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Abstract

Spinal Cord Injury (SCI) results in severe sub-lesional muscle atrophy and fiber type trans-

formation from slow oxidative to fast glycolytic, both contributing to functional deficits and

maladaptive metabolic profiles. Therapeutic countermeasures have had limited success

and muscle-related pathology remains a clinical priority. mTOR signaling is known to play a

critical role in skeletal muscle growth and metabolism, and signal integration of anabolic and

catabolic pathways. Recent studies show that the natural compound ursolic acid (UA)

enhances mTOR signaling intermediates, independently inhibiting atrophy and inducing

hypertrophy. Here, we examine the effects of UA treatment on sub-lesional muscle mTOR

signaling, catabolic genes, and functional deficits following severe SCI in mice. We observe

that UA treatment significantly attenuates SCI induced decreases in activated forms of

mTOR, and signaling intermediates PI3K, AKT, and S6K, and the upregulation of catabolic

genes including FOXO1, MAFbx, MURF-1, and PSMD11. In addition, UA treatment

improves SCI induced deficits in body and sub-lesional muscle mass, as well as functional

outcomes related to muscle function, motor coordination, and strength. These findings pro-

vide evidence that UA treatment may be a potential therapeutic strategy to improve muscle-

specific pathological consequences of SCI.

Introduction

Traumatic spinal cord injury (SCI) incites numerous pathophysiological changes and persis-

tent metabolic abnormalities [1–5] that contribute to long-term effects on body systems. [6, 7]

Physical limitations related to movement, musculoskeletal activity and weight-bearing contrib-

ute to deleterious changes in body composition, typified by rapid and long-term declines in

metabolically active muscle-mass [8–16] and bone [17–23], as well as stark increases in central
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adiposity [24–27] which contributes to the maladaptive metabolic profile in SCI. As a result,

there is a prevalence of co-morbid risk factors for cardiometabolic disorders in chronic SCI

including obesity [28], dyslipidemia [24–26, 29–37], glucose intolerance, and insulin resistance

[5, 36], symptoms that are indicative of cardiovascular disease (CVD) and diabetes. Notably,

CVD has emerged as the leading cause of mortality in chronic SCI. [38, 39]

Sub-lesional skeletal muscles undergo severe pathological consequences following human

SCI. Muscle mass is diminished by as much as 48% as early as 6-weeks post-SCI [13], and atro-

phy ranges from 30–60% depending on muscle type, duration and completeness of injury. [22]

These changes coincide with muscle fiber-type transformation from slow oxidative Type I to

fast glycolytic Type II [8, 12, 40–44], diminishing skeletal muscle oxidative phenotype that is

linked to insulin resistance and progression of metabolic syndrome.

In SCI, a reduction in anabolic hormones such as testosterone, insulin and insulin-like

growth factor-1 (IGF-1) [45, 46] may contribute to reduced IGF-1 receptor activation of meta-

bolically-linked signaling pathways in muscle. It is well-established that activation of phos-

phoinositide-3 kinase (PI3K)/Akt and downstream anabolic target mammalian target of

rapamycin (mTOR) regulate, in part, skeletal muscle protein synthesis, cell growth and metab-

olism. [47–49] Additionally, mTOR-activation regulates the transcription factor fork-head

box protein 01 (FOXO1), which is associated with catabolic genes involved with ubiquitin-pro-

teasomal degradation in muscle. [50] mTOR is a complex signal integrator that regulates both

anabolic and catabolic processes in the muscle, however these processes are not well defined in

SCI.

Recently, interest in the naturally occurring lipophilic pentacyclic triterpenoid ursolic acid

(UA) in medical research has grown significantly due to its pharmacological effects and low

toxicity. [51] For example, studies have shown that UA enhances insulin- and IGF-mediated

phosphorylation of AKT, S6K1 and FOXO1 in skeletal muscle. [52, 53] Importantly, it was

reported that UA inhibits skeletal muscle atrophy associated with denervation and induces

skeletal muscle hypertrophy in the absence of an atrophy stimulus [53], in addition to its docu-

mented ability to augment muscle strength [54] and stimulate mTORC1 signaling in skeletal

muscle. [55] Although implicated in skeletal muscle metabolic and growth signaling, the

effects of UA on muscle pathophysiology has not been explored in SCI. In this study, we inves-

tigated UA as an anabolic stimulator of metabolically-linked signaling pathways in muscle and

explored phenotypic outcomes in sub-lesional muscle following traumatic SCI. Our primary

objectives are to examine following experimental SCI i. intracellular mTOR signaling, ii. the

expression of related catabolic genes, and iii. the effects on these outcomes with UA treatment.

