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Abstract

Astrocytes, key regulators of brain homeostasis, interact with neighboring glial cells, neu-

rons and the vasculature through complex processes involving different signaling pathways.

It is not entirely clear how these interactions change in the ageing brain and which factors

influence astrocyte ageing. Here, we investigate the role of endocannabinoid signaling,

because it is an important modulator of neuron and astrocyte functions, as well as brain age-

ing. We demonstrate that mice with a specific deletion of CB1 receptors on GABAergic neu-

rons (GABA-Cnr1-/- mice), which show a phenotype of accelerated brain ageing, affects

age-related changes in the morphology of astrocytes in the hippocampus. Thus, GABA-

Cnr1-/- mice showed a much more pronounced age-related and layer-specific increase in

GFAP-positive areas in the hippocampus compared to wild-type animals. The number of

astrocytes, in contrast, was similar between the two genotypes. Astrocytes in the hippocam-

pus of old GABA-Cnr1-/- mice also showed a different morphology with enhanced GFAP-

positive process branching and a less polarized intrahippocampal distribution. Furthermore,

astrocytic TNFα levels were higher in GABA-Cnr1-/- mice, indicating that these morphologi-

cal changes were accompanied by a more pro-inflammatory function. These findings dem-

onstrate that the disruption of endocannabinoid signaling on GABAergic neurons is

accompanied by functional changes in astrocyte activity, which are relevant to brain ageing.

Introduction

Around 60% of the axon-dendritic synapses in the hippocampus are surrounded by astrocytic

processes [1]. This enables astrocytes to support synaptogenesis [2] and synaptic activity

through the synthesis, uptake, and recycling of glutamate [3] as well as the release of astrocytic

transmitters like glutamate [4], D-serine [5], GABA [6], and purines [7]. Astrocytes also
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influence synaptic activity indirectly by providing energy support for neurons [8], regulating

ion homeostasis [9], and neuronal excitability [10]. Thus, changes in astrocyte activity during

ageing may influence brain functions. Indeed, the ageing brain exhibits characteristic changes

in synaptic plasticity and metabolic balance, which are known to be regulated by astrocytes

[11].

During normal, healthy ageing astrocytes undergo characteristic morphological and func-

tional changes, characterized by an elevated expression of inflammatory cytokines [12] and

glial fibrillary acidic protein (GFAP) [13].

It has been hypothesized that the age-related increase in GFAP expression is associated

with reduced neuroprotective capacity [11]. During ageing, an increasing number of astrocytes

switch from a resting-quiescent state to a mild-to-moderate activated or hypertrophic state,

which renders astrocytes to relinquish some of their neurosupportive activities [14]. A recent

study focusing on the transcriptome of astrocytes revealed that genes involved in synapse elim-

ination and immune response are upregulated during ageing [15]. All these changes are similar

to those observed during inflammatory reactions [16]. The activation of astrocytes during

pathological conditions has been extensively studied [17], but it is not fully known which fac-

tors influence the development of similar changes during healthy ageing.

Several lines of evidence suggest that the cannabinoid system influences the ageing pro-

cess in the brain and other organs. Young mice with a deletion of CB1 receptors (Cnr1-/-)

show a superior performance in behavioral models of learning and memory [18,19] and

enhanced long-term potentiation [20]. However, 6-month-old knockouts already display

cognitive deficits [21], which become very severe at the age of 12-months [18,22]. The learn-

ing deficits in the 12-month-old CB1-/- mice were accompanied by neuroinflammatory

changes. Interestingly, genetic deletion of CB1 receptors from GABAergic neurons led to

similar inflammatory changes [22] suggesting that GABAergic neurons have a key role in

the regulation of glial activity. Recent evidence also suggests that endocannabinoid signal-

ing is involved in the bidirectional communication between neurons and glia cells [23–25].

Astroglial cells produce the major ligand of CB1 receptors, 2-arachidonoylglycerol (2-AG)

[26], whereas GABAergic neurons express CB1 receptors on the highest level in the hippo-

campus [27,28].

Mice with selective deletion of CB1 receptors on GABAergic neurons (here called

GABA-Cnr1−/−) appear on first sight healthy and breed well. Electrophysiological studies how-

ever revealed that depolarization-induced depression of inhibition (DSI) was totally abolished

[29] and long term potentiation (LTP) decreased [30] in the hippocampus of conditional

mutants. As a consequence, these animals show deficits in hippocampal learning [31] and

stress coping [32]. GABA-Cnr1−/− animals have similar body weight, food intake [33] and

stress reactivity [34] as wild type controls. The behavioral phenotype of this mouse strain was

rather mild and included a decreased wheel-running performance [35], enhanced sensitivity

to cocaine [36] and in males increased social preference to females [37]. Histological studies

also found no difference in the density of GABAergic neurons, nor alterations in specific

GABAergic neuron subtypes [31]. However, aged GABA-Cnr1−/− mice showed an increase in

GFAP-positive astrocyte-covered areas in the hippocampus, a higher density of activated

microglia, and an enhanced expression of the inflammatory cytokines TNFα and IL-6 when

compared to wild-type littermates [22].

