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Abstract

This paper investigates suitability of supervised machine learning classification methods for

classification of biomes using pollen datasets. We assign modern pollen samples from

Africa and Arabia to five biome classes using a previously published African pollen dataset

and a global ecosystem classification scheme. To test the applicability of traditional and

machine-learning based classification models for the task of biome prediction from high

dimensional modern pollen data, we train a total of eight classification models, including Lin-

ear Discriminant Analysis, Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Classi-

fication Decision Tree, Random Forest, Neural Network, and Support Vector Machine. The

ability of each model to predict biomes from pollen data is statistically tested on an indepen-

dent test set. The Random Forest classifier outperforms other models in its ability correctly

classify biomes given pollen data. Out of the eight models, the Random Forest classifier

scores highest on all of the metrics used for model evaluations and is able to predict four out

of five biome classes to high degree of accuracy, including arid, montane, tropical and sub-

tropical closed and open systems, e.g. forests and savanna/grassland. The model has the

potential for accurate reconstructions of past biomes and awaits application to fossil pollen

sequences. The Random Forest model may be used to investigate vegetation changes on

both long and short time scales, e.g. during glacial and interglacial cycles, or more recent

and abrupt climatic anomalies like the African Humid Period. Such applications may contrib-

ute to a better understanding of past shifts in vegetation cover and ultimately provide valu-

able information on drivers of climate change.

Introduction

Past environmental conditions can be inferred from proxy data such as pollen. Studies of fossil

pollen have been instrumental in our understanding of past shifts in vegetation [1,2] and varia-

tions in climate [3–5]. The accuracy of pollen-based paleoenvironmental reconstructions is

dependent on numerically quantified relationships between modern pollen assemblages and

variables of interest, be they quantitative or qualitative. These calibration sets allow for robust

numerical modeling of pollen-vegetation-climate relationships. Thus, meaningful estimates of

past environments rely on large and accurate modern calibration sets [6].
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Over the last decades, pollen data have been most frequently used in quantitative recon-

structions of climate variables [7–12]. However, there are few models utilizing complete pollen

datasets for prediction of discrete variables such as large scale vegetation assemblages i.e.

biomes. For reconstructions of past biomes from fossil pollen data, there has been one particu-

larly prominent approach. The biomization method decomposes a biome’s floral complexity

to a few representative taxa using a plant functional types (PFTs) approach which assumes that

a plant’s form and function are related [13,14]. This functional relationship may be used as a

reliable substitute for biomes. In two separate steps, the biomization method assigns pollen

taxa to one or more PFTs, and PFTs to one or more biomes resulting in two matrices. To arrive

at the final biome-taxon matrix, binary matrix multiplication is performed on the two matrices

resulting in the assignment of pollen taxa to biomes. Pollen samples are assigned to biomes

using fuzzy logic. The biomization technique is the primary method for predicting biomes

from pollen data and for reconstructing past biomes. Since its development, this method has

been embraced by paleoecologists and applied to fossil pollen sequences across the globe to

model shifts in the distribution of past biomes [15–18].

Nonetheless, the biomization method uses only a subset of pollen taxa to make predictions.

By selecting only a few taxa to characterize biomes, complex associations between and interac-

tions among contributing factors may be neglected. Such data exclusion may potentially lead

to information loss that propagates into overly simplistic interpretations, particularly when

applied to fossil proxy assemblage for past reconstructions. To improve results and interpreta-

tions of pollen-based paleoenvironmantal reconstructions we identify and stress the need for

utilizing more complete pollen datasets, i.e. datasets that are not excessively manipulated by

excluding certain pollen taxa such as aquatics, local or regional taxa.

This paper examines machine learning methods for the task of biome prediction using

complete sets of pollen taxonomic data. Pollen-based biome modeling assumes that a given

biome will impart its characteristic patterns in pollen data. As these patterns may be exceed-

ingly complex, biome modeling using more complete pollen datasets is a complicated task; not

only are pollen datasets challenging to analyze due to their high dimensional nature, the poten-

tial correlations between and complex interactions among pollen taxa are difficult to unravel.

Furthermore, the possible number of combinations increases exponentially in high dimen-

sional data [19] such as pollen datasets. As such, analyses of high dimensional data require

large number of data points to extract a meaningful signal. In addition, adequate analytical

tools must be available to identify patterns in pollen datasets. Detecting and recognizing pat-

terns in complex datasets has been made possible due to increases in computational power

and developments in machine learning fields focused on classification and prediction

approaches.

Objectives

In this paper we explore the ability of different statistical tool to predict biomes from African

and Arabian surface pollen data.

The objectives of this paper are to: 1) review machine learning classification methods suit-

able for prediction of biomes using pollen datasets; 2) test the applicability of supervised

machine learning classification models for the task of biome prediction from more complete

modern pollen data given a set of training examples of a priori labeled observation set; 3) ana-

lyze and statistically compare chosen classification methods; 4) identify, using statistical mea-

sures, the highest performing classification model able to accurately predict biomes from

modern pollen data; 5) qualitatively compare our best ML-based model against the classical

biomization method previously developed for the region.

