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Abstract

Arthropod vectors are responsible for the transmission of human pathogens worldwide. Sev-

eral arthropod species are bird ectoparasites, however, no study to date has characterized

their microbiota as a whole. We sampled hematophagous ectoparasites that feed on migra-

tory birds and performed 16S rRNA gene metabarcoding to characterize their microbial

community. A total of 194 ectoparasites were collected from 115 avian hosts and classified

into three groups: a) Hippoboscidae diptera; b) ticks; c) other arthropods. Metabarcoding

showed that endosymbionts were the most abundant genera of the microbial community,

including Wolbachia for Hippoboscidae diptera, Candidatus Midichloria for ticks, Wolbachia

and Arsenophonus for the other arthropod group. Genera including pathogenic species

were: Rickettsia, Borrelia, Coxiella, Francisella, Bartonella, Anaplasma. Co-infection with

Borrelia-Rickettsia and Anaplasma-Rickettsia was also observed. A global overview of the

microbiota of ectoparasites sampled from migratory birds was obtained with the use of 16S

rRNA gene metabarcoding. A novel finding is the first identification of Rickettsia in the com-

mon swift louse fly, Crataerina pallida. Given their possible interaction with pathogenic

viruses and bacteria, the presence of endosymbionts in arthropods merits attention. Finally,

molecular characterization of genera, including both pathogenic and symbiont species,

plays a pivotal role in the design of targeted molecular diagnostics.

Introduction

Arthropod vectors are responsible of numerous diseases (named vector-borne diseases) world-

wide [1]. Mosquitoes, ticks, Phlebotominae and Simuliidae flies are ectoparasites that can

transmit viruses (e.g., Dengue virus, Yellow fever virus, West Nile virus (WNV), and Zika
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virus), bacteria (e.g., Borrelia spp., Rickettsia spp., Francisella tularensis, Coxiella burnetii), and

parasites (e.g., malaria Plasmodium spp., trypanosomes, Leishmania spp.) [1]. The 2016 Zika

virus pandemic is only the most recent example of a global vector-borne disease emergency

among the many other pathogens for which there is an epidemic trend [2]. For example, the

hard tick Ixodes ricinus, present throughout Europe, is involved in the transmission of a variety

of pathogens of medical and veterinary importance including Borrelia burgdorferi s.l., tick-

borne encephalitis virus, Anaplasma phagocytophilum, Francisella tularensis, Rickettsia helve-
tica and Rickettsia monacensis, Babesia divergens and Babesia microti, Louping ill virus, and

Tribec virus [3].

Some of the arthropods responsible for disease transmission share their environment with

birds. Mosquitoes belonging to Culex are, in fact, mainly ornithophilic and are the main vec-

tors of WNV and Usutu virus. Moreover, birds physically carrying arthropods (such as ticks or

mites) feeding on them can introduce novel species to Europe, as recently recorded for the U.

K. [4–6].

Owing to its geographical location, the Italian peninsula is crossed by migratory routes

from North and sub-Saharan Africa. To our knowledge, no data have been published on the

whole microbiota of ectoparasites collected directly from migratory birds, though a few studies

have described the presence and prevalence of specific genera of bacteria in ticks collected

from birds or their nests [7, 8]. Since these ectoparasitic arthropods may carry pathogens, it

may be relevant to study their microbial communities. Other than bacteria of public health

interest, the microbiota of arthropods is complex. It has been described in ticks and mosqui-

toes [9–12] and the role of symbionts in influencing the microbial composition has been

highlighted mainly in its interaction with pathogens. Symbionts likeWolbachia can influence

arthropod reproduction, including male-killing, parthenogenesis, feminization, and embry-

onic mortality [13]. Furthermore, they may evolve the necessary adaptations to parasitize ver-

tebrate cells, as recently demonstrated that the intracellular bacterium Coxiella burnetii
evolved from a maternally-inherited endosymbiont of ticks [14]. Adaptation may also occur in

the opposite direction, as in the case of the Francisella-like endosymbiont that evolved from

Francisella tularensis [15].

For this study, we collected ectoparasites feeding on migratory birds during ringing sessions

and then processed the arthropod samples for 16S rRNA gene metabarcoding to characterize

their microbial community. Special care was paid to identify the genera commonly associated

with pathogens. The samples reporting these bacteria were further tested with genus-specific

or species-specific molecular assays.