In the present work we asked whether CB1 signaling on GABAergic neurons affects the

dynamics of age-related changes in astrocytes. To answer this question we compared astrocyte

morphology, distribution and production of the pro-inflammatory cytokine TNFα in the hip-

pocampus between 4 age groups of wild-type and GABA-Cnr1-/- mice.
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Materials and methods

Animals

Male and female mice aged 2, 6, 12 and 24 months were used in all experiments. Animals were

housed under a reversed light cycle in groups of 3–5 with food and water ad libitum.

GABA-Cnr1−/− mice (B6.cg Cnr1 tm1.2Ltz x Tg(dlx6a-cre)1Mekk; [29] and wild type litter-mates

on a C57BL/6N genetic background were kindly provided by Beat Lutz (University of Mainz, Ger-

many). Care of the animals and execution of all experiments followed the guidelines of European

Communities Directive 2010/63/EU and the German Animal Protection Law regulating animal

research. The protocol was approved by the local Committee on the Ethics of Animal Experiments

of Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV NRW;

Permission Number: 84–02.04.2015.A192). The animals were deeply anesthetized before fixation

with isoflurane, and all efforts were made to minimize suffering.

Tissue preparation

Animals were deeply anaesthetized with isoflurane and transcardially perfused with 4% form-

aldehyde solution. Brains from these animals were isolated, kept in 30% sucrose solution for

24 hours for cryoprotection, snap frozen in dry ice-cooled isopentane, and stored in -80˚C

until further processing. Next, coronal slices of the hippocampal-regions were serially sec-

tioned at 18-μm using a microtome at -20˚C (Leica CM 3050; Leica Microsystems) and

mounted onto silanized glass slides. Glass slides were kept at −80˚C until further use.

Immunofluorescence staining

Frozen sections were immediately dried after removal from the freezer for 20–30 min at 40˚C on

a hot plate. After drying, the slices were framed with a PapPen, washed in PBS for 5 min at room

temperature and permeabilised in PBS containing 0.5% Triton X-100 for 30 min at room temper-

ature. After two more five-minute washes in PBS, nonspecific binding was blocked by incubation

in PBS containing 5% normal donkey serum (NDS) or 5% normal goat serum (NGS) and 3%

bovine serum albumin (BSA) for 1 h. For the GFAP/S100β co-staining (experimental group 1),

the slices were incubated with rabbit anti-S100β antibody solution (Abcam; 1:2000 diluted in 3%

BSA containing PBS and with a mouse anti-GFAP antibody solution (Abcam; 1:2000 diluted in

3% BSA/PBS) for 48 hours. For the GFAP/TNFα co-staining (experimental group 2), rabbit anti-

GFAP (Abcam; 1:1000) and mouse anti-TNFα antibody solution (Abcam; 1:100 diluted in 3%

BSA/PBS) were used with a 24 h incubation time at 4˚C. Afterwards, slides were washed three

times for 10 min in PBS at room temperature, followed by incubation with the respective second-

ary antibody for 1 h at room temperature. These were AF 488-conjugated donkey anti-mouse IgG

(Invitrogen; 1:500 diluted in 3% BSA/PBS); Cy3-conjugated goat anti-rabbit (Jackson; 1:500

diluted in 3% BSA/PBS); AF 488-conjugated donkey anti-rabbit IgG (Invitrogen; 1:2000 diluted

in 3% BSA/PBS) and AF 647-conjugated donkey anti-mouse IgG (Invitrogen; 1:1000 diluted in

3% BSA/PBS). Then, slides were washed three times for 10 min in PBS and in milli-Q water for 1

min. After staining, the slices were mounted with 4’,6-diamidino-2-phenylindole (DAPI) and cov-

ered. Fluorescence images were obtained with a Zeiss Axiovert 200 M fluorescent microscope

(Carl Zeiss Microimageing) with 20x objective lens. For testing TNFα within GFAP-positive

astrocytes we used a Leica LSM SP8 confocal microscope with a 63x lens.