Predictive pollen-based biome modeling using machine learning
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Materials and methods

Supervised classification is an inductive learning process wherein knowledge gained from

examples can be used to generalize a discrete-valued mapping function separating data into

different categories [20]. The two most common types of classification are binary and multi-

class classification. In binary classification, the value for the prediction task is one of two dis-

crete values. In the context of pollen-based predictions, an example of a binary classification

task would be prediction of terrestrial vs marine context for a pollen assemblage. In multi-class

classification, the value of interest is one of a set of discrete values. Prediction of multiple

biomes from pollen data is an example of multi-class classification. Multi-class classification

may be re-framed into a simpler binary classification via an approach known as one-versus-rest
[21] wherein separate classification models are fitted for individual biome class against the rest

of the biome classes combined.

Datasets used for supervised classification typically consists of a list of examples, each of

which consists of a set of features and a target label. In the case of pollen datasets, the samples

comprise the examples while individual pollen taxon abundances represent the features. In

supervised classification each instance in the dataset has a biome assigned to it by a human;

these assignments are called labels and represent example target values being predicted. For

training and evaluation, the original dataset is divided into two sets. A training set is a larger

complement of the original dataset used to estimate parameters for a model. A test set is a

smaller portion of the original dataset reserved for evaluation of the model on previously

unseen and unlabeled data. The procedure during which an algorithm learns parameters spe-

cific to a particular model using the training set is calledmodel fitting.
How accurately a model predicts biome labels from the training data depends in large part

on the configuration variables of the training process. These hyper-parameters are unique to

each model. The optimal set of hyper-parameters may be identified through cross validation by

further splitting the training set into training and validation sets where hyper-parameters are

chosen based on the classification performance on the validation set. The outcome of the

model fitting is a trained model.

The predictive performance of a trained model is tested on the reserved test set. Results can

be reported in a confusion matrix where the model predictions of biomes for the test examples

are displayed against their true and known biome labels. The confusion matrix provides

numerical summaries on correct and erroneous classifications made by a model. In the case of

binary classification, the classes are typically defined as true or false. True positives (TP) and

true negatives (TN) both represent correct classifications by a model. While TP indicates an

example correctly assigned to its true label, the TN indicated a correct classification of false

example. Errors fall into one of two categories: 1) when a model assigns an example to the true

class where the known label is false; this type of error is known as the false positive (FP), com-

monly referred to as type I error; and 2) when an example is known to be true yet the model

does not predicts a true label; this is known as a false negative (FN) or type II error [21]. These

terms can be generalized to multi-class classification using the one-vs-rest approach.

From the confusion matrix, a number of evaluation methodsmay be calculated to measure

how well a model performs on previously unseen data. Model accuracy, or proportion cor-

rectly classified, is a measure of a how often the model’s prediction is correct. Accuracy on a

test set is calculated as (TP + TN)/(TP + TN + FP + FN). Recall, or the true positive rate, mea-

sures the model’s ability to detect the positives. Recall is calculated as TP/(TP + FN). To assess

how many of the positively classified examples were relevant, positive predictive rate, or preci-
sion, is calculated as TP/(TP + FP). These two metrics can be used to calculate the F1 statistic,

the harmonic mean of recall and precision. Cohen's kappa statistic is a measure of unbiased
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models’ performances taking into account imbalances in class distributions. Kappa provides a

measure of a model’s predictive performance as compared to the performance of the model

achieved by random chance [22].

In addition, summary analyses for classification models are available. One of the most

informative and widely used types of summary analyses are feature importances [23]. The con-

tribution of individual pollen taxa to the overall prediction accuracy of a model is measured

via theMean Decrease in Accuracy (MDA). The MDA measures how much of a model’s test

accuracy is degraded by randomly permuting the values of a given feature. An MDA value of

zero represents a feature not used in the prediction while a feature with higher values indicate

that the model was relying heavily on that feature for prediction [23].

Lastly, in prediction modeling two important sources of model error are bias and variance
[23]. Bias is a product of a model’s assumptions about the distribution of data. Bias increases

for models with strong assumptions. As a result, such models will fit data into assumptions

whether or not the data actually conforms to those assumptions. On the other hand, models

which hold few assumptions about the data distribution, and can learn more complicated rela-

tionships between the features and labels, often have high variance. Model variance stems

from the combination of the model’s predictive power and sampling error. Thus, characteris-

tics of a training set affect the parameters of the learned function as the model is able to overfit
to the sampling noise in the training data. Models with high variance are referred to as unstable
[21]. Supervised machine learning algorithms aim to decrease both bias and variance to

achieve higher predictive power. One way to reduce a model’s bias and variance may be

achieved via hyper-parameter optimization [23]. In summary, a robust model optimized by

hyper-parameter tuning is characterized by high scores on the evaluation metrics on the test

set implying low model bias and variance.

Materials

For model training, we use a collection of published modern pollen data from Africa (previ-

ously stored at http://medias.meteo.fr/) [24] which we assign to biome types using the world

terrestrial ecosystem classification (Table 1) [25,26]. From the original 1198 modern pollen

samples, 73 were excluded due to a lack of coordinates or inappropriate context (marine).The

samples were collected from a range of contexts including surface (733), lakes (243), rivers

(75), traps (48), middens (25), and ice (1) that represent nine biomes. The resulting dataset has

1125 biome examples described in terms of 119 pollen predictors.

Methods

We examine a number of different supervised classification models for the task of predictive

biome modeling using modern pollen data. The models were chosen on the basis of their suit-

ability for ecological and paleoecological application [27,28], and specifically for: 1) multivari-

ate and high dimensional pollen data, and 2) classification of more than two biomes classes,

i.e. multi-class classification. Models considered here represent parametric, semi-parametric

and non-parametric supervised machine learning classification methods (Fig 1).

