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Abstract

Numerous benchmark datasets and evaluation toolkits have been designed to facilitate visual

object tracking evaluation. However, it is not clear which evaluation protocols are preferred for

different tracking objectives. Even worse, different evaluation protocols sometimes yield con-

tradictory conclusions, further hampering reliable evaluation. Therefore, we 1) introduce the

new concept of mirror tracking to measure the robustness of a tracker and identify its over-fit-

ting scenarios; 2) measure the robustness of the evaluation ranks produced by different eval-

uation protocols; and 3) report a detailed analysis of milestone tracking challenges, indicating

their application scenarios. Our experiments are based on two state-of-the-art challenges,

namely, OTB and VOT, using the same trackers and datasets. Based on the experiments, we

conclude that 1) the proposed mirror tracking metrics can identify the over-fitting scenarios of

a tracker, 2) the ranks produced by OTB are more robust than those produced by VOT, and

3) the joint ranks produced by OTB and VOT can be used to measure failure recovery.

1 Introduction

Object tracking is an essential task in various application scenarios, such as intelligent moni-

toring, unmanned system operation and human—computer interaction [1]. Numerous track-

ing approaches have been proposed over the past decades, such as KCF [2], Struck [3], ASLA

[4], SCM [5], ECO [6], SiamFC [7], MDNet [8], CCOT [9] etc, have demonstrated superior

performance in [10–14]. To measure the performance of these tracking algorithms, much

effort has been directed toward building fairly large datasets to facilitate the evaluation process

[10–16]. Such studies have focused on building datasets while proposing new methodologies

for analyzing tracking performance. However, when researchers have focused on evaluating

the performance of trackers, they have often overlooked the reliability and robustness of the

evaluation protocols themselves, which could significantly affect the evaluation results.

A mirrored image represents the same tracking scenario as the original one, thus, trackers

should intuitively have the similar performance on a mirrored sequence as on the original one.

Moreover, the ranks produced by the same protocol should be consistent. Yang and Patras

[17] performed a mirror experiment related to human pose estimation and face alignment,

and they found that an object localization model may yield unsymmetrical results on a mirror

image, leading to several interesting findings. Therefore, inspired by their work [17], we define
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the concept of mirror tracking to evaluate the robustness of trackers and evaluation protocols,

as shown in Fig 1.

We revisit the milestone tracking challenges OTB [10] and VOT [11] using mirror tracking

metrics. We first augmented a publicly available dataset with mirror-transformed versions of

the original sequences (32 sequences). The same trackers were run on the same dataset using

two evaluation protocols proposed in the two different challenges, i.e., OTB [10] (each tracker

is run on each sequence without re-initialization following failure) and VOT [11] (a tracker is

re-initialized whenever a failure is detected). We present the results for the original sequences

and the mirrored sequences, with the intent of analyzing 1) the trackers’ performance on

sequences with different tracking conditions (attributes) and 2) the consistency and robustness

of the tracking ranks produced by different evaluation protocols.

Based on our experiments, we can draw the following conclusions: 1) the proposed mirror

tracking metrics can help to identify the over-fitting scenarios of a tracker, 2) the rankings pro-

duced by the VOT protocol are more sensitive to original vs. mirror tracking than those pro-

duced by the OTB protocol, and 3) testing tracker performance using both protocols can yield

more accurate information about the tracker’s capability. The contributions of this study are

as follows: 1) mirror tracking is introduced to address and analyze the performance of trackers

and the robustness of evaluation protocols, and 2) the analysis and conclusions based on mir-

ror tracking for milestone tracking challenges can serve as a reference to advance the study of

tracking evaluation tasks.

We review related work in Sec. 2. Details on the dataset construction and evaluation proto-

cols are provided in Sec. 3. Sec. 4 presents and discusses the experimental results. Sec. 5 offers

concluding remarks.