Determination of astrocyte densities as GFAP-positive areas

Brains of the animals were sliced, stained and analysed in two separate sets of experiments by

two experienced investigators. In both experimental groups, 2–3 animals/group were analysed
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so the animal number is 5–6 per age and genotype. The area covered by GFAP-immunoreac-

tive astrocytes was determined by the area fraction technique [38] using the ImageJ software

(1.43r) in the first and with Fiji 1.0 in the second experimental group. In both cases, the per-

centage of GFAP-positive areas (signal intensity above a threshold, which was the same for all

the probes within the experimental group) was calculated in the CA1 and CA3 regions of the

hippocampus. To analyse the age- and genotype-related changes in the distribution of astro-

cytes, the percentage of GFAP-positive areas was determined in a layer-specific manner in the

stratum oriens (so), pyramidale (sp), stratum lucidum (sl), stratum radiate (sr) and stratum

lacunosum-moleculare (slm) layers of the CA3 region and in the so, sp, sr and slm layers in the

CA1 region [39,40]. For the identification of GFAP-positive areas the same background value

was used for all the slices within the same staining session; the investigator was blinded to the

group. To note: old animals had higher lipofuscin level, which gave a characteristic intrinsic

fluorescent signal, therefore the microscopic picture of old and young animals clearly differed.

GFAP-positive areas of the regions of interests were determined on six sections per animal,

mean values were calculated and used for further analysis.

Stereological quantification of S100β-positive astrocytes

For stereological quantification, every 10th slice of the region of interest was selected and

stained for S100β immunoreactivity. In this way, we analysed 10–15 sections per region of

interest. Microscopy was performed with a motorized x-y-z stage coupled to a Zeiss Axiovert

200M fluorescent microscope equipped with a Zeiss ApoTome (Carl Zeiss Microimageing,

Oberkochen, Germany) over the hippocampus [41]. The total number of S100β-immunoreac-

tive astrocytes in the CA1 and CA3 regions of the hippocampus was estimated by using the

optical fractionator technique as described previously [42,43]. To assess changes in the distri-

bution of astrocytes, we determined the number of S100β-positive cell bodies on a layer-spe-

cific manner in the CA1 and CA3 regions.

Quantitative morphological analyses of GFAP-positive astrocytic cell

processes

The morphology of GFAP- and S100β-immunopositive astrocytes was assessed with a 63x, 1.4

NA oil-immersion lens. Astroglial cells were identified as S100β-immunoreactive cells with

rod-shape cell bodies (2–6 μm in diameter) and ramified proximal processes with GFAP

immunoreactivity [44]. Counting of the branching of all GFAP-positive main processes up to

15 μm from the center of each astrocytic soma was performed using the ImageJ software in

388 randomly selected cells [45,46]. Background staining intensities were identical in all sam-

ples, therefore we used the same threshold value for the determination of GFAP-positive

processes.

Analyses of astrocytic TNFα expression

Samples were stained and analysed in two separate experiments by two different experienced

investigators. The co-expression of GFAP- and TNFα was assessed with a 63x water-immer-

sion lens using Leica LSM SP8 confocal microscope. The intensity of TNFα immunoreactivity

was determined in astrocytes (50–200 μm2 GFAP-positive areas, which are directly adjacent or

containing DAPI-positive nuclei) using the Fiji software by two separate investigators, who

were blinded to age or genotype.
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Real-time PCR analysis of the hippocampal TNFα expression

A separate group of 2-, 6-, 12- and 24-month old animals (10–18 per age-group and genotype)

was used for this study. The animals were decapitated, their brains removed, hippocampi isolated

and snap-frozen in isopentane. The samples were lysed in TRIzol (Life Technologies), and total

RNA was extracted according to the manufacturer’s protocol. The quality of the RNA was

assessed by measuring the ratio of the absorbance at 260 nm and 280 nm using a Nanodrop 2000

Spectrometer (Thermo Scientific). Probes with a 260/280 ratio less than 1.9 were rejected. cDNAs

were synthesized using the SuperScript First-Strand Synthesis System for RT-PCR Kit (Invitrogen

Corp., Carlsbad, CA, USA) with random hexamer primers. Total RNA (0.6 μg) was used as start-

ing material for cDNA synthesis. Differences in mRNA expression were determined in triplicate

by custom TaqMan1 Gene Expression Assays (Applied Biosystems, Darmstadt, Germany;

tumor necrosis factor (TNF): Mm00443258_m1. The 3-phosphate dehydrogenase (GAPDH):

Mm01334042_m1 was used as an endogenous reference gene to standardize the amount of target

cDNA. Typically, a reaction mixture consisted of 1x TaqMan1 Gene Expression Master Mix

(Applied Biosystems, Darmstadt, Germany), 2 μl cDNA and 1x Custom TaqMan1 Gene Expres-

sion Assay. Samples were processed in a 7500 Real-Time PCR Detection System (Applied Biosys-

tems, Darmstadt, Germany) with the following cycling parameters: 95˚C for 10 min (hot start), 40

cycles at 95˚C for 15 s (melting) and 60˚C for one minute (annealing and extension). Analysis

was performed using the 7500 Sequence Detection Software version 2.2.2 (Applied Biosystems,

Darmstadt, Germany) and data were obtained as function of threshold cycle (Ct). Relative quanti-

tative gene expression was calculated with the 2-dCt method. Briefly: dCt was calculated for each

assayed sample by subtracting Ct of the housekeeping gene from the Ct of TNFα.