In addition to the assumptions underlying the learning process, models may be further dis-

tinguished by the rules used for separating classes of biomes and data transformations

required. To separate different classes of data into discrete categories, models use rules that

specify how to assign a given modern pollen assemblage to a biome type; depending on

whether a given example fits the conditions it may be included in or excluded from a particular

class. These decision rules may be divided into linear and non-linear rules [23]. A linear classi-

fier is defined by linear decision boundaries, such as straight lines or planes, used to separate

Predictive pollen-based biome modeling using machine learning
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different groups of data. On the other hand, decision rules employed by non-linear classifica-

tion models may take any form, for example yes/no questions or non-linear shapes repre-

sented by a sigmoid function or radius of a circle. Frequently, the original data may be

challenging for any given model to correctly separate into groups. Therefore, transformations

of the original data may be necessary to facilitate clear distinctions between classes of data.

The classification process of each model considered here is reviewed below.

Parametric classification models

In parametric classification, the learned mapping function has a known form with a fixed

number of parameters [21]. This type of learning process is computationally fast and concep-

tually easy to understand. Furthermore, parametric learning methods do not require great

amount of data to learn the mapping function. However, if the model assumptions do not fit

Table 1. African biomes represented in the modern pollen data organized by biome, number of representative modern pollen samples, biogeographic region, and

country.

Biome Pollen Biogeographic region Country

Deserts and Xeric Shrublands 239 Namib and Karoo deserts and

shrublands

South Africa, Namibia

Kaokoveld Desert Namibia, Angola

Madagascar Spiny Desert Madagascar

Horn of Africa deserts Somalia

Socotra Island Desert Yemen

Flooded Grasslands and Savannas 21 Sahelian flooded savannas Mali, Chad, Niger, Nigeria, Cameroon, Senegal, Mauritania

Zambezian flooded savannas Botswana, Namibia, Angola, Zambia, Malawi, Mozambique

Sudd flooded grasslands Sudan, Ethiopia

Montane Grasslands and Shrublands 120 East African moorlands Kenya, Tanzania, Uganda, D.R. Congo, Rwanda

Ethiopian Highlands Somalia, Eritrea, Sudan

Zambezian montane savannas and

woodlands

South Africa, Lesotho, Swaziland

Tropical and Subtropical Grasslands,

Savannas, and Shrublands

415 Angolan Escarpment woodlands Angola

Zambezian woodlands and

savannas

Zambia, Tanzania, Malawi, Zimbabwe, Mozambique, Angola, Namibia,

Botswana, D.R. Congo, Burundi

Sudanian savannas Central African Republic, Chad, Uganda, Ethiopia, D.R. Congo,

Cameroon, Sudan, Nigeria, Eritrea

East African acacia savannas Kenya, Tanzania, Sudan, Ethiopia, Uganda

Tropical and Subtropical Moist Broadleaf

Forests

314 Madagascar moist forests Madagascar

Guinean moist forests Ghana, Guinea, Côte d’Ivoire, Liberia, Sierra Leone, Togo

Eastern Arc montane forests Tanzania, Kenya

East African coastal forests Tanzania, Kenya, Mozambique, Somalia

Albertine Rift highland forests D.R. Congo, Rwanda, Uganda, Burundi, Tanzania

East African highland forests Kenya, Tanzania, Uganda

Seychelles and Mascarene Islands

forests

Mauritius, Seychelles, Comoros, Reunion, Rodrigues

Gulf of Guinea Islands forests São Tomé and Prı́ncipe, Equatorial Guinea,

Macaronesian forests Azores, Madeira, Canary, Cape Verde Islands

Congolian coastal forests Cameroon, Gabon, R. Congo, Nigeria, Equatorial Guinea, Benin

Western Congo Basin forests Central African Republic, Cameroon, R. Congo, Gabon, D.R. Congo,

Equatorial Guinea

Northeastern Congo Basin forests D.R. Congo, Central African Republic, Sudan, Uganda

Southern Congo Basin forests D.R. Congo, Congo, Angola

https://doi.org/10.1371/journal.pone.0202214.t001
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Fig 1. Simplified representation of the classification process for the statistical and machine learning algorithms used for

predicting biome. a) Linear Discriminant Analysis, b) Logistic Regression, c) K-Nearest Neighbors, d) Classification

Decision Tree, e) Random Forest, f) Support Vector Machines, and g) Neural Networks. Naïve Bayes classifier not depicted.

Red and green dots in panels a), c), and f) represents two classes of data while pink stars represent a new pollen assemblage

without biome label. Pink lines in d), and e) represent decision paths.

https://doi.org/10.1371/journal.pone.0202214.g001

Predictive pollen-based biome modeling using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0202214 August 23, 2018 6 / 29

https://doi.org/10.1371/journal.pone.0202214.g001
https://doi.org/10.1371/journal.pone.0202214


the actual data distribution, parametric models may be characterized by high bias [23]. As a

result, the predictive capacity of these methods is fixed, constraining their ability to detect

complex patterns in the data. This is particularly the case with the linear types of classification

methods. Thus, linear parametric models are generally better suited to simpler problems.

Examples of early linear parametric classification methods are linear discriminant analysis and

logistic regression.

Linear discriminant analysis. Linear discriminant analysis (LDA henceforth) is a stan-

dard classification tool [29] frequently used in paleoecology for data visualization and

dimensionality reduction [30]. LDA as a classification method finds linear combinations of

pollen features that best separate classes of data into groups.