We hypothesize that SCI will i. reduce growth pathways via mTOR signaling, ii. increase the

expression of catabolic genes, and iii. UA will attenuate these SCI-induced changes. In addi-

tion, we aim to examine the effect of SCI on physical and functional measures, and whether

UA-induced improvement in muscle signaling translates to improvements in these outcome

measures.

Materials and methods

All animal protocols were approved by the University of Miami Institutional Animal Care and

Use Committee (IACUC) and are in accordance with National Research Council guidelines

for the care and use of laboratory animals. Animals were group (socially) housed in a tempera-

ture- and humidity- controlled rodent vivarium, maintained on a reverse 12-hour light/dark

cycle, and given food and water ad libitum. No additional environmental enrichment was pro-

vided due to its reported effects on the nervous system, including neurogenesis and levels of

inflammation, which may affect experimental outcomes. Animals were acclimated for seven
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days prior to study experiments, which included being handled daily to get used to human con-

tact and minimize distress. To ensure minimal suffering prior to any surgical procedure, to dem-

onstrate that the animal was completely under anesthesia, we examined hind limb reflex by

pulling and straightening the hind limb to determine when the limb is flaccid. Secondly, we

pinched the hind paw for the lack of pain response. The flaccidity of the limb and the absence of

reflex automatic movements at the pinching of the tail indicated a deep state of anesthesia. Fol-

lowing surgical procedures, animals were administered buprenorphine (0.1 mg/kg) BID for

3-days post surgery and PRN thereafter. Animals were examined twice daily for post-stress

health status by observation of activity level, respiratory rate, and general physical condition.

Body weight was monitored every other day. Excessive weight loss (>20%) and decreased

grooming behavior was considered as criteria for early exclusion from the study and/or euthana-

sia. Physical conditions such as moribund state, dehydration, and anorexia were also considered

as criteria for early termination. Euthanasia was carried out by carbon dioxide inhalation accord-

ing to the recommendations for euthanasia detailed in the 2007 Report of the American Veteri-

nary Medical Association’s (AVMA) Panel on Euthanasia. Euthanasia was performed in a

manner to avoid animal distress. The chamber was not pre-filled with gas before placing the ani-

mals inside, and the rate of CO2 flow into the chamber was slowly increased. Animals were in a

deep state of sleep after one minute, then the CO2 flow rate was increased for another four min-

utes. After CO2 exposure, confirmation of termination was accomplished by cervical dislocation.

Traumatic SCI and UA administration

Surgeries were performed at the Animal and Surgical Core Facility of the Miami Project to

Cure Paralysis according to protocols approved by the IACUC of the University of Miami.

Contusion injury was induced with the Infinite Horizon Impactor device adapted to the

mouse. The infinite Horizon impactor device has been established in producing precise,

graded contusion, with reproducible lesion volume and functional outcomes assessed using

Basso, Beattie, Bresnahan (BBB) and Basso Mouse Scale (BMS) [56] open-field locomotor rat-

ing scales. [57] In brief, Adult female C57Bl/6 mice (12-weeks old, ~20g; Jackson Laboratories)

were anesthetized with an intraperitoneal injection of ketamine (80–100 mg/kg) and xylazine

(10 mg/kg). Complete anesthetization was determined by the lack of a stereotypical retraction

of the hind-paw in response to a nociceptive stimulus. Mice were then subjected to a laminect-

omy at vertebrae T9 and the exposed spinal cord was injured at a predetermined impact force

of 70 kdynes (severe injury). Sham-operated animals underwent all surgical procedures,

including laminectomy, but their spinal cords were not injured. After surgery, animals were

housed separately and treated with subcutaneous lactated Ringer’s solution to prevent dehy-

dration. Manual bladder expression was performed twice daily. Prophylactic antibiotic genta-

micin was administered daily for 7 days to prevent urinary tract infections. SCI animals were

randomized to 3 groups: SCI, SCI/UA (TCI America) [200 mg/Kg UA dissolved in corn oil

(CO) (Spectrum Chemical Mftg Corp); i.p.], and SCI/Vehicle (CO only). UA was administered

using a previously reported [53] dose that resulted in positive and effective changes in mTOR

signaling and catabolic gene expression. UA/CO treatments were administered once daily

until time of sacrifice. Animal tissue was harvested 1-, 2-, or 4-weeks post SCI, snap-frozen in

liquid nitrogen and stored at –80˚C until the time of assay.