Statistics

Distribution of the data was analyzed using D´Agostino & Pearson normality test, when the

case number was 20 or more in the individual groups. Two-way ANOVA followed by Bonfer-

roni test was used to compare astrocyte numbers, number of astrocyte processes, TNFα immu-

noreactivity and expression between genotypes and age-groups. Results of the two-way

ANOVA analyses are presented as bar diagrams, where columns represent mean values, error

bars standard error of means (SEM). Distribution of astrocytes was analysed using three-way

ANOVA with genotype, age and layer as main factors, the individual groups were compared

using Bonferroni´s t-test. Results of the three-way ANOVA analyses are presented as line dia-

grams, where symbols indicate mean values and error bars SEM. To compare the size of GFAP-

covered areas between age groups and genotypes, data were first analysed using three-way

ANOVA (main effects: experimental group, age, and genotype). To test if hippocampal layers

are similarly affected we used four-way repeated ANOVA (between effects: experimental group,

age, genotype; within effect: layer). We found no interaction between experimental group and

any other parameter, therefore we merged the results from the two sets of experiments and ana-

lysed using two- way (age and genotype effect) or three-way (genotype, age and layer effect)

ANOVA as described above. The relation between TNFα levels and GFAP-positive process

number was analysed by Pearson correlation analysis. Data for the correlation analysis are pre-

sented as dot plot. P values less than 0.05 were selected as statistically significant.

Results

Age-related changes in the number and distribution of astrocytes

To determine changes in astrocyte numbers we first utilised S100β-specific antibodies. S100β
is a perinuclear protein in astrocytes, which permits the precise localization of astrocyte cell
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bodies [45]. First, we compared the number and spatial distribution of S100β-immunopositive

astrocytic somata within the layers of the hippocampal CA1 & CA3 regions in 2-, 6-, 12- and

24-months-old GABA-Cnr1-/- and GABA-Cnr1+/+ littermates (Fig 1A and 1B). As shown in

Fig 1C and 1D, stereological analysis revealed that the number of S100β-immunopositive

astrocytes was similar in all age groups (CA1 region: F 3,6 = 0.071, p> 0.05; CA3 region: F 3,6 =

0.8732, p> 0.05) and not affected by the genotype (CA1 region: F 1,6 = 0.0786, p> 0.05; CA3

region: F 1,6 = 0.6291, p> 0.05). A detailed analysis of astrocytic somata in different hippocam-

pal cell layers showed an uneven distribution (main effect: layer—CA1 region: F 3,18 = 695.8,

p< 0.001; CA3 region: F 4,24 = 340.7, p< 0.001), with astrocytes being most abundantly posi-

tioned in the slm and least abundantly in the pr layer (Fig 2A and 2B). The spatial pattern of

distribution was neither influenced by age (interaction: layer x age—CA1 region: F 9,18 =

0.181, p> 0.05; CA3 region: F 12,24 = 0.460, p> 0.05) nor genotype (interaction: layer x geno-

type—CA1 region: F 3,16 = 0.009, p> 0.05; CA3 region: F 3,25 = 0.403, p> 0.05) (Fig 2C and

2D). There was also no interaction between these factors (interaction: layer x age x genotype—

CA1 region: F 9,18 = 0.077, p> 0.05; CA3 region: F 12,24 = 0.067, p> 0.05) (Fig 2A and 2B).

We next determined the size of the areas covered by GFAP-immunopositive astrocytes in

the hippocampus. Increased GFAP expression in the brain of older individuals is easily detect-

able using immunohistological staining as enhanced GFAP-positive area [22], which is gener-

ally interpreted as a sign of enhanced astrocyte activity [47]. The two separate sets of

experiments provided the same results, therefore the data were merged, analysed and pre-

sented together (Fig 3A and 3B). We found a main genotype effect for the size of GFAP-posi-

tive areas (genotype effect: CA1 region: F 1,29 = 10.71, p< 0.01 CA3 region: F 1,28 = 6.388, p<

0.05) (Fig 3C and 3D). Post hoc analysis using Bonferroni t-test showed that the size of GFAP-

positive areas was higher in 24-month-old GABA-Cnr1-/- animals compared to their wild-type

siblings (Fig 3D). We also found an age-related increase in the size of GFAP-immunopositive

areas (CA1 region: F 3,29 = 57.54, p< 0.001; CA3 region: F 3,28 = 35.34, p < 0.001), but no

genotype x age interaction (CA1 region: F 3,29 = 0.178, p> 0.05; CA3 region: F 3,28 = 0.042,

p> 0.05) (Fig 3C).