Materials and methods

Sample collection

The ectoparasites were collected from birds during ringing sessions from November 2012 to

October 2014. A total of 35 sessions were carried out at 14 different sites in five regions (Pied-

mont, n = 105; Lombardy, n = 5; Sicily, n = 4; Latium, n = 1; Liguria, n = 1; S1 Fig). A total of

194 ectoparasites were collected from 115 birds, divided into 120 pools by parasite type [a)

Hippoboscidae diptera; b) ticks; c) other arthropods], host species, sampling site, date, and

location. The species included in the other-arthropods group were: Anatoecus dentatus, Anati-
cola, Lucilia caesar, Colpocephalum turbinatum, Anystis, and Aphidiinae spp. Details on host

species are reported in S1 Table.

The birds were caught with mist nets according to the Euring Ringing System and retrieved

by authorized personnel. After capture the birds were ringed with a metal ring on the right leg.

In Italy, bird leg rings are supplied by the Institute for Environmental Protection and Research
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(ISPRA) and they bear a unique, permanent code identifying any ringed bird for life. The

birds were then identified by species, sexed, and assigned to age categories according to plum-

age. They were released after ectoparasite collection by veterinarians with ISPRA authoriza-

tion. Being a non-invasive procedure, no special permission was needed for collection.

Parasites from common swifts, mainlyHippoboscidae diptera, were collected either directly

from the birds or from their nests in dedicated stations.

To preserve nucleic acids and obtain good quality material for metabarcoding, live parasites

were stocked in RNAlaterTM stabilization solution (Invitrogen, Carlsbad, CA, USA) and stored

at -80˚C until processed. The parasites collected from each bird were pooled together in a sin-

gle vial, except for two birds (Apus apus), for which the parasites were stored separately for pre-

liminary evaluation of RNA integrity. Data on sampling site location, bird age, sex, and health

status were collected and entered in a database.

RNA extraction

As the rationale of the study was to describe the living bacteria (i.e., synthesizing RNA), we

analyzed the total RNA to characterize only the active microbiota and to remove bias from the

DNA carried over from dead prokaryotic cells. RNA purification was performed with TRIzol™
(Invitrogen) in combination with a Nucleospin miRNA kit (Macherey-Nagel, Düren, Ger-

many) following the manufacturer’s protocol for RNA purification of small and large RNA in

two fractions. The large and small RNA fractions were stored at -80˚C for further analysis.

Total RNA concentration and purity was estimated using a spectrophotometer for small

volumes (Vivaspec, Sartorius, Göttingen, Germany) and a fluorometer (Qubit 2.0, Thermo

Fisher Scientific, Waltham, MA, USA). The quality of total RNA was evaluated using a 2100

BioAnalyzer and an RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CA, USA).

Though it was not possible to calculate the RIN (RNA Integrity Number) values [16], since the

28S rRNA subunit of many arthropods contains two hydrogen-bonded fragments that dissoci-

ate and co-migrate with the 18S subunit [17], the graph showed a 28S/18S sharp peak associ-

ated with a flat baseline that indicated the absence of degradation.

Reverse transcription and arthropod species identification

Total RNA was reverse transcribed using a High-Capacity cDNA Reverse Transcription Kit

(Thermo Fisher Scientific) with 7 μl RNA as input and then stored at -20˚C until processed.

Vector species was determined by partial amplification and sequencing of the cytochrome c

oxidase I (COI) gene, as described by Hebert and colleagues [18]. Briefly, the reaction mix was

composed of 12.5 μl SuperMix PCR-UDG 2X (qPCR ProbesMaster, Jena Bioscience, Jena,

Germany), 0.38 μl primer LC01490 20 μM, 0.38 μl primer HC02198 20 μM, 11 μl H2O, 0.75 μl

cDNA, for a total volume of 20 μl. The thermal profile was: 50˚C x 2 m; 95˚C x 2 m; 40 cycles

{94˚C x 30 s, 49˚C x 30 s, 72˚C x 1 m}; 72˚C x 5 m.