In a multi-class classification problem, LDA locates a central point to all pollen data. The

distance between the central point and points central to each biome category is measured

using the Mahalanobis metric [31]. Groups of biomes are separated by straight lines on the

basis of the maximized distance between each biome category and center point, and mini-

mized scatter for each biome category [21]. A new unlabeled example is classified by LDA to a

particular biome type by calculating its distance to the biome categories (Fig 1A).

LDA has found uses in a variety of climate related research including application to geo-

chemical data for classification of paleo-sediments [32], modeling future precipitation and

storm days [33], and predicting occurrence of various landslide types [34].

Logistic regression. Logistic regression (LR henceforth) is a statistical tool for estimating

the probability of categorical dependent variables [35,36]. LR predicts biome class by calculat-

ing a weighted sum of the input data, in our case pollen abundances, and a constant bias term.

The logistic function transforms this weighted sum into a probability by compressing it into

the range between zero and one [20]. The output of the logistic defines a linear decision

boundary used to separate biome classes and assigns observations to biome classes depending

on which side of the line they fall (Fig 1B). In addition to one-vs-rest, LR may be generalized to

multi-class classification using multinomial LR (mLR). In the multi-class problem, a single

mLR model is trained for all biome classes to estimate the probability of a given sample belong-

ing to each biome class.

Examples of the LR classifier uses in ecology and paleoecology include prediction of pres-

ence of different tundra vegetation types [37], prediction of probability of fire occurrences

[38], and identification of groups of Early Jurassic plants from fossil data [39].

Naïve bayes. Another linear classification method suitable for data with high number of

features is the Naïve Bayes (NB henceforth). Based on the Bayes’ theorem [40,41], the model

assumes conditional independence between predictor variables given the label. This assump-

tion greatly reduces the complexity of highly dimensional datasets.

During training, the proportion of biome classes (P(biome)) in the training set is calculated

along with the probability of a each pollen taxon conditional on the biome class (P(taxon|
biome)). For example, given a dataset of 100 sites where the number of grassland sites is 20, the

proportion of grassland would be 0.2. If the Euphorbiaceae family appears in 15 of those 20

grassland sites, the conditional probability of Euphorbiaceae given grassland equals 0.75.

During test time, the continuous values for pollen features of the unlabeled example are

transformed into likelihood tables. The Bayes equation is used to calculate probability for each

biome class [23]. A biome class with the highest probability is considered the most likely and

becomes the final prediction for the unlabeled instance.

The NB model has been applied to problems in ecology, environmental research and geo-

sciences such as modeling species distributions [42], assessing flood risks [43] and water qual-

ity [44], and mineral mapping [45]. In palynology, the NB algorithm has been applied to

automated pollen recognition [46].

Predictive pollen-based biome modeling using machine learning
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Non-parametric classification models

Non-parametric learning methods make fewer assumptions about the underlying function

than their parametric counterparts. Furthermore, the number of model parameters is not finite

or bounded as they are in parametric methods. As a result, the capacity of non-parametric

models for accurate predictions increases with increasing data. The superior classification per-

formance of the non-parametric models comes at a cost as their performance is dependent on

the amount of data available, i.e. more data ensures a better performance. Furthermore, train-

ing of some non-parametric models may require more computational power and time than

training parametric models. Lastly, interpretations of results may be more difficult due to a

high degree of stochasticity inherent in some of the more complex non-parametric models

[21].

K-Nearest neighbors. One of the earliest non-parametric methods is the K-Nearest

Neighbors (KNN henceforth). This model is well known to paleoecologists in its quantitative

incarnation as the Modern Analogue Technique (MAT) [47] for prediction of continuous cli-

mate variables from fossil pollen [48,12] and other proxy data such as diatoms [49] and dino-

flagellate cysts [50].

The KNN model stores all the examples from the training set shown during training time.

When an unlabeled example is presented at prediction time, the KNN classifier searches for a

defined number (K) of nearest cases most similar to the new example using a similarity func-

tion. The labels for the nearest neighbors are retrieved and the biome label for the new example

is assigned to the class most common among the nearest neighbors (Fig 1C) using a majority

vote rule [30]. The KNN classifier is relatively simple and easy to understand lending itself well

as a benchmark for comparison to other methods.

Classification decision trees. Classification trees [51] are popular non-parametric

machine learning algorithms for classification and regression predictive modeling. The goal of

a decision tree is to accurately split a dataset into groups in the fewest steps possible. The classi-

fication decision tree (CDT henceforth) achieves this by learning a series of explicit if-then

rules on features resulting in a decision process that predicts an outcome. Pollen proportions

are used to answer a series of increasingly precise yes/no questions to categorize a biome type.

For example, when dealing with continuous values such as pollen percentages, questions asked

at nodes involve threshold percentages of a pollen taxon chosen as the best variable to perform

a split at that node.

During training time, pollen data are split using the best pollen taxon such that the data

assigned to the resulting two daughter nodes retain maximum heterogeneity between them-

selves and maximum homogeneity within themselves [23]. The splitting process continues

iteratively until the remaining subsets of pollen data are classified and the leaves contain the

same or dominant majority of a biome type. This process frequently produces a function that

is closely fit to the training data often resulting in an overly complex model that is unable to

generalize well during test time. To improve its prediction, the unnecessary complexity of the

tree may be reduced by cutting back a tree to the point of minimal cross-validation error [23].