The size of GFAP-positive areas showed an uneven spatial distribution in the hippocampus

that followed the distribution pattern of S100β-positive astrocytic somata (main effect: layer—

CA1 region: F 3,87 = 224.5, p< 0.001; CA3 region: F 4,112 = 52.33, p < 0.001; Fig 4A and 4B).

Unlike the number of astrocytic somata, the density of GFAP-positive areas significantly

increased in older animals (age x layer interaction: CA1 region: F 9,87 = 6.34, p< 0.001; CA3

region: F 12,112 = 2.06, p< 0.05). We did not find a significant interaction between age, geno-

type and layer in the CA1 (F 9,87 = 1.127, p> 0.05) or in the CA3 regions (F 12,112 = 0.745,

p> 0.05), which indicates that the age-related change in the distribution of GFAP-positive

astrocytes within the hippocampal layers was not influenced by the genotype (Fig 4C and 4D).

GABA-Cnr1-/- mice show an increased number of GFAP-positive astrocytic

processes

An increase in the size of GFAP-positive areas could be the result of enhanced astrocyte num-

bers or an increase in the number of GFAP-positive processes. To test the later possibility, we

determined the number of GFAP-positive processes within 15 μm from the cell soma. As

shown in Fig 5A and 5B, we found an age-related increase in the number of primary GFAP-

positive processes (age effect: F 3,380 = 25. 23, p< 0.001) and a significant genotype effect

(genotype effect: F 1,380 = 36.77, p < 0.001), with higher number of GFAP-positive processes

in GABA-Cnr1-/- mice. The genotype-age interaction failed to reach the level of significance

(F 3,380 = 2.090, p = 0.1011). Post hoc analysis of the data using the Bonferroni test revealed
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Fig 1. Representative photomicrographs of s100β-immunopositive astrocytic soma in the hippocampus of (A) GABA-Cnr1+/+ 2- months-old

(upper panel) and 24-months-old (lower panel) and (B) GABA-Cnr1−/− 2- months-old (upper panel) and 24-months-old (lower panel) mice.

Scale bars represent 500 μm. Quantitative stereological analysis of the total number of S100β-immunopositive astrocytic soma within hippocampal

(C) CA1 and (D) CA3 regions in 2-, 6-, 12- and 24-month-old GABA-Cnr1-/- and GABA-Cnr1+/+ littermates. (n = 3 per age and genotype).

Columns represent mean values, error bars standard error of means (SEM).

https://doi.org/10.1371/journal.pone.0202566.g001
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that the number of GFAP-positive processes in 2-month-old GABA-Cnr1-/- mice was higher

than in their wild-type littermates (Fig 5B).

Age-dependent increase in astrocytic TNFα levels is more pronounced in

GABA-Cnr1-/- mice

To determine if CB1 receptor signaling on GABAergic neurons influences the age-related

increase in the production of pro-inflammatory cytokines in astrocytes we compared the

intensity TNFα immunoreactivity in GFAP-positive astrocytes of GABA-Cnr1-/- and wild-

type mice (Fig 6A). The amount of TNFα increased in ageing (age effect: F3, 727 = 103.3;

p< 0.001) (Fig 6B). Importantly, this age-dependent increase was exacerbated in GABA-

Cnr1-/- mice (age x genotype interaction: F3, 727 = 13.67; p< 0.001) (Fig 6B). Finally, we deter-

mined the number of GFAP-positive process and TNFα levels in 105 randomly selected astro-

cytes in the hippocampus of 24-months-old wild-type and knockout mice. There was a

significant correlation between number of GFAP-positive process and TNFα level (r = 0.303;

p< 0.01), because astrocytes with higher number of GFAP-positive processes expressed also

more TNFα (Fig 6C).

Real-time PCR analysis of the hippocampal TNFα expression

Lastly, we asked whether deletion of CB1 receptors from GABAergic neurons leads to an upre-

gulation of TNFα expression in ageing in the hippocampus generally or specifically in the

astrocytes. Age (F3, 89 = 5.523; p< 0.01) and also genotype (F1, 89 = 4.186; p< 0.05) influenced

hippocampal TNFα expression without interaction between them (F3, 89 = 1.662; p> 0.05). As

shown on Fig 7 the age-dependent increase failed to reach the level of significance according

to Bonferroni-test in GABA-Cnr1+/+ mice, whereas the difference between 2-months-old and

6- as well 24-months-old GABA-Cnr1-/- mice was significant. TNFα expression was signifi-

cantly higher in 24-months-old GABA-Cnr1-/- mice than in age-matched wild-types (Fig 7).