Protein extraction and immunoblot analysis

Mice soleus muscle tissues were harvested and homogenized in a Dounce homogenizer with

extraction/lysis buffer (20 mM Tris–HCl, pH: 7.5, 150 mM NaCl, 1% Triton X-100; 1 mM eth-

ylenediaminetetraacetic acid, 1 mM ethylene glycol tetraacetic acid, 2.5 mM pyrophosphate, 1
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mM β-glycerophosphate) containing protease and phosphatase inhibitor cocktails and then

centrifuged at 15 000 x g for 2 minutes. Lysates were mixed with 2x Laemmli loading buffer.

Equal amounts of protein were resolved on 10–20% gradient Tris-HCl pre-casted gels, to sepa-

rate proteins with a wide range of molecular weights, transferred to polyvinylidene fluoride

(PVDF) membranes and placed in blocking buffer (0.1% Tween-20, 0.4% I-block in PBS) over-

night. Membranes were then incubated with primary antibodies followed by the appropriate

HRP-conjugated secondary antibody (1:1000). Visualization of the signal was obtained with

an enhanced chemiluminescence substrate using a Phototope- HRP detection kit (Cell Signal-

ing Technology1). Quantification of bands corresponding to phosphor-PI3K, phosphor-

AKT, phosphor-mTOR and phosphor-S6K was made using the ChemiDoc Touch™ Imaging

System (BioRad), and normalized to β-Actin, PI3KTotal, AKTTotal, mTORTotal, or S6KTotal,

where appropriate.

Total ribonucleic acid (RNA) isolation and quantitative RT-PCR

Total RNA was isolated from mouse soleus using TRIZOL Reagent (Invitrogen) according to

manufacturer’s instructions. 5 ug of RNA were reverse transcribed using SuperScript III First

Strand Synthesis System for RT-PCR (Invitrogen). Real-time PCR was performed with the

Applied Biosystems 7300 Real-time PCR System on samples amplified with Rotor-Gene SYBR

Green PCR Kit (Qiagen) and primers for the transcription factor FoxO1, the muscle-restricted

E3 ligases Atrogin-1/MAFbx, MURF-1, and the proteasomal assembly protein 26S proteasome

non-ATPase regulatory subunit 11 (PSMD11) (Table 1). Relative expression (as fold change)

of target genes were calculated after normalization to Beta-Actin using the 2-ΔΔCt method.

Body and soleus muscle mass

Body mass discriminated to 0.1g was measured on a calibrated analytic balance (Data Weigh-

ing Systems) at baseline (before survival surgery); and daily thereafter until necropsy (1-, 2-, or

4-weeks post-surgery). Soleus muscle tissue was harvested at necropsy as described above. Tis-

sue wet weight was measured on a calibrated microbalance (Data Weighing Systems) to 0.01

mg, before being snap frozen using liquid nitrogen and stored at -80˚C until the time of assay.

Behavioral and motor function analysis

Open field and BMS test. The open field test was performed on experimental mice in an

odor-free, non-transparent square arena as previously described. The arena was divided into

three zones (wall, inter and center) and mouse behavior was recorded over a 5 min period

using a high resolution, video camera. Total number of lines crossed, time spent in each zone

and stereotypical behaviors such as grooming and rearing were analyzed and expressed as

number of events. Mice that did not enter all three zones or cross a minimum of 50 lines

Table 1. Gene primers for quantitative RT-PCR.