During prediction time, a new unlabeled example is run through the established sequence

of rules. Starting at the top of the tree, a decision is taken at each level based on the appropriate

pollen proportion until it reaches a leaf, or terminal, node. The prediction for the new unla-

beled example is the biome label associated the leaf node (Fig 1D).

The CDT model is relatively easy to interpret. The visualization of a decision tree shows the

exact decision process behind every prediction. However, CDTs are prone to over-fitting to

the training data by adding more rules to arrive at precise classification of data. In effect, the

algorithm memorizes the training data leading to poor prediction for a new and previously
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unseen example. In other words, CDTs have low bias and high variance. This high variance of

CDTs is a product of the hierarchical nature of the algorithm as the top-down learning process

in a decision tree propagates potential errors down the tree [21].

Decision trees have been applied to ecological problems [52] such as prediction of habitat

[53]. In paleoecology, CDTs often serve as tools for identification of diagnostic morphological

features, for example in leaf stomata [54] or diatoms [55].

Random forest. Next, we consider an algorithm that addresses the problem of the vari-

ance-bias trade-off in decision trees. Random Forest (RF henceforth) is an ensemble of indi-

vidual decision trees fully grown in a similar manner as trees in CDT [56]. However, two

randomization steps in the learning process make the RF more robust than an individual deci-

sion tree. Unlike the CDT model, pollen data used for building each tree in RF is randomly

subsampled from the original dataset. Furthermore, nodes of individual trees in the RF are

also split using a random subsample of pollen features from the original dataset [57]. When a

new unlabeled example is presented to RF, it is run through all trees in the forest (Fig 1E).

Each tree provides a prediction of biome types for the new example. The predictions are then

averaged across all trees and the biome type with the highest probability as identified by the

majority vote rule becomes the final prediction for the given example [23].

The RFs algorithm is one of the highest performing non-parametric classifiers and has

found successful application in ecology for modeling future species distribution under various

climate scenarios [58], prediction of rare and invasive species [24], as well as classification of

land cover [59,60], and savanna trees from hyperspectral and LiDAR data [61]. In paleoecol-

ogy, RFs have not been as widely utilized with only some application to regression problems

[62] and modeling of past vegetation [28].

Support vector machines. The final supervised non-parametric machine learning classifi-

cation model considered for biome prediction using pollen data is Support Vector Machines

(SVMs henceforth). SVMs transform original data into a new higher dimension feature space

such that the transformed features are easier to separate using a linear classifier [63,64]. SVMs

calculate the similarity between two points in the original feature space for the corresponding

points in the transformed feature spaces. The similarity measure between data points in the

transformed feature space is referred to as a kernel function or simply a kernel [20]. The result-

ing groups are separated with planes using a method characteristics to SVMs called themaxi-
mum margin separator or the widest street approach [20]. A hyper-plane is drawn in kernel

space between biome classes such that the margin of the decision boundary between the two

closest data points of each biome class is maximized (Fig 1F). As in LR, an unlabeled pollen

assemblage is classified based on which side of the decision boundary they fall. However, for

SVMs this determination is done in kernel space.

The SVMs have been widely applied to ecological problems such as modeling of species’

niche [65], prediction of plant pathogens [66] and ground water [67], mapping vegetation

[68,69], and classification of aquatic species [70]. The application of SVMs to paleoecological

problems have been more slow coming and the algorithm does not appears to be particularly

suitable for climate reconstruction [71]. However, SVMs show potential for recognition and

classification of pollen grains [72].

Semi-parametric classification model

Lastly, we consider a model from the semi-parametric domain of machine learning classifiers.

Semi-parametric methods combine features of parameteric and non-parametric approaches.

For example, some semi-parametric models have parameters that are learned during training

but do not make assumptions about the form of the function. As a result, semi-parametric
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methods are often able to model more complicated relationships between predictor features

and class labels.

Neural networks. In the semi-parametric machine learning domain, we consider Neural

Networks (NN henceforth), one of the most powerful machine learning algorithms currently

available [73]. The NN model is a generalization of the previously discussed LR with the addi-

tion of extra computational steps between the input feature and the output class labels. These

steps, or hidden layers, result in a learned non-linear transformation of the data. This new

representation is then passed through the logistic function to obtain final classification; thus,

LR may be interpreted as a special case of NN (Fig 1G).

The simplest NN model has one hidden layer which is a collection of hidden units that

compute new representation of the original data. The value, or activation, of each hidden unit

is calculated by the weighted sum of the input features passed through a non-linear activation
function (e.g. rectified linear, sigmoid, tanh). The output values of the hidden units are com-

bined to calculate another weighted sum which is then transformed by a logistic function for

the final prediction. Training a NN model involves finding an optimal set of weights; this is

done by minimizing the error, or loss, over the training data via gradient descent using the

back-propagation algorithm [74]. Here, the loss function is a smooth function which measures

how different the model’s prediction is from the ground truth of the training data.

Neural Networks have been widely applied to ecological problems such as pollen classifi-

cation in honey products [75], time-series analysis to investigate climate drivers in subal-

pine forests [76], weather forecasting [77], modeling non-linear relationships in aquatic

ecology [78] and future warming [79], predicting species distribution [80] and water

resources [81]. For paleoecology, the NNs are a promising approach for automated pollen

grain recognition that would aid in the pollen identification process [82]. In addition, NNs

have been used in paleoecological research for classification of indicator species [83], esti-

mating paleo-salinity changes in sea surface water [84], and pollen-based quantitative cli-

mate reconstructions [85,86].