Successful amplification was verified using E-Gel1 precast agarose gels at 2% (Thermo

Fisher Scientific). Amplicons were then purified with a EUROGOLD Cycle-Pure kit (Euro-

clone, Pero, MI, Italy). The cycling reaction was performed with a BigDye1 Terminator v1.1

cycle sequencing kit (Thermo Fisher Scientific): 2 μl BigDye1 Terminator v1.1 ready reaction

mix, 1 μl 5X sequencing buffer, 0.32 μl primer 100 μM, 4.68 μl H2O, 2 μl purified amplicon.

The thermal profile was: 96˚C x 1 m; 25 cycles at 96˚C x 1 m, 50˚C x 5 s, 60˚C x 4 m. The reac-

tion was purified with a GE Healthcare Illustra™ AutoSeq G-50 columns kit (GE Healthcare,

Chicago, IL, USA) to remove dye terminators, and then submitted to sequencing on an

Applied Biosystems AbiPrism 3130 (Foster City, CA, USA).

Microbiota of ectoparasites from migratory birds
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Chromatograms were analyzed with Sequencing Analysis v5.2 software (Thermo Fisher

Scientific) for the base call and with FinchTV (Geospiza, Inc, Seattle, WA, USA) for hand edit-

ing. The obtained nucleotide sequences were used as query in a Blastn search on the GenBank

nt database and in the BOLD database (Barcoding Of Life Database, www.boldsystems.org).

16S metabarcoding

The 16S rRNA gene metabarcoding of 116 out of 120 samples was performed following the

protocol suggested by Illumina (four samples were discarded as they were not of adequate

quality for sequencing). Briefly, 22.5 ng of cDNA was used as input for the first PCR using 16S

amplicon PCR forward and reverse primers, amplifying V3-V4 regions of the 16S rDNA. After

purification and second (index) PCR with a Nextera XT Index kit (Illumina, San Diego, CA,

USA), the libraries were normalized according to fragment length and dsDNA molarity. The

samples were pooled and processed in four sessions on a MiSeq platform (Illumina) using a

MiSeq reagent kit v3-600 for 2x300 paired-end sequencing at the IGA Technology Services

facility. The datasets generated and analyzed for this study are available in the BioProject data-

base, with SubmissionID: SUB2898018 and BioProject ID: PRJNA396024.

Bioinformatic and statistical analyses

A first level analysis for all samples was achieved with MiSeq Reporter Metagenomics Work-

flow (MSR, Illumina) to gain an overview of the microbial community for each pool. The data-

set was then analyzed following DADA2 workflow within the R framework, including quality

check, error rate estimation, forward/reverse reads merge, chimera removal, ribosomal

sequence variants (RSVs, equivalent to OTUs) determination, and taxa assignment to the

GreenGenes gg_13_8_train_set_97, RDP Training Set 14 and SILVA version 128 reference

databases for comparison [19–23]. Since SILVA performed better than the other two in classi-

fying arthropod bacterial symbionts to appropriate taxa, only these results are presented. Data

were also analyzed with the QIIME v.1.9.1 pipeline, and the results were largely consistent

with those obtained with DADA2.

Alpha and beta diversities were estimated with the pyhloseq and vegan packages and visual-

ized with the ggplot2 package, and differential expression was assessed with DeSeq2 [24–27].

Alpha diversity was estimated based on the observed species and Shannon index using the

whole dataset after removing RSVs unassigned or assigned to Eukaryota. Beta diversity was

estimated based on evenly sampled Bray-Curtis distance after filtering the low-frequency

RSVs, pruning the samples with a sample size less than 1,800 and rarefaction to sample size of

1,800, where sample size was the number of individuals observed for each sample. Only data

from DADA2 analysis using the SILVA database are presented in Results.

Molecular diagnostics for potential pathogen confirmation

To confirm the presence of the prokariotic genera identified by 16S rRNA metabarcoding, the

pools were tested using a genus-specific or species-specific PCR for each of the potential patho-

gens detected by the MiSeq Reporter Metagenomics Workflow. The molecular tests included

the following genera: Rickettsia spp., Anaplasma spp., Borrelia spp., Coxiella spp., Francisella
spp., and Bartonella spp. For all PCR assays, amplicons were purified and submitted to Sanger

sequencing as described earlier for the PCR targeting the COI gene.

Two different PCR assays to confirm and characterize Rickettsia were used: one targeting

the citrate synthase gene, according to Regnery and colleagues [28], and the other targeting the

16S rRNA gene, according to Sprong and colleagues [29]. A PCR amplifying the partial 16S

rRNA gene was used to identify A. phagocytophilum according to Stuen and colleagues [30].