Gene Genebank # Primer Pairs Tm/Product

FOXO1 NM_019739 Forward: 5’—CTACGAGTGGATGGTGAAGAGC
Reverse: 5’—CCAGTTCCTTCATTCTGCACTC

64.9/5552

MAFbx NM_026346 Forward: 5'—CTTCTCGACTGCCATCCTGGAT
Reverse: 5'—TCTTTTGGGCGATGCCACTCAG

68.7/6936

Murf-1 NM_001039048 Forward: 5'—TACCAAGCCTGTGGTCATCCTG
Reverse: 5'—ACGGAAACGACCTCCAGACATG

68.2/1886

PSMD11 XM_011249223 Forward: 5'—CAGCAGAGGAGAAGGACTGGAA 67/2693

https://doi.org/10.1371/journal.pone.0203042.t001
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during the 5 min trial were excluded. Scoring of locomotor hind-limb performance in the

open field was performed with the BMS, [56] a 0 to 9 rating system based on a modification of

the BBB and specifically designed for the mouse. Under blind conditions, a team of two inves-

tigators evaluates the mice over a 5-min time period 1 day after SCI and bi-weekly thereafter.

Rotarod time trial test. Motor coordination and balance were tested on the accelerating

rotarod cylinder (Rotamex 4/8, Columbus Instruments). The test consisted of 5-day pre-

Fig 1. Phosphorylated protein expression of PI3K, AKT, mTOR, and S6K in soleus muscle from sham, SCI, and SCI-UA treated mice. At 1-, 2- and 4-weeks post-

SCI, phosphorylated forms of PI3K, AKT, mTOR, and S6K were significantly decreased when compared to sham controls (A,C). In UA treated mice, there was no

longer a significant difference at 1-week post-SCI compared to sham controls for all signaling intermediates. At 2- and 4-weeks post-SCI, there was a significant decrease

in phosphorylated PI3K and AKT, and by 4-weeks only was there a significant decrease in phosphorylated mTOR and S6K compared to sham controls (B,D). �p< 0.05.

https://doi.org/10.1371/journal.pone.0203042.g001
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training (days 1 to 5) followed by testing days at 2- and 4-weeks Post-SCI. The cylinder rotated

at increasing speed and constant acceleration (from 10 to 60 rpm over 10 min period). The

total time spent on the rod prior to fall was recorded and non-walking behaviors, such as pas-

sive clinging to the rod, were manually corrected. Each trial consisted of the average of 4 ses-

sions. After each session, the mice were transferred back to their cage and allowed to rest for

20 min to avoid exhaustion and minimize stress. Mice that could not maintain their balance

on the rod for a minimum of 60 seconds during pre-training were excluded from analysis.

Grip strength test. All experimental mice underwent analysis of hind-limb peak force

(muscle strength) using the grip-strength test. Hind-limb grip strength was assessed using a

digital force gauge (Chatillon DFIS2, Ametek) which generates a measure of neuromuscular

function as maximal muscle strength—with the unit of force measured being delivered in

Newton’s. The test consisted of a baseline assessment prior to surgery, followed by testing days

at 2- and 4-weeks Post-SCI. Force values were calculated average of 5-trials.

Statistical analysis

Between group differences were analyzed using one-way analysis of variance (ANOVA), fol-

lowed by Tukey post hoc comparison and reflect fold change (immunoblot and mRNA analy-

sis) and absolute change (soleus muscle mass and all behavioral analysis) from sham-control

animals. For body mass, between group and within group differences across time were ana-

lyzed using a mixed-model analysis of variance (ANOVA), followed by Tukey post hoc com-

parison (GraphPad, Prism) and reflect fold change from sham control animals. Data are

expressed as mean ± SEM. A significance level of p�0.05 was accepted as different from con-

trol. n = 6 for each group, and each sample was run in triplicate (immunoblots) or duplicate

(mRNA). n = 8–10 for each group (behavioral testing).

Results

UA treatment attenuates the loss of IGF-1/mTOR signaling observed

following SCI

To define whether SCI alters activation of IGF-1/mTOR signaling cascades, and examine the

effect of UA treatment, soleus muscle lysates from control (sham) and injured animals at vari-

ous times after trauma were analyzed by immunoblotting procedures (Fig 1). We determined

that SCI induced a significant decrease in the activated (phosphorylated) forms of PI3K, AKT,

mTOR, and S6K at 1-, 2-, and 4-weeks post SCI (all P’s, 0.01), when compared to sham control

(Fig 1A and 1C). However, in mice treated with UA, changes in expression of activated forms

of all proteins examined were no longer significant at 1-week post-SCI compared to sham. By

2- and 4-weeks post-SCI phosphorylated PI3K (P’s < 0.01) and AKT (P’s < 0.05) were again

significantly diminished, and only at 4-weeks post-SCI were phosphorylated mTOR and S6K

significantly less compared to sham (both P’s< 0.01) (Fig 1B and 1D). Thus, SCI induces a sig-

nificant decrease in activated mTOR and upstream signaling intermediates, and treatment

with UA attenuates these signaling deficits acutely, delaying the effects of SCI on this IGF-1/

mTOR pathway.