Model training

The assignment of modern pollen samples to biome classes based on the world terrestrial eco-

system classification of Olson et al. (2001) was carried out in ArcGIS 10.4 where the cell values

from the imported vegetation map were extracted for each pollen data point. Pollen points

that did not fall within a biome (i.e. lake) were manually labeled to the nearest biome by the

author. The 1125 modern pollen samples represent the following nine biomes (Fig 2): Deserts

and Xeric Shrublands (239), Flooded Grasslands and Savannas (21), Mangroves (3), Mediter-

ranean Forests, Woodlands, and Scrub (4) Montane Grasslands and Shrublands (120), Tem-

perate Grasslands, Savannas, and Shrublands (8), Tropical and Subtropical Dry Broadleaf

Forests (1), Tropical and Subtropical Grasslands, Savannas, and Shrublands (415), Tropical

and Subtropical Moist Broadleaf Forests (314).

We trained eight machine learning classification models: Linear Discriminant Analysis,

Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Classification Decision Trees, Ran-

dom Forests, Neural Networks, and Support Vector Machines. The analyses of the models

were carried out in Python version 2.7.12 using the scikit-learn [87], numpyc [88], and pandas
[89] packages. Data were preprocessed as follows; firstly, pollen abundance data were scaled to

the range 0–1. Secondly, biomes represented by less than 10 sites were removed to improve

statistical requirements for sample representativeness. Lastly, to increase the signal-to-noise

ratio, we removed rare pollen taxa such that only taxa present above 3% in at least 1 site were

kept [6].

Predictive pollen-based biome modeling using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0202214 August 23, 2018 10 / 29

https://doi.org/10.1371/journal.pone.0202214


The biome-labelled modern pollen dataset was divided into a training and test set in a 9:1

ratio and maintaining class distribution. The models were optimized using 50 iterations of

random search for their respective hyper-parameters [90] and performing 10 fold cross-valida-

tion for each iteration of the search over training data only. Biome class imbalances were pre-

served during cross-validation to ensure that the training set of each fold retains the same class

Fig 2. Distribution of modern pollen samples (Gajewski et al., 2002) across African biomes (Olson et al., 2001).

https://doi.org/10.1371/journal.pone.0202214.g002
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imbalances as the entire data set. For LDA we optimized over the solver (svd, eigen, and lsqr)
and the number of n_components for dimensionality reduction (1–5). For the LR model we

searched for: fit_intercept (true or false), class_weight (none or balanced), regularization

strength C (0–1000) and multi_class option (ovr ormultinomial). For the Naïve Bayes classifier

we searched over additive smoothing parameter alpha (0–1), fit_prior (true or false) and the

distributions form of the model (multinomial, Gaussian, and Bernoulli). For the KNN model

we searched for the optimal number of neighbors n_neighbours (1–10), the weight function

(uniform or distance), the algorithm (ball_tree, kd_tree or brute) for computing distances

between neighbors, and power parameter for the Minkowski metric p (1–4). For both the CDT

and RF models, we optimized over the following hyper-parameters: criterion (gini or entropy),
max_features (auto, sqrt, log2 or none), min sample split (0–1). Separately, for CDT we opti-

mized over splitter (best or random), class weight (balanced or none), while for RF we search

for n_estimators (10–200) and class_weight (balanced or balanced_subsample). For the SVM

algorithm we optimized over C (0.001–100), kernel (rbf, poly, sigmoid), gamma (0.001–1000)

degree (1–3). For the NN classifier we optimized over the following hyper-parameters: hid-

den_layer_sizes (50, 100, 200), alpha (0–0.1), activation (logitstic, tanh or relu), batch_size (32,

64, 128), learning_rate (constant or adaptive), max_iter (20–200).

Models were then fitted to the entire training set using the best hyper-parameters as deter-

mined during random search. We examine the models’ predictive performances on the test set

using the following statistical measures: overall models’ accuracy, kappa statistic, F1, and

weighted precision and recall. The model scoring highest on these evaluation metrics, as deter-

mined by cross-validation, represents the best classifier. The highest performing model was

evaluated separately by calculating the accuracy metrics on individual biome predictions for

the test set.

Variable importances were calculated using the Mean Decrease in Accuracy (MDA) for

each model to show the influence of individual pollen taxa to each model’s predictions. Base-

line accuracy was calculated for each trained model by testing performances on the reserved

test set. Each pollen taxon in the test set was successively shuffled and then models were run

again to calculate a change in accuracy. The shuffling procedure was repeated ten times and

the mean was calculated to obtain the final MDA metrics.

For comparisons between results from our models and the biomization method, we provide

new calculation of the corresponding evaluation metrics [17]. Precision, recall and F1 statistic

are calculated from the original confusion matrix. Precision is calculated by dividing a given

biome score by the sum of predicted biomes, or the column sum. Recall is calculated by divid-

ing a given biome score by the sum of observed biomes, or the row sum. F1 statistic is a har-

monic mean of the recall and precision. To calculate kappa statistic, the original confusion

matrix [17], is converted into probabilities. Kappa is calculated from the probabilities by divid-

ing the difference between the overall proportion of observed agreement (P_o) and the overall

expected value of agreement due to chance (P_e) by 1 –P_e. The P_o is calculated by adding

the diagonal elements in the converted probability matrix. The P_e is calculated for each

biome by taking the product of row and column sum for each biome and summing them.

