’s membrane complex. Likely, only the most abundant changes in the

cytokine concentrations at the lesion site will be detectable in the constantly renewing AH.

This circumstance may partially explain why the number of cytokines for which intergroup

differences were detected was not larger than it was. The three that qualified for this distinc-

tion, namely, CXCL5, CXCL6 and MIG/CXCL9, probably figure in a true disease-associated

effect. Interestingly, the differences in their concentrations were between the healthy controls

and the two pathological sub-groups, not between the two forms of the AMD pathology. This

finding and the fact that no systematic change in the cytokine environment was detected

between dry AMD and treated stable wet AMD (Fig 1) suggests that a persistent imbalance in

the local milieu might exist in this disease, with smooth transitions occurring between dry and

wet AMD pathogenesis [4]. However, the fact that we investigated samples of treated stable

wet AMD leads to the speculation that we looked at an inactive state of the disease with possi-

ble cytokine downregulation. Nevertheless, CNV reactivation is possible at any time so that it

might be at least partially similar to the situation prior to the primary activation of the lesion.

Inflammatory activity at a subclinical level could indeed figure in AMD, in analogy to the

situation that is observed in the pseudoexfoliation syndrome, which is another age-dependent

degenerative disease with an inflammatory background. This postulate fits well with the con-

cept of inflammaging or immunosenescence, an age-related inflammatory response to aging

changes, found in many organs [31–37]. Since aging is the strongest risk factor for the develop-

ment and progression of AMD, the existence of a link between the pathogenesis of the disease

and local immunosenescence is very likely [2, 38].

In the ocular tissue of patients with AMD, an accumulation of T-cells has been observed.

Consequently, it has been proposed that lymphocytes may play a pivotal role in the breakdown

of Bruch’s membrane, in RPE-atrophy and in the onset CNV in early and late stages of AMD
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Fig 1. Mean concentrations of the 43 monitored cytokines in the aqueous humor of healthy controls (continuous

black trace) and of patients with either dry age-related macular degeneration (AMD; continuous grey trace) or

treated wet AMD (dashed grey trace), represented on a logarithmic scale. Note: The presentation of non-

continuous data as a line graph permits an improved estimation of concentration changes not only for individual

cytokines (points) but also for the cytokine environment as a whole.
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[39, 40]. Monokine induced by interferon-gamma (-γ) (MIG/CXCL9), which was up-regulated

in treated wet AMD, is known to be a crucial chemokine in many inflammatory processes,

particularly in those that are mediated by T-cells [41]. It is specific for T-cell chemotaxis and

cell attraction and was found to be overexpressed in the RPE/Bruch’s membrane/choriocapil-

laris complex of aging mice [42]. Although our sample number may have been too small to

detect age-related changes in in the concentrations of MIG/CXCL9 within the AH or the

serum, Torres and coworkers recently described serum MIG/CXCL9 levels to increase with

progression of age by using a large population-based cohort study [43, 44]. Shi and colleagues

reported that MIG/CXCL9, interferon-γ inducible protein 10-kDa (IP-10, CXCL10), and

interferon-γ inducible T-cell alpha (α) chemoattractant (I-TAC, CXCL11) are expressed in

RPE [45]. However, the specific functions of these chemokines in angiogenesis remain to be

determined [45–48]. As an indicator of its clinical relevance, Jonas et al. reported an associa-

tion between the severity of retinal edema and elevated concentrations of MIG/CXCL9 [13].

CNV, on the other hand, does not appear to be driven primarily by inflammatory activity,

since a relevant effect was not detected in AMD-patients who had undergone treatment with

corticosteroids in addition to anti-VEGF therapy in a prospective randomized clinical trial

[49].

The finding that elevated levels of MIG/CXCL9 were apparent only in treated wet AMD

could suggests that this change is not only age-related [43, 44], but also a marker of retinal dis-

eases with inflammatory components such as AMD [50] at a late, steady-state stage, which

deserves further attention.
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Table 4. Mean concentrations (pg/ml) and standard deviations (SD) of the 43 monitored cytokines in the sera of healthy controls and of patients with either dry or

treated wet age-related macular degeneration (AMD).