Microbiota of ectoparasites from migratory birds
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Two different approaches were applied to identify Borrelia burgdorferi s. l. Real-time PCR tar-

geting a tract of the 23S rRNA gene, highly conserved in all Borrelia species, was used to con-

firm positivity, as described in Courtney and colleagues [31]. An end-point PCR targeting a

fragment of the flagellin gene, specific for the Borrelia burgdorferi s. l. group, was then used to

determine whether the detected strain belonged to the causative agents of Lyme borreliosis

[32]. The genomic group of samples positive for Borrelia burgdorferi s. l. was then identified by

sequencing. A qualitative PCR targeting the IS1111 repetitive transposon-like region of Cox-
iella burnetii was performed to confirm Coxiella spp., as recommended by the Manual of Diag-

nostic Tests and Vaccines for Terrestrial Animals [33, 34]. Francisella spp. was investigated

using a real-time PCR TaqMan1 Francisella tularensis detection kit (Applied Biosystems) that

targets the Tul4 and fopA genes. Francisella characterization was performed by targeting the

16S rRNA gene, according to Forsman and colleagues [35].

Results

Host and parasite species

A total of 115 bird hosts were included. S1 Table presents the species and the number of sam-

ples collected. Hosts were classified based on their migratory behavior as: resident, short-dis-

tance, mid-distance (North Africa) or long-distance (trans-Sahara) migration. A total of 194

parasites were collected and categorized into three groups based on the type of arthropod: Hip-
poboscidae diptera (n = 51, pool (n) = 49), ticks (n = 114, pool (n) = 60), other arthropods

(OA, n = 29, pool (n) = 7).Hippoboscidae diptera were collected from common swifts (Apus
apus) and classified by barcoding as Crataerina pallida. One sample ofHippoboscidae was col-

lected from a goldcrest (Regulus regulus) and was classified as Ornithomya fringillina. The tick

group included species of the genera Ixodes,Hyalomma, Ambylomma, andHaemaphysalis.
The OA included lice (Mallophaga: Colpocephalum turbinatum, Anatoecus dentatus, and

unidentified species), blowflies (Diptera: Calliphoridae: Lucilia caesar), mites (Trombidi-

formes: Anystis), the parasitoid wasps (Hymenoptera: Braconidae: Aphidiinae). A detailed list

of ectoparasite species and number of sampled individuals and pools is given in S2 Table.

16S metabarcoding

A total of 116 pools were processed for V3-V4 16S rRNA gene amplification and massive par-

allel sequencing on an Illumina MiSeq platform, generating also a taxonomic report with MiSeq

Reporter Software. The total amount of reads generated was 45,286,016 (median = 323,508,

Q1 = 203,740, Q3 = 510,136); after quality filtering 24,012,404 reads per pair (median = 82,992,

Q1 = 48,206, Q3 = 143,460, with read length uniformed to 230 bp) were obtained. Details on

raw and filtered read numbers for each sample are reported in S3 Table. The resulting 257,298

dereplicated non-chimeric sequences were assigned to 2,257 RSVs, belonging to Bacteria and

Eukaryota domains. Taxa assigned to Eukaryota or unassigned were removed, reducing the

final number of RSVs to 2,184, classified in 23 different phyla. The most abundant phyla in the

whole dataset were the Proteobacteria (90.72%) and the Firmicutes (5.44%). The most common

genera for the whole dataset are reported in Table 1, and the taxa with relative abundance>1%

are reported by group in Table 2. Fig 1 presents a graphical overview of the genera identified in

each sample. The most abundant taxonomic groups of the bacterial composition at a lower tax-

onomical scale included symbionts likeWolbachia, Arsenophonus, and CandidatusMidichloria
mitochondrii.

To better visualize the distribution of the symbiont genera in theHippoboscidae diptera, a

bar plot of the relative abundance within the family is reported in S2 Fig. Due to the large

number of genera detected, Rickettsiales from ticks are reported in a bar plot (S3 Fig). To better

Microbiota of ectoparasites from migratory birds
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represent the diversity of the symbionts within parasite species, the number of RSVs belonging

to each genus are summarized in Table 3. According to the DADA2 developers, this algorithm

in able to detect true biological sequence variants that might be considered different bacterial

strains. The composition in RSVs of the major symbiont genera ofHippoboscidae diptera and

ticks are reported in S4 Fig and S5 Fig.