UA treatment reduces FOXO1, MAFbx, MURF-1, and PSMD11 gene

upregulation that occurs acutely following SCI

To investigate activation of catabolic processes in soleus muscle extracts from our experimen-

tal groups, we examined the gene expression levels of the transcription factor FOXO1, the

muscle-restricted E3 ligases Atroginin/MAFbx and muscle ring finger-1 (MuRF-1), and the
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proteasomal protein PSMD11, using quantitative rt-PCR (Fig 2). Significant increases in

mRNA expression were observed in all genes examined when compared to sham control, and

peaked at 1-week post-SCI (FOXO1, MAFbx, P’s < 0.01; MuRF-1, PSMD11, P’s < 0.05) (Fig

2A–2D). By 4-weeks post-SCI, levels of FOXO1 and MAFbx mRNA were lower than levels

observed at 1-week post-SCI and were commensurate with those of sham controls (Fig 2A and

2B). By 4-weeks post-SCI, MURF-1 and PSMD11 mRNA levels were no longer significantly

different from those of sham animals, however the lower levels observed relative to 1-week

Fig 2. mRNA analysis of FOXO1, MAFbx, MURF-1, and PSMD11 in soleus muscle from Sham, SCI, and SCI-UA treated mice. mRNA

expression of FOXO1, MAFbx, MURF-1 and PSMD11 were significantly greater at 1-week post-SCI (�) compared to sham control (A-D). By

4-weeks post-SCI, FOXO1 and MAFbx mRNA were significantly reduced compared to 1-week (A,B #) post-SCI and no longer significantly

different from sham controls. At 4-weeks post-SCI Murf-1 and PSMD11 mRNA were observably but not significantly lower than 1-week post-SCI

and no longer statistically different from sham controls (C,D). In UA treated mice, mRNA expression of FOXO1 and MAFbx were significantly

less compared to untreated SCI mice at 1-week post-SCI (A,B f), and mRNA of MURF-1 and PSMD11 were observably but not statistically

different at the same time-point compared to sham controls (C,D). � ,#, fp< 0.05.

https://doi.org/10.1371/journal.pone.0203042.g002
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post-SCI were not statistically significant (Fig 2C and 2D). Furthermore, in mice receiving UA

treatment, at 1-week post-SCI, FOXO1 and MAFbx mRNA expression was significantly lower

when compared to mice at 1-week post-SCI without treatment (i.e. peak expression; both

P’s < 0.05) (Fig 2A and 2B). Non-significant decreases in MURF-1 and PSMD11 were also

observed (Fig 2C and 2D). These results provide evidence that several catabolic genes associ-

ated with proteolysis are upregulated in soleus muscle acutely following SCI, and UA treat-

ment is capable of thwarting these early effects.

UA treatment preserves body and soleus muscle mass following SCI

Body mass was measured at baseline (just prior to injury) and daily for 4-weeks post-SCI.

Acutely post-SCI, there was a rapid and stark decrease in body mass which remained signifi-

cant from 1-day post-SCI through 28 days (all P’s < 0.01 days 1–20; all P’s < 0.05 days 21–28)

when compared to sham-control (Fig 3A). There was a progressive recovery of body mass in

Fig 3. UA treatment preserves body and soleus muscle mass following SCI. A. Body mass was significantly reduced between 1–28 days post-SCI

compared to sham controls, and progressively recovered to baseline by ~4-weeks post-SCI. B. UA treatment significantly increased body mass

compared to SCI-CO (vehicle) and SCI alone between days 9–11 and 12–14, respectively. C. Soleus muscle mass was significantly reduced at 1-, 2-,

and 4-weeks post-SCI compared to sham. D. UA treatment significantly increased Soleus muscle mass at all time-points compared to SCI-CO and

SCI alone. �p< 0.05.