Cytokine Healthy controls Dry AMD Treated wet AMD Assay Working Ranges

Mean (pg/ml) SD Mean (pg/ml) SD Mean (pg/ml) SD LLOQ (pg/ml) ULOQ (pg/ml)

CCL21 7’971.5 2’008.0 14’357.7 17’653.8 19’630.5 18’509.2 21.9 3’923

CXCL13 23.3 13.1 33.1 25.4 35.1 25.3 0.7 1’200

CCL27 1’612.3 428.2 2’293.4 1’188.6 2’587.4 1’177.7 1.2 5’000

CXCL5 724.7 274.1 1’217.4 1’155.9 1’374.2 1’039.9 7.3 120’000

CCL11 48.4 9.5 57.5 24.1 76.2 36.6 1.5 3’859

CCL24 371.6 196.3 584.0 560.2 433.0 250.9 6.2 4’073

CCL26 42.0 14.1 49.9 44.6 63.9 49.4 0.9 12’109

CX3CL1 166.2 46.7 242.0 152.0 271.7 179.3 4.0 11’463

CXCL6 32.1 10.1 34.6 18.4 45.8 24.1 0.8 11’135

GM-CSF 22.9 18.4 32.9 30.0 43.5 41.3 5.3 35’000

CXCL1 318.0 63.1 328.5 117.4 365.1 98.9 3.1 7’024

CXCL2 494.4 265.4 678.3 726.3 1’083.1 982.7 4.6 13’257

CCL1 66.7 10.3 75.5 40.7 87.9 45.8 1.8 1’015

IFN-γ 63.0 22.4 74.8 46.9 93.4 50.3 2.3 20’236

IL-1β 5.2 1.7 5.0 2.2 5.3 1.9 0.4 7’000

IL-2 10.9 4.2 11.7 6.1 13.6 5.9 0.8 13’000

IL-4 44.0 6.7 52.4 25.7 56.9 28.7 1.2 4’804

IL-6 6.5 2.9 8.8 3.7 10.3 4.1 0.7 12’000

IL-8/CXCL8 10.9 7.0 20.1 27.2 37.0 45.4 0.5 7’640

IL-10 70.8 25.5 88.1 63.4 105.5 79.0 1.3 18’708

IL-16 285.1 73.9 458.9 246.4 714.5 589.4 2.1 34’000

CXCL10 191.5 116.2 483.0 1124.9 313.1 203.7 1.6 7’714

CXCL11 38.8 9.1 108.0 189.1 84.6 65.0 0.1 2’298

CCL2 60.1 14.7 81.6 51.6 95.4 56.2 0.3 4’812

CCL8 88.7 21.6 151.7 143.5 160.1 131.0 0.3 4’056

CCL7 128.3 44.5 154.6 109.4 184.0 117.8 1.9 20’133

CCL13 81.8 24.8 115.4 80.2 125.3 78.0 0.2 3’368

CCL22 1010.5 1063.4 641.5 330.4 1022.7 598.4 0.9 14’649

MIF 68’484.2 78’856.9 166’888.4 259’605.2 254’498.5 239’185.4 23.1 377’721

MIG/CXCL9 432.0 228.1 2’200.1 6’308.5 1’221.1 1’222.3 1.8 19’600

CCL3 8.1 2.7 9.9 5.9 11.2 3.6 0.4 1’543

CCL15 5’487.2 2’218.7 9’693.6 6’064.3 10’720.8 7’705.4 1.7 9’100

CCL20 18.0 12.0 19.0 13.1 18.8 9.3 0.3 4’675

CCL19 512.1 344.9 679.1 648.3 802.2 857.2 3.0 48’494

CCL23 350.4 116.7 399.1 192.6 427.0 226.1 1.0 14’450

CXCL16 580.9 155.1 689.7 277.5 857.2 394.3 0.5 2’867

CXCL12 929.8 298.2 1172.3 774.1 1’598.1 1’319.1 8.3 115’730

CCL17 206.9 160.7 275.3 283.3 344.4 421.4 1.7 430

CCL25 810.8 286.0 1’063.3 713.7 1’531.1 913.4 20.6 114’493

TNF-α 53.4 11.2 72.6 53.4 87.7 61.5 0.9 13’879

TGF-β1 13.6 0.0 205.2 376.9 273.0 548.5 1.7 27’616

TGF-β2 3.1 0.0 107.6 423.6 3.1 0.0 14.7 30’080

TGF-β3 1.5 1.9 4.6 7.1 5.0 9.2 2.8 15’031

LLOQ: Lower limit of quantitation; ULOQ: Upper limit of quantitation

https://doi.org/10.1371/journal.pone.0203337.t004
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Table 5. P-values appertaining to the 43 monitored cytokines in the sera of healthy controls and of patients with

either dry or treated wet age-related macular degeneration (AMD).