2 Related work

A tracking algorithm typically consists of three components: target representation, a matching

mechanism, and model adaptation [20]. With recent advances in feature representation, both

Fig 1. The conducted mirror tracking experiment. In the basketball sequence, the green bounding box denotes the ground truth, the blue

bounding box indicates the DFT result [18], and the red bounding box indicates the CT result [19]. The performance of CT is dramatically

different between the original and mirrored sequences in the mirror tracking experiment, whereas that of DFT remains the same.

https://doi.org/10.1371/journal.pone.0203188.g001
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global and local features, such as SIFT, Wavelet, HOF and HOG and CNN features, have been

applied to represent objects of interest. Many on-line learning methods have been exploited to

achieve sophisticated tracking algorithms with superior performance, e.g., Struck [3] utilizes

“Haar features + SVM”, Staple [21] employs fused color and Hog information, several trackers

such as SRDCF [22], HCF [23], KCF [2], DCF [24], CFNet [25] and DSST [26] use the popular

kernelized correlation filter approaches, while recent state-of-the-art trackers, such as ECO

[6], SiamFC [7], MDNet [8, 27] and CCOT [9] are based on CNN features. However, since

trackers should not have a large model size, while to obtain an high accuracy, they usually

extract a high dimension of features, which can easily lead to a over-fitting problems. Besides,

many factors can dramatically affect the tracking performance, such as target deformation, fast

motion, illumination conditions, low resolution and occlusion. To improve performance,

recent trackers focus on adopting several approaches, including: applying fused CNN features

[8], utilizing multi-resolution feature maps [9], reducing computational complexity and pro-

viding better diversity of samples [6].

Therefore, it is important to gain a profound understanding of different trackers to advance

the state of tracking research. To facilitate tracking evaluation, great efforts have been directed

toward the design of benchmark datasets and corresponding evaluation metrics. A significant

contribution was made by Wu [10], who collected 50 fully annotated videos and 29 tracking

algorithms. This Object Tracking Benchmark (OTB) dataset [28] was later extended with

another 50 sequences [29]. In the OTB evaluation protocol, each tracker is provided with an

initial bounding box and is run until the end of each video without re-initialization after track-

ing failure. The authors suggest using the area under the curve (AUC) of either the overlap

ratio curve or the center-error distance curve for evaluation. Another milestone work, the

Visual Object Tracking (VOT) challenge, was established by Kristan [12] in association with

the annual ICCV/ECCV conferences. It is based on two independent metrics: accuracy (the

overlap ratio between the tracker and ground-truth bounding boxes) and robustness (mea-

sured with respect to the frequency of tracking failure, i.e., when the overlap ratio becomes

zero). In the VOT evaluation protocol, whenever a failure occurs, the tracker is re-initialized

before it continues tracking. The VOT challenge is held and updated every yearly, nowadays,

VOT2016 [13] argued that the averaging ranks of raw accuracy and robustness values ignores

the absolute differences, while VOT2017 [14] toolkit performs the OTB no-reset (OPE) evalua-

tions. Both evaluation protocols have attracted considerable attention from the tracking com-

munity. However, when researchers have focused on evaluating the performance of trackers,

they have often overlooked the reliability and robustness of the evaluation protocols them-

selves. Therefore, we revisit these two state-of-the-art tracking benchmarks using our proposed

mirror tracking approach. Rather than focusing on evaluating and ranking the trackers’ perfor-

mance, we focus on evaluating the tracking challenges themselves using both original and mir-

rored sequences to see how the performance changes under the same tracking conditions

(attributes), thereby gaining a profound understanding of tracking benchmarks that could

guide future work on the design of evaluation protocols.

3 Dataset and evaluation protocols

3.1 Mirror tracking dataset

Note that merely constructing a very large dataset does not guarantee diversity in its visual

attributes but significantly slows the evaluation process [12]. A better approach is to perform

sequence clustering to reduce the size of the dataset while maintaining its diversity. Based on

this approach, the OTB group [10] has developed a challenging and representative dataset con-

sisting of sequences chosen from a large pool by clustering the visual features of the objects
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and backgrounds. Therefore, we utilized the publicly available TB-50 dataset [10] (including

50 different target objects) to conduct the experiments reported in this paper.