https://doi.org/10.1371/journal.pone.0203042.g003
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SCI mice which reached baseline level by ~4-weeks post-SCI, although still observably lower than

sham by this time point. When compared to SCI and SCI-CO (vehicle control), in mice treated

with UA (SCI-UA), there was an observable upward trend in body mass throughout the 4-week

timeline, reaching significance at day 9–11 (all P’s< 0.05) compared to SCI-CO and day 12–14

(all P’s< 0.05) compared to SCI alone (Fig 3B). In addition, total soleus muscle mass (left and

right) was significantly lower in tissue harvested at 1-, 2-, and 4-weeks post-SCI (all P’s< 0.01),

when compared to sham control (Fig 3C). In SCI-UA, soleus muscle mass was significantly

greater than SCI and SCI-CO control at all time-points post-SCI (1- and 2-weeks post-SCI, P’s

<0.01; 4-weeks post-SCI, P’s<0.05) (Fig 3D). These data demonstrate that UA treatment may

aide body mass maintenance, and importantly, preserve sub-lesional muscle mass after SCI.

UA improves functional motor scores and measures of muscle

coordination and sub-lesional muscle force production following SCI

To confirm the effects of SCI and UA treatment on sub-lesional motor function, we performed

the BMS open field locomotor test, rotarod time trial, and hind-limb grip strength test (Fig 4).

At 1-day post-SCI, significant deficits in BMS composite scores were observed in SCI, SCI-CO,

and SCI-UA mice compared to sham controls (all P’s< 0.01) (Fig 4A). By 2- and 4-weeks post-

SCI, BMS scores across all experimental groups remained significantly lower than sham con-

trols, however, there was an observable yet statistically non-significant increase in BMS sores in

SCI-UA compared to SCI-CO and SCI animals alone. Additionally, at 2- and 4-weeks post-SCI,

all experimental groups showed significant deficits in Rotarod time trials when compared to

sham controls (all P’s< 0.01) (Fig 4B). Moreover, SCI-UA mice were significantly greater com-

pared to SCI-CO and SCI alone at the same time points post-SCI (both P’s< 0.05). Similarly,

grip strength at 2- and 4-weeks post-SCI were significantly diminished in all experimental

groups compared to sham controls (2-weeks post-SCI, P< 0.05; 4-weeks post-SCI, P<0.01)

(Fig 4C), and SCI-UA mice exhibited significantly greater grip strength compared to SCI-CO

and SCI alone at the same time points post-SCI (both P’s< 0.05). These results demonstrate

that UA improves hind-limb function, motor coordination and grip strength after SCI.

Discussion

In this study, we show that the natural compound UA improves anabolic IGF-1/mTOR signal-

ing cascades in soleus muscle after experimental SCI. We also show that SCI-induced upregu-

lation of several proteolytic genes, are reduced following treatment with UA. In addition, these

genetic and biochemical effects of UA improve physical measures including: body and soleus

muscle mass, and measures of muscle function, motor coordination and strength. These find-

ings suggest that UA is a potential therapeutic adjunctive for physical deconditioning and

motor deficits observed after SCI.

It is well established that the principal consequences of SCI on sub-lesional muscle include

muscle atrophy [13, 22] and a slow and progressive transformation of fiber type resulting in a

predominance of the glycolytic (type II) isoform. [8, 12, 40–44] These changes in the muscle

promote two major outcomes: functional deficits of the paralyzed muscle due to the neurologi-

cal insult and the development of metabolic dysfunction and cardiometabolic syndrome

(CMS) risk factors. With respect to functional decline, previous reports using tests of maxi-

mum voluntary contraction [58] and isometric force production [59–61] have characterized

atrophic muscle as having low contractile force. [62] Moreover, this muscle weakness is associ-

ated with rapid muscle fatigability, in both humans [12, 40–42] and animal models [43]

[Reviewed in [63]], due to the predominantly glycolytic phenotype. Importantly, these patho-

logical adaptations of the muscle have limited the “functional” recovery intended with leading
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Fig 4. UA treatment improves sub-lesional locomotor outcomes and muscle force production following SCI. A.