Cytokine Kruskal-Wallis H-Test Kruskal-Wallis H-Test Kruskal-Wallis H-Test

Healthy controls vs. Healthy controls vs Dry AMD vs.

Dry AMD Treated wet AMD Treated wet AMD

CCL21 p = 0.6 p = 0.6 p = 0.65

CXCL13 p = 0.36 p = 0.36 p = 0.99

CCL27 p = 0.17 p = 0.12 p = 0.51

CXCL5 p = 0.45 p = 0.45 p = 0.45

CCL11 p = 0.27 p = 0.27 p = 0.27

CCL24 p = 0.7 p = 0.7 p = 0.7

CCL26 p = 0.77 p = 0.77 p = 0.77

CX3CL1 p = 0.2 p = 0.2 p = 0.85

CXCL6 p = 1.0 p = 0.27 p = 0.27

GM-CSF p = 0.64 p = 0.64 p = 0.64

CXCL1 p = 0.69 p = 0.54 p = 0.54

CXCL2 p = 1.0 p = 0.6 p = 0.6

CCL1 p = 0.74 p = 0.74 p = 0.74

IFN-γ p = 0.54 p = 0.28 p = 0.36

IL-1β p = 0.9 p = 0.9 p = 0.9

IL-2 p = 0.77 p = 0.59 p = 0.61

IL-4 p = 0.5 p = 0.5 p = 0.71

IL-6 p = 0.174 p = 0.076 p = 0.259

IL-8/CXCL8 p = 0.29 p = 0.12 p = 0.12

IL-10 p = 0.74 p = 0.74 p = 0.74

IL-16 p = 0.076 p = 0.076 p = 0.381

CXCL10 p = 0.47 p = 0.3 p = 0.47

CXCL11 p = 0.27 p = 0.12 p = 0.51

CCL2 p = 0.41 p = 0.22 p = 0.41

CCL8 p = 0.27 p = 0.27 p = 0.68

CCL7 p = 0.79 p = 0.65 p = 0.65

CCL13 p = 0.58 p = 0.58 p = 0.61

CCL22 p = 0.48 p = 0.46 p = 0.05

MIF p = 0.213 p = 0.057 p = 0.141

MIG/CXCL9 p = 0.18 p = 0.12 p = 0.72

CCL3 p = 0.4 p = 0.14 p = 0.22

CCL15 p = 0.037 p = 0.037 p = 0.745

CCL20 p = 0.88 p = 0.88 p = 0.88

CCL19 p = 0.97 p = 0.97 p = 0.97

CCL23 p = 0.87 p = 0.87 p = 0.87

CXCL16 p = 0.3 p = 0.14 p = 0.3

CXCL12 p = 0.48 p = 0.48 p = 0.48

CCL17 p = 0.97 p = 0.97 p = 0.97

CCL25 p = 0.6 p = 0.14 p = 0.16

TNF-α p = 0.41 p = 0.41 p = 0.41

TGF-β1 p = 0.086 p = 0.086 p = 0.915

TGF-β2 p = 0.21 - p = 0.21

TGF-β3 p = 0.66 p = 0.66 p = 0.96

https://doi.org/10.1371/journal.pone.0203337.t005
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In the vast majority of our patients with wet AMD, an interval of more than 6 months had

elapsed between the last anti-VEGF injection and the time at which the samples were collected.

Hence, the influence of intravitreal anti-VEGF treatment should be negligible [51, 52].

In the context of ocular diseases, data appertaining to the neutrophil-specific pro-inflam-

matory and chemoattractive cytokines/chemokines CXCL5 (ENA-78) and CXCL6 (GCP-2)

are sparse. Both chemokines show a high homology in primary structure (chemotactic

potency: CXCL6 > CXCL5 [53]) and they both interact with CXCR-2 (CXC chemokine recep-

tor 2) [54]. The present study is one of the first to identify noticeably elevated levels of these

cytokines/chemokines in the eyes of patients with dry and/or treated wet AMD relative to the

situation in the healthy controls, which remained statistically significant even after the correc-

tion for multiple comparisons. The extent to which these increases contribute to the pathogen-

esis and/or persistence of AMD remains to be addressed.

A similar up-regulation has been reported also for late forms of the pseudoexfoliation syn-

drome with luxation of the intraocular lens [29] and in eyes with epiretinal membranes [18].