Each test image was flipped horizontally to generate the mirror image. Thus, the entire

dataset was doubled in size compared with the original one. To maintain consistency of the

ground truths, the coordinates were adapted accordingly. We denote an original sequence by

P = {Ik}. The corresponding mirror sequence is denoted by P̂ ¼ fÎ kg, where k = {1, 2, 3, . . ., n},

Î k is the mirror image of Ik, and n is number of frames in the sequence. In the original

sequence, the object is represented by a bounding box defined by four variables, denoted by

{x, y, w, h}, where {x, y} is the top left corner and {w, h} represents the corresponding width

and length. Accordingly, the coordinates of the object in the mirror image are {WI − (x + w), y,

w, h}, where WI is the width of the image. Since the tracking conditions are not changed in the

mirror images, the associated attributes of each image are the same as those of the original one.

3.2 Evaluation protocols

Two different tracking evaluation protocols have attracted considerable attention, namely,

the OTB [10] and VOT [12] protocols. The main difference between VOT and OTB is that in

OTB, each tracker is run on each sequence without re-initialization following failure, whereas

in VOT, a tracker is re-initialized whenever a failure is detected.

OTB evaluation protocol. The OTB protocol was proposed by Wu et al. [10] in

CVPR2013 and defines two means of evaluating tracking robustness: temporal robustness

evaluation (TRE) and spatial robustness evaluation (SRE). TRE and SRE represent an

improvement over the conventional one-pass evaluation method (OPE), in which each tracker

is initialized only on the first frame; in TRE, the tracker is initialized on a different frame

(i.e., with a temporal spread), and in SRE, the tracker is initialized with a noisy bounding

box (i.e., with a spatial spread). Furthermore, the OPE, TRE and SRE approaches all consider

both precision and accuracy to evaluate the tracking performance.

The accuracy in frame k is defined as the bounding box overlap φk, which is calculated

using the tracker-output bounding box TTK and the ground-truth bounding box GTk as

shown in Eq 1:

φk ¼
jTTk \ GTkj

jTTk [ GTkj
ð1Þ

where \ and [ represent the intersection and union of two regions, respectively, and |•| is the

region size measured as the number of pixels.

The precision is quantified by the center location error, which measures the difference

between the center location XT
k predicted by the tracker and the ground-truth center location

XG
k in the kth frame. It is often defined as a root-mean-square error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

kXG
k � XT

k k

s

ð2Þ

For a range of values of the accuracy ratio φk, a success curve is drawn. The final score is cal-

culated as the AUC to represent the overall tracking performance.

VOT evaluation protocol. The VOT challenge is organized every year by Kristan et al.

[12] in association with ICCV/ECCV. Since the center location error is sensitive to subjective

human-selected bounding boxes, the VOT protocol uses only the overlap to define both

robustness and accuracy. The accuracy defined in VOT is the same as that defined in OTB.

For robustness, the protocol specifies an overlap threshold to determine tracking success. The
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number of correctly tracked frames is then divided by the total number of frames, as shown in

Eq 3, to achieve a more suitable evaluation:

PtðGT;TTÞ ¼
jjftjφk > tg

N
k¼1
jj

N
ð3Þ

where τ is the overlap threshold and N is the run time of the tracker in frames. A failure is

identified in a frame when the overlap (as computed using Eq 1) is below the defined threshold

τ (zero in the present experiments). The normalized number of correctly tracked frames is

used to represent the robustness of the tracker.

4 Experiments and results

We selected ten trackers in the experiments by VOT and OTB, namely, CT [19], CSK [30],

ORIA [31], DFT [18], IVT [32], ECO [6], MDNet [8], CCOT [9], Staple [21] and KCF [2] as

summarized in Table 1. Each tracker represents a different combination of the target repre-

sentation, search mechanism and matching method. In the experiments, we implemented

the trackers with the same parameters on the same dataset using different evaluation proto-

cols. This was done to conduct a fair comparison between the OTB and VOT tracking chal-

lenges. The experiments were designed to 1) identify the scenarios in which the trackers

exhibit over-fitting problems; 2) analyze the robustness evaluation of different protocols, i.e.,

OTB [10] and VOT [12]; and 3) make detailed discussion of mirror tracking with trackers

and protocols.