BMS composite score of locomotor function were significantly decreased in SCI, SCI-CO, and SCI-UA mice at 1-day,

2-, and 4-weeks post-SCI compared to sham controls. At 2- and 4-weeks post-SCI, there was a progressive increase in
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rehabilitation strategies like extrinsically stimulated contractions using functional electrical

stimulation (FES). Although select studies of long-term FES (6–12 months) have reported on

atrophy reversal in acute SCI, [64] and the reversal of fiber type transformation in chronic SCI

[65], functional improvements, albeit marginal, have only been observed with long-term FES

(up to 16 months) in incomplete SCI. [66, 67] As such, the ability to provide a supplementary

countermeasure to these pathological hallmarks on sub-lesional muscle may augment rehabili-

tation measures using FES and similar intervention paradigms.

SCI results in decentralization of neural connections and loss of contractile activity in the

muscle. Although neuromuscular connectivity is maintained, there is impaired trophic sup-

port to the muscle, in which reduced neural activity contributes to disuse atrophy and progres-

sive wasting similarly described in various contusion models, [68, 69] spinal isolation [70],

denervation [71, 72], and human SCI. [58] The decrease in muscle work diminishes the tissue

specific expression of IGF-1 and concomitant autocrine/paracrine mechanisms [73, 74]

involving mTOR signaling cascades. [74, 75] Importantly, previous studies indicate downregu-

lation of mTOR and signaling components (including S6K1) in models of chronic SCI. [72,

76] Relevant and opportune literature report that UA enhances IGF-1 and insulin mediated

AKT [52] and S6K [53] signaling, two key intermediates in IGF-1/mTOR signaling. This effect

of UA on IGF-1/mTOR signaling can independently inhibit atrophy and induce hypertrophy

[53], as well as enhance muscle strength. [54] Here, we present data that builds off these previ-

ously reported findings and provide further evidence to support the ability of UA treatment to

improve activation profiles of PI3K, AKT, mTOR, and S6K. Moreover, we also show that the

effect of UA treatment on IGF-1/mTOR signaling translates to measurable physical and func-

tional outcomes like sub-lesional muscle mass and grip strength, respectively, which are signif-

icantly greater when compared to untreated injured mice. These results suggest that IGF-1/

mTOR signaling has a role in atrophy related pathological processes in SCI, and UA treatment

has a protective effect via IGF-1/mTOR signaling that improves muscle related outcomes fol-

lowing SCI. It is important to note that UA may augment divergent pathways involved in

hypertrophy. Glycogen synthase kinase 3 beta (GSK3β) is a substrate of AKT and represents

an alternate muscle hypertrophy signaling pathway. GSK3β phosphorylation via AKT [77, 78]

inactivates its enzymatic activity, which in turn releases 4E-binding protein 1 (4E-BP1) ulti-

mately resulting in translation initiation and protein synthesis. [79] Recent reports also indi-

cate G-protein-coupled receptor-mediated hypertrophy signaling [80] independent of IFG-1/

mTOR intermediaries (namely AKT). [81, 82] In particular, Gαi2 pathway has been shown to

induce hypertrophy via PKC by negative regulation of GSK3β and activation of S6K1, respec-

tively. This highlights the complexity of hypertrophy signaling cascades in muscle and the

need to further examine both individual pathways and signaling integration to clarify the con-

tribution of each pathway under atrophic conditions such as SCI, and better define the effects

of treatment strategies such as UA.

Additionally, impaired mTOR signaling results in FOXO1 translocation to the nucleus

where it activates catabolic genes involved in proteolysis and cell death. [49, 83–86] This repre-

sents a direct link to atrophic pathways involving catabolism and a point of divergence

between hypertrophy and atrophy signals. In animal models of SCI and in acute SCI in

all groups, and an observably greater increase in UA treated mice compared to SCI-CO and SCI alone, although not

statistically significant. B. Rotarod test time was significantly reduced in SCI, SCI-CO, and SCI-UA mice at both 2-,

and 4-weeks post-SCI compared to sham controls. UA significantly improved rotarod time at all time-points

compared to SCI-CO and SCI alone. C. Hind-limb muscle force production (grip strength) was significantly reduced

in SCI, SCI-CO, and SCI-UA at 2- and 4-weeks post-SCI compared to sham controls. UA significantly improved grip

strength at all time-points compared to SCI-CO and SCI alone. � , fp< 0.05.