Discussion

Ageing is associated with morphological and functional changes in astrocytes. We demon-

strated here that GABAergic neurons significantly affect astrocyte changes in the ageing brain

and that CB1 signaling on GABAergic neurons is necessary for the proper regulation of astro-

cyte activity.

An increase in GFAP-positive areas in the hippocampus has been observed during neuroin-

flammation and was found to be associated with an enhanced production of pro-inflammatory

cytokines [48]. Our results confirm that ageing also leads to an increase in GFAP-covered

areas [49,50] and demonstrate that it is enhanced by the deletion of CB1 receptors from

GABAergic neurons. The age-related increase in the ratio of GFAP-positive areas was layer

specific and most prominent in the hippocampal pyramidal cell layer, which has the lowest

density of GFAP positive cells. As a consequence, the polarized distribution of GFAP staining

was diminished in ageing, whereas the number and distribution of astrocytic somata remained

constant. This indicates that astrocytes remained within their territories, but the area covered

Fig 2. Representative photomicrographs of s100β-immunopositive astrocytic soma in the hippocampal CA1 (A) and CA3 (B) layers from

2- and 24-months-old GABA-Cnr1+/+ (right panel) and GABA-Cnr1−/− (left panel) mice. The width of the panels is 100 μm. (so) stratum

oriens, (sp) stratum pyramidale, (sl) stratum lucidum, (sr) stratum radiate, (slm) stratum lacunosum-moleculare. Spatial distribution of

the total number of s100β-immunopositive astrocytic soma in the CA1 (C) and CA3 (D) regions of the hippocampus in 2-, 6-, 12- and

24-month-old GABA-Cnr1-/- and GABA-Cnr1+/+ littermates (n = 3 per age and genotype). Symbols indicate mean values and error bars

standard error of means.

https://doi.org/10.1371/journal.pone.0202566.g002
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Fig 3. Representative photomicrographs of GFAP-immunostaining in the hippocampus of (A) GABA-Cnr1+/+ 2- months-old (upper panel) and

24-months-old (lower panel) and (B) GABA-Cnr1−/− 2- months-old (upper panel) and 24-months-old (lower panel) mice. Scale bars represent

500 μm. Density of the GFAP-immunopositive areas within hippocampal (C) CA1 and (D) CA3 regions in 2-, 6-, 12- and 24-months-old

GABA-Cnr1+/+ and GABA-Cnr1-/- littermates. ��� p< 0.001 significantly different compared to 2-months-old mice from the same genotype.

+ p< 0.05 significantly different compared to GABA-Cnr1+/+ mice from the same age group. n = 5–6 per age group and genotype Columns

represent mean values, error bars standard error of means (SEM).

https://doi.org/10.1371/journal.pone.0202566.g003
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by their main cellular GFAP-positive processes was enlarged in a layer specific manner. Inter-

estingly, our post hoc analysis showed that the increase in GFAP-positive areas was less pro-

nounced the GABA-Cnr1-/- mice, where the animals generally had a higher level of GFAP. In

the hippocampus, the stratum lacunosum moleculare is the most GFAP-rich layer, and this

was the only layer within the CA3 region where the age-related increase in GFAP-positive

areas failed to reach the level of significance in GABA-Cnr1-/- mice. We hypothesize that a ceil-

ing effect is the reason of the reduced increase in hippocampal GFAP-positive areas in the

GABA-Cnr1-/- line generally and specifically in the stratum lacunosum moleculare layer of the

CA3 region.

The increased arborization of GFAP-positive processes was more pronounced in

GABA-Cnr1-/- mice. Disrupted CB1 signaling on GABAergic neurons thus enhanced morpho-

logical changes in astrocytes typically associated with ageing. It remains to be determined if

the number of astrocytic processes was increased or if the increased amount GFAP fills more

processes and thus more processes become visible. Importantly, the increased number of

GFAP-positive processes was associated with higher astrocytic TNFα levels suggesting the

morphological changes are linked to a transition towards a pro-inflammatory activity. Indeed,

we found a significant difference in the intensity of TNFα immunoreactivity in the astrocytes

of wild-type and conditional knockout mice in the 24-months-old age group. Thus, the

increasingly pro-inflammatory activity of aged astrocytes was exacerbated in GABA-Cnr1-/-

mice. Together these data show that cannabinoid signaling on GABAergic neurons influence

age-related changes in astrocyte morphology, distribution and activity.