4.1 Tracking results using the OTB protocol

The tracking results on the entire dataset and on sub-datasets with corresponding attributes

are presented in Fig 2. In this section, we mainly report the OPE results based on the OTB pro-

tocol. Curves of the same color represent tracking results from the same tracker, and the AUC

scores are also presented in Fig 2. A solid line denotes mirror tracking, whereas a dashed line

represents original tracking.

With the OTB evaluation protocol, we find that the overall performance of each tracker is

quite similar between mirror tracking and original tracking. Since the original and mirrored

sequences share the same attributes (represent the same scenarios), one expects consistent

performance on both tracking sets. However, we can see significant difference for 1) DFT

in scenes with target deformation, fast motion, and occlusion; 2) CT in scenes with fast

target motion, deformation and occlusion; and 3) IVT in scenes with variations in target

Table 1. The trackers tested in the experiments. HT: holistic template; LT: local template; DF: distribution fields; DM: discriminative model; GM: generative model.

Method Representation Search mechanism Matching method

CT [19] HT, Haar, DM Dense sampling Naive Bayes classifier

CSK [30] HT, DM Dense sampling Max Response

ORIA [31] HT, GM Local optimum Sparse representation

DFT [18] LT, DF Local optimum L1 distance

IVT [32] HT, PCA, GM Particle filter Euclidean distance

ECO [6] CNN Correlation filter L2 Norm distance

MDNet [8] CNN long-term,short-term Bounding box regression

CCOT [9] CNN Correlation filter Max Confidence

Staple [21] Hog, Color Correlation filter Response map

KCF [2] Gray scale, Hog Correlation filter Kernel regression

https://doi.org/10.1371/journal.pone.0203188.t001
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illumination. By contrast, CSK and ORIA achieve consistent performance between original

and mirror tracking. We conclude that because the different trackers exhibit different varia-

tions in performance between original and mirror tracking, these differences may be related

to the different realization principles of the trackers. Furthermore, it is clear that since both

the original and mirrored sequences represent the same tracking scenarios, the observed

tracking differences indicate over-fitting problems encountered by the tested trackers under

particular tracking conditions, such as illumination variations, scale variations, and motion

blur.

Note that even though a tracker might perform differently on the original and mirrored

sequences, the ranks produced by OTB within each tracking set (original tracking and mirror

tracking) are very consistent. Moreover, the trackers that are highly ranked on the original

sequences also achieve the same high ranks in mirror tracking, which indicates that the OTB

evaluation protocol produces a very robust ranking.

4.2 Tracking results using the VOT protocol

The tracking results of each tracker when tested on the entire dataset using the VOT evaluation

toolbox are presented in Fig 3 and Table 2. In Fig 3, the closer a tracker lies to the upper right

corner, the better its performance is.

In Table 2, differences in performance between original tracking and mirror tracking can

be seen for IVT (w.r.t. overlap), CSK (w.r.t. overlap), DFT (w.r.t. failures) and CT (w.r.t. fail-

ures). These findings show that these four trackers have more severe over-fitting problems

compared with ORIA. To facilitate a deeper understanding of the results, we also present accu-

racy and robustness plots (AR plots) of the tracking results on the entire dataset in Fig 3. From

the AR plots, we find results similar to those obtained for the OTB evaluation protocol: track-

ing differences are again found for CT, DFT and IVT, whereas ORIA achieves consistent

Fig 2. Success plots based on the OTB evaluation protocol. A tracker name with a subscript “o” indicates that the tracker was tested on the

original sequences, whereas a subscript “m” denotes mirror tracking.

https://doi.org/10.1371/journal.pone.0203188.g002
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performance in original and mirror tracking. However, unlike in the case of the OTB protocol,

in VOT, the ranking of the same tracker varies dramatically between the original and mirrored

sequences; e.g., in Table 2, IVT ranks third in original tracking but holds first place in mirror

tracking, whereas CSK holds first place in original tracking but ranks third in mirror tracking.