Bioinformatic and statistical analysis

The reports generated by the integrated pipeline of the Miseq Reporter were analyzed. Based

on these results, the samples were considered positive or negative for the detected potentially

pathogenic genera. Table 4 reports the number of samples in which the MSR found the corre-

sponding genus (MSR Hits). The microbiota of the three groups of ectoparasites differed in

microbial composition by both abundance and represented taxa. Box-plots illustrating alpha

diversity are reported in Fig 2. The Shannon index showed no statistically significant differ-

ence between the groups (box-plot Fig 2). There was a statistically significant difference in the

Table 1. Most abundantgenera (%) in the whole data set.

Genus Relative abundance (%)

Wolbachia 35.79

Candidatus_Midichloria 25.45

Rickettsia 12.57

Arsenophonus 8.19

Sodalis 1.60

Coxiella 1.22

Clostridium_sensu_stricto_1 0.96

https://doi.org/10.1371/journal.pone.0202270.t001

Table 2. Composition of class, order, family, and genus (expressed as relative abundance, %) with>1% relative abundance reported for each sample group.

Class Order Family Genus

Hippoboscidae Diptera Alphaproteobacteria 78.28 Rickettsiales 78.27 Rickettsiaceae 78.26 Wolbachia 78.23

Gammaproteobacteria 21.69 Enterobacteriales 21.69 Enterobacteriaceae 21.69 Candidatus Phlomobacter 17.95

Sodalis 2.61

Ticks Alphaproteobacteria 79.77 Rickettsiales 76.35 Midichloriaceae 51.33 Candidatus Midichloria 52.81

Gammaproteobacteria 5.03 Clostridiales 4.77 Rickettsiaceae 25.29 Rickettsia 23.27

Clostridia 4.77 Legionellales 3.30 Coxiellaceae 3.15 Clostridium 2.52

Bacilli 2.18 Entomoplasmatales 1.83 Clostridiaceae 2.58 Coxiella 2.36

Mollicutes 1.85 Lactobacillales 1.41 Anaplasmataceae 1.88 Wolbachia 2.01

Sphingomonadales 1.38 Sphingomonadaceae 1.30 Candidatus Neoehrlichia 1.68

Rhizobiales 1.04 Enterococcaceae 0.96 Sphingomonas 1.08

Enterococcus 0.96

OA Alphaproteobacteria 42.52 Rickettsiales 37.82 Rickettsiaceae 37.77 Wolbachia 29.46

Gammaproteobacteria 24.98 Enterobacteriales 24.15 Enterobacteriaceae 24.15 Arsenophonus 16.38

Bacilli 17.31 Bacillales 11.03 Staphylococcaceae 10.80 Staphylococcus 10.79

Clostridia 9.48 Clostridiales 9.48 Clostridiaceae 4.55 Rickettsia 8.32

Betaproteobacteria 1.79 Lactobacillales 5.61 Streptococcaceae 4.30 Sodalis 8.15

Bacteroidia 1.30 Rhizobiales 3.10 Lachnospiraceae 2.03 Clostridium 4.35

Neisseriales 1.48 Methylobacteriaceae 1.53 Streptococcus 4.29

Bacteroidales 1.30 Neisseriaceae 1.48 Methylobacterium 1.53

Veillonellaceae 1.35 Megamonas 1.31

https://doi.org/10.1371/journal.pone.0202270.t002
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number of species for the three groups. The box-plot represents the low number of species in

theHipposboscidae diptera group as compared to the other two groups. The principal coordi-

nates analysis based on the Bray-Curtis distance highlighted a difference in microbial composi-

tion in the microbiota of theHipposboscidae diptera as compared to that of the ticks and the

OA groups (PERMANOVA test implemented in the adonis function in vegan) (Fig 3).

Fig 1. Genus composition accounting for 90% abundance for each sample. Samples are grouped by type of parasite (Hippoboscidae diptera, OA, and Ticks).

https://doi.org/10.1371/journal.pone.0202270.g001

Table 3. Number of ribosomal sequence variants (RSVs) for each of the main symbiont genera characterized in

the entire data set.