Parmar et al. reported increases in the levels of several cytokines, including CXCL5, which

have been identified as an acute stress response to intense light in immunodeficient mice with

a disrupted visual cycle and as pivotal factors in the development of retinal degeneration [55].

An association between chronic light-induced damage and AMD has been reported, and this

circumstance could account for the almost 14-fold up-regulation of CXCL5 [56]. In patients

with dry AMD and in those with treated wet AMD, CXCL6 was up-regulated relative to the sit-

uation in the healthy controls. Since the AH-levels of CXCL6 (min. 0.1 pg/ml in healthy con-

trols; max. 0.7 pg/ml in treated wet AMD) ranged below the LLOQ for the used immunoassay

system (0.8 pg/ml) the detected differences may reflect not only a true disease-based change,

but also partially measurement inaccuracies. Until this latter possibility can be excluded, an

interpretation of this finding is not possible.

Moreover, we did not observe any difference in serum cytokine profiles neither between

the three compared groups nor with progression of age within the analyzed pool of patients.

This might indicate that AMD is a local ocular process without measurable systemic cytokine

environmental changes which has already been discussed controversially (e.g., TNF-α) [57,

58]. However, an age-related low-grade systemic/generalized inflammation within a similar

degree in healthy controls and AMD patients cannot be excluded.

Beyond the limitations of this study, the healthy controls were approximately 10 years

younger than the patients with dry or treated wet AMD. A possible influence of age on the

results cannot therefore be excluded. However, since a correlation between age and the AH-

levels of the cytokines was detected in only two instances [CXCL6 (p = 0.0006) and CCL7

(p = 0.0007)] and not at all between age and the serum concentrations, any effect, if it existed,

would be marginal. Nevertheless, in future studies, an age-matched group of healthy controls

would be included to enhance the power of the intergroup differences. Given that no age-

related differences between dry and treated wet AMD were identified, the absence of inter-

group differences is probably a reliable finding. Finally, since a very robust level of significance

was employed in the present study (Bonferroni correction), only differences of high signifi-

cance (p<0.0012) were considered. Hence, we cannot exclude the possibility that some rele-

vant results might have been thereby dismissed. Nevertheless, in terms of biological relevance,

we believe that the application of such a high level of significance contributed to the strength

of our findings.

For 40 of the 43 monitored cytokines, we could identify no intergroup differences in con-

centration. Our findings respecting some of these cytokines conflict with existing data, which

reveal specific associations between their levels and the pathogenesis of wet AMD [1, 11, 13,

17, 25, 26, 48, 59–63] as well as aging [64–66], either locally in the AH or systemically in the
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blood serum. Of particular note are our findings respecting IL-4 and IL-10, which, in contrast

to existing data, were not up-regulated. An up-regulation of these two cytokines would indeed

be reasonable, since both appear to be involved in the pathogenesis of AMD [3, 11, 21, 22, 26,

59, 67–70] and the process of aging [22, 25, 64, 43]. The discrepancies between our own and

existing data may be partially explained by the circumstance that we chose to evaluate not only

individual cytokines but also the cytokine environment as a whole, which necessitated a cor-

rection for multiple comparisons. As a consequence, the concentrations of 31 of the monitored

cytokines fell below the level of statistical significance (p>0.0012). The heterogeneity of the

AMD-stages that were investigated in various published studies may also have contributed to

the different outcomes [67].

In conclusion, three of the 43 monitored cytokines (7%) were up-regulated in the AH of

AMD-patients relative to the situation in the healthy controls. No differences between dry and

treated wet AMD were identified. Our data support existing evidence that inflammatory/

immunological processes play a role in the pathogenesis of AMD. The finding that 31 of the 43

monitored cytokines (72%) were dysregulated in patients with wet AMD relative to the situa-

tion in the healthy controls at a significance level of p<0.05 affords strong evidence that data

appertaining to the concentrations of individual cytokines are barely interpretable on this sta-

tistical basis. The circumstance that the AH-levels of seven of the 43 tested cytokines (16%)

hovered below the LLOQ for the immunoassay contributes to the difficulty of interpretation.

Consequently, at the present time, estimating the specific role of these cytokines in the patho-

genesis of AMD is challenging, since a relevant effect at the tissue level of the RPE/Bruch’s

membrane/choriocapillaris complex cannot excluded in the face of existing data.
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