We remark that 1) a tracker with a larger performance difference between original tracking

and mirror tracking has more severe over-fitting problems under those particular tracking

conditions (associated with the corresponding attributes) and 2) the rankings produced by the

VOT protocol are more sensitive to original vs. mirror tracking than those produced by the

OTB protocol.

4.3 OTB protocol vs. VOT protocol

We present the different rankings of the tested trackers in Table 3. Four different rankings

were produced using each evaluation protocol, i.e., the ranks on the original sequences, the

Fig 3. AR plots of original and mirror tracking. The results of the same tracker on both the original and mirrored

sequences are marked with the same color.

https://doi.org/10.1371/journal.pone.0203188.g003

Table 2. Tracking performances evaluated using the VOT evaluation protocol. The overall ranking score is produced by the VOT toolbox as described in [12].

Raw results CSKo CTo DFTo IVTo ORIAo CSKm CTm DFTm IVTm ORIAm

Overlap 0.49 0.39 0.44 0.43 0.33 0.40 0.39 0.41 0.42 0.31

Failures 3.61 4.22 4.09 4.33 6.88 3.91 3.58 4.43 4.41 6.92

Overall rank 2.29 2.78 2.35 2.78 4.78 2.86 2.47 3.03 3.20 3.44

https://doi.org/10.1371/journal.pone.0203188.t002
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ranks on the mirrored sequences, the average ranks on both the original and mirrored

sequences, and the overall ranks considering both sets of sequences. We can see that the ranks

produced by the OTB protocol are highly consistent (the top-ranked trackers on the original

sequences also earn the top ranks for mirror tracking, with the exceptions of CSK and DFT),

whereas the VOT protocol produces less robust rankings. One possible reason is that the track-

ers might encounter failure in different frames between the original and mirrored sequences,

and in the VOT protocol, a tracker is re-initialized after each failure, which could significantly

alter the conditions and status of the tracking process.

Furthermore, the average ranks of the trackers also generally differ between the two evalu-

ation protocols, as seen from Table 3. This difference arises from the different evaluation

objectives. OTB performs temporal and spatial robustness evaluations by specifying different

initial frames and utilizing different initial boxes obtained by shifting or scaling the ground

truth, whereas VOT performs re-initialization after five frames of tracking failure. OTB is

more suitable than VOT for testing trackers that are good at automatically recovering from

failures because if a tracker misses the target only in the temporal dimension, the re-initiali-

zation in the VOT protocol can dramatically affect the final ranking, whereas the OTB proto-

col is more robust to such short-term failures, moreover, OTB protocol is more similar to

real tracking conditions due to the lack of re-initialization after failure. However, the OTB

protocol also has some limitations: when a tracker fails early in a sequence, the OTB protocol

will show a low success ratio, whereas if it fails late in a sequence, a high success ratio may be

reported. This problem may be mitigated by the VOT protocol, which re-initializes the

tracker and counts the number of failures to measure the tracking robustness. Moreover,

OTB is never updated since publication, and consequently, trackers can achieve good results

through extensive parameter tuning, whereas the VOT challenge is held yearly and updated

every time, which is beneficial for obtaining realistic tracker ranks and helping to improve

tracker performance, such as, VOT2015 [12] toolkit proposed more carefully annotated

sequences (60) and better evaluation indicators (e.g., EAO), and VOT2017 [14] toolkit also

performs the OTB no-reset (OPE) experiment. Thus, more informative conclusions might

be obtained by testing a tracker using both protocols. In this way, we can comprehensively

evaluate the trackers’ performance under both the VOT protocol and the OTB protocol, as

summarized in Table 4.