Genus No. of RSVs

Arsenophonus 7

Sodalis 4

Wolbachia 12

Candidatus_Midichloria 10

Rickettsia 7

https://doi.org/10.1371/journal.pone.0202270.t003
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Molecular diagnostics for potential pathogen confirmation

As summarized in Table 4, Rickettsia and Ehrlichia were highly represented among the sam-

ples, with more than 80% of the samples having reads corresponding to these two genera. The

diagnostic PCR for Rickettsia spp. confirmed only 47 positive samples (42% of hits, 40.5% of

Table 4. Hits and PCR positivity to genera including known pathogen species. Hits (OTUs matching a given genus) were obtained by MiSeq Reporter (MSR) analysis.

Prevalence was calculated on 116 samples. The 95% confidence interval (CI) of the prevalence is reported in brackets.

Genus MSR Hits MSR Prevalence PCR confirmations PCR prevalence

Rickettsia 110 94.8% (88.94–97.84) 47 40.5% (32.02–49.62)

Ehrlichia 98 84.5% (76.71–90.04) - -

Borrelia 17 14.7% (9.26–22.32) 10 8.6% (4.59–15.31)

Coxiella 6 5.2% (2.16–11.06) 0 0%

Francisella 4 3.4% (1.06–8.82) 2 1.7% (0.09–6.46)

Bartonella 4 3.4% (1.06–8.82) 0 0%

Anaplasma 3 2.6% (0.55–7.66) 2 1.7% (0.09–6.46)

https://doi.org/10.1371/journal.pone.0202270.t004

Fig 2. Box-plot of the main indexes for alpha diversity by parasite group. Indexes are observed species and Shannon

index.

https://doi.org/10.1371/journal.pone.0202270.g002
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total samples), further characterized as R. aeschlimannii, R. helvetica, and R.monacensis. Some

of the sequences were similar to unclassified endosymbionts, 6 of which were were close to R.

bellii, a species found only in the Americas (USA, Brazil, Argentina, Costa Rica, Colombia, El

Salvador, Peru) [36–42]. As described for C. burnetii [43], identification of Rickettsia endosym-

bionts by means of a PCR used for pathogen detection in routine work shows that these species

may interfere with the correct diagnosis of pathogenic rickettsial species.

Borrelia spp. were confirmed in 10 samples, four of which were further confirmed by the

PCR specific for Borrelia burgdorferi s.l. and classified as B. valaisiana. The two samples posi-

tive for Francisella spp. were Francisella-like endosymbionts, while the two Anaplasma positive

samples belonged to A. phagocytophilum. Ehrlichia required a different approach, since the

MSR identified E. ovina in 98 samples, a species poorly described in the literature. On the basis

of this unexpectedly high prevalence, and in contrast to only three sequences registered in the

NCBI database, we suspected a misclassification issue, so we randomly chose one sample and

retrieved the reads assigned to this species. A Blast search against the NCBI 16S prokariotic

rRNA database was performed and the results were then plotted in MEtaGenome ANalyzer.

The output is reported in S6 Fig The reads were classified as Anaplasmataceae, and at a lower

taxonomic level as CandidatusMidichloria mitocondrii, Anaplasma spp., andWolbachia spp.

For this reason, the samples were not tested for Ehrlichia spp.

Among the PCR-confirmed samples, the following co-infections were observed: Borrelia-
Rickettsia (n = 9), two of which occurred in individual samples, and Anaplasma-Rickettsia
(n = 2). Considering only the ticks, the prevalence of confirmed Rickettsia spp. in the tick-only

group was 60.32% (95% CI: 47.98–71.47), 15.87% (95% CI 8.86–26.81) for Borrelia spp., and

18.37% (95% CI 9.98–31.36) for Ixodes. Rickettsia spp. was present in numerous samples and

detected in parasites collected from resident (n = 2), short-distance (n = 32), mid-distance

Fig 3. Principal coordinates analysis based on Bray-Curtis distances of the three separate groups. As reported by the axis label, the axis 1 shows 36.1% of

variation in the samples.

https://doi.org/10.1371/journal.pone.0202270.g003
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(n = 2), and long-distance (n = 11) migratory birds. Borrelia spp. was detected only in ticks

from short- and mid-distance migratory birds.