Results

After preprocessing the pollen and vegetation data, the total number of represented biomes

was reduced from nine to five classes (Table 1): Deserts and Xeric Shrublands (239), Flooded

Grasslands and Savannas (21), Montane Grasslands and Shrublands (120), Tropical and Sub-

tropical Grasslands, Savannas, and Shrublands (415), Tropical and Subtropical Moist Broad-

leaf Forests (314).
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Hyper-parameters found for each model and their respective values are listed in Table 2.

Hyper-parameters for the majority of the models are optimized under three minutes on aver-

age (S1 Table). The most time demanding classifiers to optimize were the SVMs and NNs,

while tuning of NB and LDA hyper-parameters was the fastest. Our pollen data labelled with

biomes along with Python code are available as supplementary information, S2 Table, and S1

Python code respectively, as well as at GitHub.

Table 2. List of hyper-parameters identified for each model using random grid search (Bergstra & Bengio, 2012), their optimized values, and argument descriptions

(Pedregosa et al., 2011).

Model Parameter Value Argument description

LDA n_components 3 Number of components for dimensionality reduction

solver svd Solver to use

LR multi_class multinomial Class type; either ‘one-versus-rest’ or ‘multinomial’

C 973.755518841459 Inverse of regularization strength

solver lbfgs Algorithm to use in the optimization problem

fit_intercept FALSE Specifies if a constant should be added to the decision function

class_weight None Weights associated with classes

NB alpha 0.97375551884146 Smoothing parameter

fit_prior TRUE Whether to learn class prior probabilities or not

class_prior None Prior probabilities of the classes

KNN n_neighbours 6 Number of neighbors to use

weights distance Weight function used in prediction

algorithm brute Algorithm used to compute the nearest neighbors

p 1 Power parameter for the Minkowski metric

CDT max_features sqrt Number of features to consider when looking for the best split

min_samples_split 0.031313293 Minimum number of samples required to split internal node

splitter random Strategy used to choose the split at each node

criterion entropy Function measuring the quality of a split

class_weight None Weights associated with classes

RF max_features sqrt Number of features to consider when looking for the best split

min_samples_split 0.007066305 Minimum number of samples required to split an internal node

class_weight balanced_subsample Weights associated with classes

criterion entropy Function measuring the quality of a split

n_estimator 98 Number of trees in the forest

SVM kernel poly Kernel type to be used in the algorithm

C 21.234911067828 Penalty parameter C of the error term

gamma 617.482509627716 Kernel coefficient

degree 1 Degree of the polynomial kernel function

NN hidden_layer_size 200 The n-th element representing the number of neurons in the n-th hidden layer

alpha 0.017436642900 Regularization term

activation relu Activation function for the hidden layer

solver adam Solver for weight optimization

batch_size 32 Size of minibatches for stochastic optimizers

learning_rate 0.0001 Learning rate schedule for weight updates

learning_rate_init adaptive The initial learning rate used

max_iter 123 Maximum number of iterations

Models were fitted to 10 folds for each of 50 candidates, totaling 500 fits. Acronyms denote: LDA for Linear Discriminant Analysis, LR for Logistic Regression, NB for

Naïve Bayes, SVM for Support Vector Machines, KNN for K-Nearest Neighbors, CDT for Classification Decision Tree, RF for Random Forest and NN for Neural

Networks.

https://doi.org/10.1371/journal.pone.0202214.t002
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The highest performing model is RF, scoring highest on all evaluation metrics and achiev-

ing overall accuracy of 0.86 with a 0.85 precision and F1 scores on the test set (Table 3). The

LR classifier is the second highest scoring model, closely followed by the NN model. The LDA,

NB, SVM, KNN, and CDT models perform similarly to one another. Kappa measurement for

RFs is highest (0.80) among the models considered, while the CDT and SVM classifiers have

the lowest kappa values (0.66 and 0.67 respectively). The rage of kappa values (0.71–0.76) is

similar among NB, KNN, and NN classifiers.

With the exception of one biome, the RF model scores high on evaluation metrics for pre-

dictions of individual biomes (Table 4). Scores for recall range between 0.73 and 0.93, for pre-

cision 0.83–0.92, F1 0.81–0.9, and kappa 0.76–0.86.

The contribution of the 30 most important pollen taxa to the overall prediction accuracy of

each model is shown in Fig 3 (for full taxon names see S3 Table). Amaranthaceae and Euphor-

biaceae are the most frequent taxa chosen by the models to a varying degree of importance.

Amaranthaceae is the most important taxon in KNN, LR, NN, SVM classifiers and is chosen as

one of the top three taxa by the LDA model. Euphorbiaceae is an important taxon for LR,

LDA, CDT, NN, and RF classifiers. Rapanae spp (Primulaceae) is the most important taxon

for accurate predictions in the LDA and CDT models and contributes highly to the KNN clas-

sifier. Other important taxa include Dodonaea and Dilleniaceae. For the RF model the three

most important taxa are Combretaceae, Nuxia, and Euphorbiaceae (Fig 3F).

The PFT model [17 achieves the overall accuracy of 0.71 and overall kappa of 0.63

(Table 5). Evaluation metrics for individual biomes range between 0.23–0.9 for recall, 0.16–1

for precision, 0.27–0.75 for F1, and 0.32–0.73 for kappa statistic.