Table 3. The ranks of the tested trackers based on the OTB and VOT protocols. In OTB, the trackers are ranked based on their AUC scores, whereas VOT provides an

overall ranking score that combines robustness and accuracy. A subscript “o” indicates that the tracker was tested on the original sequences, whereas a subscript “m” indi-

cates that the tracker was tested on the mirrored sequences. A tracker name without any subscript indicates the results for the entire dataset.

Ranking OTB VOT

Original Mirrored Average rank Overall rank Original Mirrored Average rank Overall rank

1 DFTo

(0.405)

CSKm

(0.408)

CSK

(0.400)

CSKm CSKo

(2.29)

CTm

(2.47)

CSK

(2.58)

CSKo

DFTo DFTo

2 CSKo

(0.392)

DFTm

(0.369)

DFT

(0.387)

CSKo DFTo

(2.35)

CSKm

(2.86)

CT

(2.63)

CTm

DFTm CTo

3 IVTo

(0.369)

IVTm

(0.360)

IVT

(0.364)

IVTo CTo

(2.78)

DFTm

(3.03)

DFT

(2.69)

IVTo

IVTm CSKm

4 ORIAo

(0.330)

ORIAm

(0.331)

ORIA

(0.330)

ORIAm IVTo

(2.78)

IVTm

(3.20)

IVT

(2.99)

DFTm

ORIAo IVTm

5 CTo

(0.263)

CTm

(0.269)

CT

(0.266)

CTm ORIAo

(4.78)

ORIAm

(3.44)

ORIA

(4.11)

ORIAm

CTo ORIAo

https://doi.org/10.1371/journal.pone.0203188.t003
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4.4 Mirror tracking and trackers

This paper provides a simple concept of mirror tracking and further explores tracking evalua-

tion using two state-of-the-art challenges, VOT and OTB. From the proposed mirror tracking,

we find the over-fitting problems, actually, we consider this is due to the basic structure of

trackers. To prove this, we further select five more state-of-the-art trackers for mirror tracking

test. Among them, MDNet, ECO and CCOT utilize CNN based features, staple extracts the

fused color histogram and Hog information, while KCF employs the popular kernelized

correlation filter. Table 5 illustrates the evaluation results (accuracy and robustness) based on

VOT2017 [14], including mirror tracking and original tracking. From the results, we find: 1)

mirror errors still exist in the state-of-the-art trackers, 2) the ranking of state-of-the-art track-

ers is more robust than the previous trackers in the mirror and original tracking, and 3) track-

ers have stronger abilities in dealing with over-fitting problems can result in a less mirror

errors.

We select ECO and CT for further comparisons, in which CT relies the typical ‘features+-

machine learning’ mechanism, while ECO is based on the CNN features. We illustrate their

tracking results in original and mirror “basketball” sequences in Fig 4. As shown in Fig 4, we

divide the sequences into four stages for analysis, ECO is very stable in the overall process of

original and mirror tracking, yet CT performs worse, such as in stage one, it can basically accu-

rate locate the target, while in stage two, it begins to lose the target, and then in stage three

completely lose it. Moreover, during the first three stages, CT performs nearly the same in

both original tracking and mirror tracking, but in stage four, we surprisingly find CT re-locate

the target in original tracking but still lose it in mirror tracking. One possible reason is that

ECO based on CNN should perform better than CT using traditional machine learning. More-

over, ECO reduces the model parameters and provides better diversity of samples. Considering

mirror and original sequences describe the same scenes but lead to different tracking results,

we consider mirror error comes from over-fitting problems of trackers itself. Actually, since

trackers should not adopt a large model size, while to improve accuracy, they usually extract

high-dimension of features, and this can easily results in over-fitting problems. More seriously,

when a tracker locates a wrong target position, it will generate different dataset samples and

then result in different model parameters, which would affect the tracking performance in the

next frames.

Table 4. Evaluation conclusions from both the OTB and VOT protocols.

VOT OTB Evaluation conclusion

Tracking

performance

Good Good Well-performing tracker

Good Poor Automatic recovery from failure

Poor Good Failure early in the sequence

Poor Poor Poorly performing tracker

https://doi.org/10.1371/journal.pone.0203188.t004

Table 5. Tracking performances based on the VOT2017 [14] protocol. The results are produced by the VOT toolbox as described in [12]. The index with “o” denotes

original tracking, while “m” presents the results of mirror tracking.