Discussion

With this study we wanted to describe the microbiota of ectoparasites collected from migra-

tory birds since they constitute a route of introduction for exotic vector-borne diseases. The

parasites were divided into three groups based on taxonomical features and sample size:Hip-
poboscidae diptera, ticks, and other arthropods. The microbiota of theHippoboscidae diptera

was composed of a limited number of species, as expressed by the low value of the observed

species. Considering the evenness (Shannon index), the diversity was comparable to the tick

and the OA groups. The low number of species may be explained by the predominance of sym-

biont species among the most abundant genera observed, such asWolbachia, Arsenophonus,
and Sodalis (Sodalis endosymbionts were also detected in Craterina melbae) [44–47]. The dif-

ference in microbial composition by number and taxonomy of the RSVs in the three groups is

supported by the significant difference in the alpha and beta diversity, suggesting that the bac-

terial communities are heavily influenced by the parasite they live with. Briefly, the most abun-

dant symbionts wereWolbachia, Rickettsia, Arsenophonus, and C.Midichloria. They were

closely associated with the type of arthopod: Hippoboscidae were mainly colonized byWolba-
chia and Arsenophonus and ticks by Rickettsia and C.Midichloria.

Regarding the distribution of the main genera in theHippoboscidae, the microbial popula-

tion of all but three samples was almost totally composed ofWolbachia. The threeWolbachia-
free samples were totally colonized by Arsenophonus, while Sodalis was present only together

with other symbionts. Only in three samplesWolbachia was the unique genus, for a total of 6

individuals with a single symbiont. Although the relative abundance is based on the family, the

majority of theHippoboscidae was colonized by at least two symbiont genera (S2 Fig).

Wolbachia strains seemed to be closely connected to host species (S4 Fig); C. pallida was

mainly colonized by one variant and O. fringillina by another. In contrast, Arsenophonus in C.

pallida had a slight diversity (with RSVs similar by 99.30–99.53%), while in O. fringillina it was

present only as one RSV (similar to other Arsenophonus symbionts of Ornithomya species).

The high homogeneity ofWolbachia suggests that it may be an obligate symbiont vertically

inherited by maternal lineage. Differently, the diversity of Arsenophonus within samples sug-

gests that it may have been transmitted horizontally or by other ways. The high presence of

Wolbachia define this genus as the predominant symbiont. While it might be an obligate sym-

biont within C. pallida, the presence of other genera suggests that they still play an important

role in the survival ofHippoboscidae, but further data are needed.

To our knowledge, this report is the first identification of Rickettsia bellii and R.monacensis
in theHippoboscidae C. pallida. Strains of R. bellii have been reported only for the Americas;

similar strains have been detected in Australia, Thailand, Réunion Island, and Japan [44–47].

Our report is the first identification of R. bellii in Italy and Europe. This finding raises the ques-

tion as to whether C. pallida behaves as an accidental vector for rickettsiosis or, if not compe-

tent for transmission, whether it might play a role as a sentinel parasite for the spread of

arthropod-borne pathogens.

In ticks, the endosymbiont CandidatusMidichloria accounted for half of the RSV abun-

dance in the samples, followed by Rickettsia spp. When Rickettsia spp. was present, it had the

highest prevalence in almost all samples; only in one sample, Rickettsia was present but the pre-

dominant genus wasMidichloria. As reported elsewhere,Wolbachia symbionts in ticks are

rare [48]. Unlike a recent study on ticks in France, our study noted no relevant presence of Aci-
netobacter, but we did observe co-infection with pathogens and symbionts in our samples [49].
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In the samples with only one tick, we observed co-infection mainly between Rickettsia and

Midichloria; alsoWolbachia, Rickettsiella, Neoehrlichia, and Spiroplasma were present together

with other symbionts. CandidatusMidichloria was present mainly in Ixodes ricinus ticks,

where it was represented by a unique variant. Unfortunately, the sample size was too small to

make further observations for other species like I. arboricola and Hyalomma spp.

CandidatusMidichloria was first described in 2006 as an endosymbiont of Ixodes ricinus,
and was later also detected in other hard ticks (Ixodidae) in Italy [50–51]. The detection of cir-

culating DNA and the presence of antibodies against an antigen againstM.mitochondrii in

humans and mammals suggest that it might represent a novel group of vector-borne agents

[52, 53].