The hippocampus plays a crucial role in memory formation and shows numerous func-

tional, structural, and morphological changes during normal ageing as well as in neurodegen-

erative disorders [51]. It has frequently been observed that the number of activated glial cells

(astrocyte and microglia) increases in the hippocampus during ageing [22,52]. This has been

linked to increased levels of inflammatory and oxidative stress molecules, which can lead to

neuronal damage [14]. Neuronal damage/death can further enhance glial activation, thereby

maintaining neuroinflammation in the brain [53–55].

An increased activity of astrocytes could be neuroprotective [56], but it can contribute to

neuronal damage [57] depending on the context of pathology. Thus, it was shown that astro-

cyte activation was detrimental in a mouse model of taupathy [58], whereas they contributed

to ischaemic tolerance in brain ischaemia [59] and remodeling by phagocytosis [60]. Besides

removing cellular debris, astrocytes release functional mitochondria, which enter neurons and

restore the failing energy support and strengthen intracellular survival pathways in the ischae-

mic brain [61]. It is not entirely known which pathways are responsible for the switch between

neuroprotective and neurotoxic activity, but it was suggested that CD38 and cyclic ADP ribose

signaling contributes to mitochondria transfer between astrocytes and neurons [61], whereas

neuronal release of ephrin-B1 induces an anti-inflammatory expression profile partly through

STAT3 pathway [62]. Interestingly, direct injection of interleukin-1β led to an upregulation of

both neuroinflammatory chemokines and neuroprotective growth factors [63]. Whether acti-

vated astrocytes in the ageing brain are neurotoxic or neuroprotective is not known.

Fig 4. Representative photomicrographs of GFAP-immunopositive astrocytes in the hippocampal CA1 (A) and CA3 (B) layers from 2-

and 24-months-old GABA-Cnr1+/+ and GABA-Cnr1−/− mice. The width of the panels is 100 μm. (sp) stratum pyramidale, (sl) stratum

lucidum, (sr) stratum radiate, (slm) stratum lacunosum-moleculare. Spatial distribution of GFAP-immunopositive areas within layers of

the hippocampal CA1 (C) and CA3 (D) regions in 2-, 6-, 12- and 24-month-old GABA-Cnr1-/- and GABA-Cnr1+/+ littermates,

respectively � p< 0.05: �� p< 0.01; ��� p< 0.001 significantly different compared to 2-months-old mice from the same genotype. Color of

the asterisk refers to the layer indicated in the figure legend. n = 5–6 per age group and genotype. Symbols indicate mean values and error

bars standard error of means.

https://doi.org/10.1371/journal.pone.0202566.g004
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Fig 5. (A) Representative photomicrographs of GFAP- and S100β-immunopositive astrocytes in the stratum lacunosum moleculare layer of the CA1

hippocampal region of 2-, 6-, 12- and 24-months-old GABA-Cnr1+/+ and GABA-Cnr1−/− mice, respectively. Scale bars, 10 μm. Red arrows indicate GFAP-

and S100β-immunopositive co-staining. (B) The number of GFAP-positive processes visible 15 μm from the cell soma of the hippocampus in 2-, 6-, 12- and

24-months-old GABA-Cnr1-/- and GABA-Cnr1+/+ littermates; n = 39–57 astrocytes per age and genotype. +++ p< 0.001 significantly different compared

to GABA-Cnr1+/+ mice from the same age group. �� p< 0.01; ��� p< 0.001 significantly differs from 2-month-old mice with the same genotype. Columns

represent mean values, error bars standard error of means (SEM).

https://doi.org/10.1371/journal.pone.0202566.g005

Fig 6. (A) Representative photomicrographs of GFAP- and TNFα-immunopositive astrocytes in the stratum lacunosum moleculare layer of the CA1

hippocampal region of 24-months-old GABA-Cnr1+/+ and GABA-Cnr1−/− mice, respectively. Scale bars, 25 μm. Negative controls were stained without the

anti-TNFα antibody. (B) Age-related increase in astrocytic TNFα levels is exacerbated in GABA-Cnr1−/− mice. n = 42–60 per age and genotype. ++

+ p< 0.001 significantly different compared to GABA-Cnr1+/+ mice from the same age group. �� p< 0.01; ��� p< 0.001 significantly differs from 2-months-

old mice with the same genotype. Columns represent mean values, error bars standard error of means (SEM). (C) Positive relation between the number of

GFAP-positive processes and TNFα-immunoreactivity in hippocampal astrocytes of 24 months-old GABA-Cnr1-/- and GABA-Cnr1+/+ mice; n = 105.

https://doi.org/10.1371/journal.pone.0202566.g006
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Nevertheless, one of the most characteristic change in ageing astrocytes is the up-regulation of