https://doi.org/10.1371/journal.pone.0203042.g004

Ursolic acid effect on muscle in spinal cord injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0203042 August 29, 2018 11 / 20

https://doi.org/10.1371/journal.pone.0203042.g004
https://doi.org/10.1371/journal.pone.0203042


humans [72, 76, 87, 88], mRNA expression of FOXO1 is altered, and two muscle-restricted E3

ligases, MAFbx and MuRF-1 –responsible for ubiquitin-mediated protein degradation in skel-

etal muscle [50]–are also altered, suggesting the ubiquitin-proteasome system (UPS) contrib-

utes to skeletal muscle proteolysis in SCI. Here we report the marked increase in FOXO1

mRNA, the atrogenes MAFbx, MURF-1 and the proteasomal assembly protein PSMD11

mRNA following SCI, demonstrating the mobilization of UPS-mediated degradation in the

muscle. However, as we previously described above regarding hypertrophy signals, the

observed increase in these catabolic genes cannot solely be attributed to IGF1/mTOR-medi-

ated signaling, as several pathways are involved in atrophy linked atrogene expression and pro-

teolysis in the muscle. For example, pro-inflammatory cytokine (including TNFα and IL-1)

signaling activates NF-κB and p38 MAP kinase pathways that induce significant muscle atro-

phy via MAFbx [89–91] and MURF-1 [92–95] ubiquitin ligases. In addition, there is a growing

body of literature confirming the effect of the tumor growth factor β (TGF-β) superfamily pep-

tide, myostatin, in muscle wasting diseases (recently reviewed in [96]). Myostatin is a potent

negative regulator of muscle growth [97–102] signaling through serine/threonine type kinase

receptors to activate SMAD2/3 transcription factors. Importantly, SMAD target genes include

(but are not limited to) ubiquitin-proteasome and autophagy-lysosome systems [103–106], as

well as the suppression of myogenic regulatory factors. [107, 108] In addition to SMAD-medi-

ated signaling, myostatin is shown to function in canonical protein synthesis and degradation

signaling pathways including mTOR and FOXO1 [109, 110], again demonstrating the com-

plexity and interplay between muscle hypertrophy and atrophy signaling pathways.

Importantly, myopenia occurring after SCI is associated with both substantial loss of sub-

lesional muscle mass [13, 16] and fatty infiltration of muscle [16, 111], which together contrib-

ute to an obese somatotype [112], reduced whole-body metabolism [113, 114], and increased

risk for cardiometabolic disease. [112] Previous rodent studies of SCI contusion and transection

have confirmed changes in sub-lesional muscle size and phenotype, [43, 115–117] however,

these changes have not been evaluated with respect to accompanying consequences. Beyond its

notable trophic effects on skeletal muscle, UA reportedly promotes positive outcomes in models

of diabetes and hyperlipidemia [118, 119], making it an attractive treatment strategy for at-

tenuating secondary health complications associated with cardiometabolic disorders in SCI.

Although we did not directly address these secondary complications, our data provide evidence

that supports future studies to more comprehensively explore consequences of muscle pathol-

ogy on global metabolism after SCI, and whether UA can mitigate these effects. For example,

our current studies using experimental SCI examine phenotypic changes in muscle fiber type,

whole body metabolism, serum analysis related to metabolic risk factors, and the relationship

between these variables. One limitation here is that we administered UA dissolved in CO, con-

sistent with literature describing UA treatment with atrophic stress. [53, 55] However, CO has a

standardized composition which represents a considerable energy and fat source, evident when

comparing the body weight curves and soleus weight for SCI, SCI/UA, and SCI/CO treatment

groups. The CO alone as an energy substrate may augment body weight and potentially contrib-

ute to the lipid infiltration in sub-lesional muscle. Consequently, this obfuscated our examina-

tion of outcomes specific to metabolic dysfunction. Future studies will adopt oral or dietary UA

administration [120–123] and chronic SCI survival to better address these questions.

Conclusion

Currently there is a lack of effective rehabilitative therapies following SCI. Moreover, a paucity

of literature has explored therapies directed at exploiting pathways that contribute to sarcope-

nia in SCI. Given that UA has shown potential in other paradigms of muscle atrophy, our
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findings provide evidence that supports the potential for UA to attenuate muscle-specific path-

ological consequences of SCI. Further research will help elucidate the potential effect of UA as

a viable treatment strategy that may improve muscle health and function following SCI.
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