The role of endosymbionts in arthropods has been partially described and a strong correla-

tion with pathogen replication and transmission has been shown in some cases. For example,

infection ofWolbachia(+) andWolbachia(-) Culex quinquefasciatus colonies with WNV

revealed a greater proportion ofWolbachia(-) infected mosquitoes developing high virus titers

in saliva, which is necessary for virus dissemination and transmission [54]. This observation

led to the suggestion that the difference in susceptibility to WNV infection between Cx. quin-
quefasciatus and Culex tarsalismight be partially explained by the difference inWolbachia
infection between these two species, since Cx. tarsalis is not infected withWolbachia [54].

By applying the metabarcoding approach, we were able to detect several pathogenic species

and to confirm several of them by species-specific or genus-specific PCRs. As for Rickettsia
and Borrelia genera, the prevalence in our data set is shared by similar studies in Italy and

Europe [55–59]. In addition, our findings show that Rickettsia seems to be widespread among

residential and migratory birds, while Borrelia was detected only in short- and mid-distance

migratory birds, suggesting different patterns in its transmission.

The observation of bacterial genera in the metabarcoding results not confirmed by the spe-

cies-specific or genus-specific PCR tests may be explained by the presence of Rickettsia-, Cox-
iella-, and Francisella-like symbionts. The primer pairs used for the diagnostic tests were

retrieved from published studies on the detection of pathogenic species of these genera. Most

likely, these tests fail to detect a symbiont species of the targeted genus. As reported for Cox-
iella, the genetic diversity of symbiont organisms is very high, and little is known about their

spread in arthropods, which may explain the discordance between the results of 16S rRNA

gene metabarcoding and diagnostic PCRs [60]. Alternatively, it has been shown that some

molecular tests that are specific for C. burnetii also detect Coxiella-like bacteria, leading to

overestimation of the pathogen species. Indeed, the molecular characterization of bacterial

endosymbionts plays a pivotal role in the design of targeted molecular tests for the sole detec-

tion of pathogenic species.

Recent studies have shown that C. burnetii could have originated from a tick-associated

ancestor, while the Francisella-like endosymbiont of the hard tick Ambylomma probably

evolved from a pathogenic strain of Francisella, indicating that tick endosymbionts can evolve

from mammalian pathogens [14,15]. Little is known about these recently uncovered symbi-

onts, perhaps because the research was biased towards the pathogenic species. Such is the case

of the Coxiella genus, which only has two species (i.e., burnetii and cheraxi). The majority of

studies have described C. burnetii because most isolates were collected from humans or

domestic ruminants during Q fever outbreaks. More information on novel Coxiella-like organ-

isms in non-vertebrate species like ticks has been acquired via 16S rRNA gene metabarcoding

[14].

Finally, we observed a critical point in the bioinformatics analysis of our data. The first

point is the erroneous identification of E. ovina by the MSR, not confirmed by deeper analysis.

This issue may concern the used database, since, as reported in the Illumina manual, the
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Metagenomics workflow uses an Illumina-curated version of the Greengenes database. The

choice of database may also lead to different results in taxa assignment. In our analyses, the

SILVA database allowed us to assign RSVs toWolbachia, C.Midichloria, and Arsenophonus.
Since these three genera represent the majority of the microbial community, being symbionts,

correct taxonomic assignment is very relevant for these kind of studies. We suggest the use of

the SILVA database for future projects investigating arthropod microbiota by 16S rRNA

metabarcoding.

Our metabarcoding analysis showed that the microbiota living with (and within) arthro-

pods is complex, closely related to the host species, and that its major component comprises

endosymbiont-related species. This approach provides a global overview of the bacteria pres-

ent in/on ectoparasites collected live from migratory birds. Because it employs a universal

primer set for prokaryotic metabarcoding, this approach was also useful for identifying in one

shot the genera that include pathogen species. Since the method does not often discriminate

beyond the genus level, a second-level, genus- or species-specific investigation was required to

confirm the presence of the pathogen species in some samples. Without an overview provided

by the metabarcoding method, multiple tests for each pathogen in all the samples would have

been needed.
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35. Forsman M, Sandström G, Sjöstedt A. Analysis of 16S ribosomal DNA sequences of Francisella strains

and utilization for determination of the phylogeny of the genus and for identification of strains by PCR.

Int J Syst Bacteriol. Microbiology Society; 1994; 44: 38–46. https://doi.org/10.1099/00207713-44-1-38

PMID: 8123561
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