GFAP, which could be a sign of neurotoxic activity: Mice with a genetic deletion of GFAP

showed a reduced sensitivity to cytotoxic insults [64], whereas the genetic ablation of reactive

astrocytes led to an enhanced neuronal degeneration [65]. A recently published finding, that

the expression profile of astrocytes in the ageing brain is similar as the profile of astrocytes in

the brain of mice injected with the highly inflammatory bacterial lipopolysaccharide (LPS)

suggests that astrocytes in the ageing rain can contribute to neuronal deficits [15]. Previous

studies suggest that astrocytes modulate synaptic [66] and network activities [67,68]. Thus, an

increase in astrocyte territorial volume in old mice may directly influence hippocampal activ-

ity. Both astrocytes and microglia cells express enzymes involved in the synthesis and degrada-

tion of endocannabinoids [26,69,70], and produce cannabinoids such as anandamide [71],

2-AG [26,72] and palmitoylethanolamide [73]. Thus, endocannabinoids with glial origin can

bind and activate neuronal cannabinoid receptors and thus contribute to the neuron-glia com-

munication [74,75]. Although astrocytes in the adult mouse brain express cannabinoid recep-

tors only at low levels [74,76,77], CB1 receptors were found to modulate important astrocyte

functions [78–80]. Microglia also express cannabinoid receptors at low levels in non-activated

scavenging microglia, but CB2 expression is significantly increased by pro-inflammatory sti-

muli [74].

Deletion of CB1 receptors led to an upregulation of microglia activity, indicating that can-

nabinoid signaling is important to maintain an anti-inflammatory milieu in the brain [22]. In

the hippocampus of 12-month-old Cnr1-/- mice the total number of microglia, the ratio of acti-

vated microglia and the expression of the pro-inflammatory cytokine interleukin 6 was signifi-

cantly higher. Pharmacological studies also showed that increased activity of the cannabinoid

system is generally anti-inflammatory. Elevation of anandamide levels [81,82], or activation of

the cannabinoid receptor by synthetic receptor agonists [83,84] inhibits the production of pro-

inflammatory mediators and reduces microglial migration in vitro. This effect may contribute

to the beneficial effect of the cannabinoid system against neurodegeneration [85].

Importantly, cannabinoids can exert their anti-inflammatory effect directly by binding glial

cannabinoid receptors [86–88] and also indirectly, by modulating neuronal activities [22]. Our

results now show that lack of CB1 receptor on GABAergic neurons disturbed neuron-glia

Fig 7. Hippocampal expression of TNFα. The age-related increase in expression is exacerbated in GABA-Cnr1+/+

mice. + p< 0.05 significantly different compared to GABA-Cnr1+/+ mice from the same age group. � p< 0.05; ���

p< 0.001 significantly differs from 2-month-old mice with the same genotype. (n = 10–18 per age and genotype).

Columns represent mean values, error bars standard error of means (SEM).

https://doi.org/10.1371/journal.pone.0202566.g007
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communication and led to an enhanced pro-inflammatory activity of the astrocytes. GABAer-

gic neurons can directly render astrocytes to a more activated state through direct interactions.

However, astrocytes react to an enhanced microglial activity by changing their phenotype and

by becoming neurotoxic through the production of pro-inflammatory cytokines and reducing

neuronal support [89]. It is possible that the observed changes in astrocyte morphology and

activity in GABA/Cnr1-/- mice are an indirect consequence of increased pro-inflammatory

microglial activity [22]. We cannot exclude the possibility that deletion of CB1 receptors from

the GABAergic neurons altered the level of astrocytic CB1 receptors. However, in GABA/

Cnr1-/- mice the expression of CB1 receptors in glutamatergic neurons [29] and the number or

distribution of GABAergic neurons [31] is not affected.

During normal, healthy ageing the level of the major endogenous cannabinoid 2-arachido-

noylglycerol [90,91] and the coupling of the CB1 receptors to Gi protein [90,91] are signifi-

cantly reduced in old individuals. Our results now suggest that the age-related decline in

cannabinoid system activity could be responsible or at least contribute to the development of

astrocyte ageing [92].

Multiple lines of evidence suggest an important role of cannabinoid signaling in ageing

[92,93]. Impaired intercellular signaling is one of the key hallmarks of ageing [94], therefore

one of the mechanisms by which cannabinoids may exert their anti-ageing effect is the mainte-

nance and support of neuron-neuron [27] and neuron-glia [87,95,96] communication. Our

results support this hypothesis, showing that disturbed cannabinoid signaling on GABAergic

neurons affects astrocytes in an age-dependent manner that renders them more activated.
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