Raw results ECO CCTO MDNet Staple KCF DFT CSK IVT ORIA CT

Accuracy (o) 0.483 0.494 0.511 0.530 0.447 0.413 0.432 0.400 0.365 0.374

Accuracy (m) 0.482 0.490 0.508 0.524 0.435 0.395 0.388 0.420 0.351 0.358

Robustness (o) 0.276 0.318 0.698 0.688 0.773 1.521 1.408 1.639 2.512 1.614

Robustness (m) 0.281 0.325 0.689 0.692 0.786 1.536 1.458 1.654 2.585 1.718

https://doi.org/10.1371/journal.pone.0203188.t005
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Based on this, the improvements of over-fitting problems include: 1) conducting more

types of samples in model updating, e.g., by rotation and mirror-transformed, and 2) utilizing

fused features, e.g. CNN features, Gray, Color information, Hog etc, and 3) reduces the num-

ber of parameters.

4.5 Mirror tracking and evaluation protocols

Existing evaluation protocols mainly adopt center error and average overlap rate, while the

center errors mainly focus on target center location and cannot measure deformation, and the

average overlap rate results can be influenced by different selected thresholds and metrics.

However, two trackers obtain a same center errors may output completely different locations.

Considering the target position will influence the selection of training samples, and then result

in model updating differences, trackers will output different performance in original and mir-

ror tracking, such as in Fig 4. Based on the proposed mirror tracking, we: 1) provide an exten-

sion of the available sequences with same attribution, the existed annotation of sequences is

based on experience and in manually, while mirror sequences provide exactly the same attribu-

tions as original sequences; 2) help identify the over-fitting problems and yield more robust

evaluation, since mirror error comes from over-fitting problems, while mirror sequences pro-

vide exactly the same attributes as original sequences, so it can be used for robustness evalua-

tion of trackers; 3) combined using original and mirror tracking can help locate frames where

over-fitting occurs and then contribute to tracker improvement works, since the frame with

large mirror errors probably denotes the occurrence of over-fitting problems, based on this,

researchers can analyze why over-fitting problems occurs in such frames, and conduct

improvements, e.g., selecting more diversity of training samples, such as by rotation and mir-

ror-transformed, or optimizing parameter models.

Moreover, the mirror tracking does not conflict with the existing protocols. It only requires

to make a mirror-transformed of sequences, and then conduct evaluation on both original and

mirror sequences using the existing protocols. Performing mirror tracking in combination

with existing protocols and comparing the original and mirror tracking results have the follow-

ing advantages: 1) provide an extension of the available testing sequences, 2) identify the over-

Fig 4. The tracking results of ECO and CT on the original and mirror “Basketball” sequences. Where the first two rows respectively denote

the results of ECO in original tracking and mirror tracking, and the next two rows represents the results of CT. The blue box is ground truth,

and the red box is the output of tracker.

https://doi.org/10.1371/journal.pone.0203188.g004
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fitting problems and yield more robust evaluation, and 3) locate frames which over-fitting

occurs and help improving the selection of training set.

5 Conclusion

In this paper, we have proposed a novel mirror tracking methodology to evaluate the perfor-

mance of state-of-the-art trackers and have also revisited state-of-the-art tracking evaluation

protocols using the same trackers tested on the same dataset. It is concluded that: 1) the over-

fitting problems of trackers is really existing, and trackers that exhibit larger differences in

original and mirror tracking performance are subject to performs worse under those particular

tracking conditions, e.g. deformation, fast motion, and occlusion, 2) the rankings produced by

the VOT protocol are more sensitive to original and mirror tracking than those produced by

the OTB protocol, and 3) combined using mirror tacking with original tracking can contribute

providing more accurate evaluation about the tracker’s capability. The conclusions drawn

from this paper could lead to future advances in evaluation protocol construction.
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