Table 3. Evaluation metrics calculated on the test set and reported in percent (%) for biome predictions for each classifier.

Evaluation

Metric

Classification model

Logistic

Regression

Linear Discriminant

Analysis

Naive

Bayes

Support Vector

Machines

K-Nearest

Neighbors

Decision

Tree

Random

Forests

Neural

Networks

Accuracy 0.82 0.77 0.78 0.77 0.79 0.76 0.86 0.77

Precision 0.82 0.80 0.81 0.79 0.80 0.77 0.85 0.75

F1 0.81 0.79 0.78 0.75 0.79 0.75 0.85 0.76

Kappa 0.74 0.69 0.71 0.67 0.71 0.66 0.80 0.67

Recall foreach predicted vegetation type is calculated as the weighted number of correct predictions for a given known vegetation type. Precision for each predicted

vegetation type is calculated as the weighted proportion of correctly classified vegetation unit to the sum of all predictions.

https://doi.org/10.1371/journal.pone.0202214.t003

Table 4. Evaluation summaries for the prediction on individual biomes on the test set for the Random Forests classifier.

Overall accuracy 0.86 Predicted biomes Evaluation metrics

Overall kappa 0.75 DXS FGS MGS TSMBF TSGSS Recall Precision F1 Kappa

Observed biomes Deserts and Xeric Shrublands 22 0 1 0 1 0.73 0.92 0.81 0.76

Flooded Grasslands and Savannas 2 0 0 0 0 0.00 0.00 - -

Montane Grasslands and Shrublands 1 0 10 1 0 0.77 0.83 0.80 0.77

Tropical and Subtropical Moist Broadleaf Forests 0 0 2 27 2 0.93 0.87 0.90 0.86

Tropical and Subtropical Grasslands, Savannas, and Shrublands 5 0 0 1 36 0.92 0.86 0.89 0.83

Number of correct predictions run diagonally and are highlighted in bold. Recall for for each predicted vegetation type is calculated as the weighted number of correct

predictions for a given known vegetation type. Precision for each predicted vegetation type is calculated as the weighted proportion of correctly classified vegetation unit

to the sum of all predictions.

https://doi.org/10.1371/journal.pone.0202214.t004
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Discussion

Biome predictions

Pollen is a direct and quantitative link to the vegetation that produced it. Thus, under ideal

conditions we would expect to predict biomes from pollen to a high degree of accuracy.

However, pollen analysis has sources of loss and error that reduce accuracy and precision.

First, pollen preservation potential is related to dispersal syndrome, with the majority of

deposited grains derived from wind-pollinated vegetation [91]. Second, pollen preserves

under specific conditions; water-logged and anaerobic conditions, such as those character-

istic of lake sediments, peats, and swamps, are ideal for pollen preservation [92]. These

contexts accumulate pollen from a broad catchment source and provide the most represen-

tative signature of vegetation. Where preservation conditions are unfavorable, pollen may

be sourced from other deposits, e.g. snow [93,94], pack rat middens [95–97], and hyena

scat [98]. Third, not all pollen is created equal. Taphonomic processes, such as oxidation

[99–101], microbial activity [102–104], wet-dry cycles [105,106,102], and changes in pH

[107], may lead to differential destruction of pollen grains varying in exine thickness and

other physical properties. Fourth, pollen grains may be lost during the process of labora-

tory preparation of samples [92]. Lastly, microscopic identification of pollen grains by

humans is highly dependent on various conditions, including expertise level and psycho-

logical state [108].

Yet, despite these potential sources of loss and error we are able to successfully (as assessed

by Kappa) predict four out of five biomes from pollen data using supervised machine learning

and specifically the Random Forest classifier. Biomes predicted to a very high level of accuracy

and precision are the Tropical and Subtropical Moist Broadleaf Forests and the Tropical and

Subtropical Grasslands, Savannas, and Shrublands (Table 4). Furthermore, the Deserts and

Xeric Shrublands, and Montane Grasslands and Shrublands biomes are also predicted accu-

rately and precisely. All of these biomes are well represented in the modern pollen dataset

(Table 1). In contrast, our model performs poorly in predicting the Flooded Grasslands and

Savannas (FGS) biome (Table 4).

However, this low prediction on FGS is not unique to the RF classifier. With the exception

of the KNN classifier, none of the models are able to accurately predict FGS. Factors contribut-

ing to this poor performance may relate to sampling noise at the pollen level. The FGS pollen

assemblages are dominated by cosmopolitan pollen types, primarily Poaceae and Cypereaceae.

Furthermore, there are fewer total pollen taxa present in the FGS biome assemblages as com-

pared to the other four biomes. Although pollen taxa specific to the FGS biome are present,

including aquatics such as Typha and Nymphaea, their signal may be diluted by the cosmopoli-

tan species.

More likely, the poor performance of the RF model on the FGS biome is explained by sam-

pling noise at the biome level; the FGS biome class is under-represented in the original pollen

dataset (21 sites). In addition, the dataset is further split into training and testing sets in the 9:1

ratio. Splitting data into training and testing sets is necessary for developing an accurate and

robust model, but it also results in two complications. Firstly, the small training sample of the

FGS biome means that learning of the relationships between biome and pollen data is compro-

mised. Secondly, the test set contains only two examples of the FGS biome. Thus, test perfor-

mance can be much more prone to the influence of sampling error. For instance, if examples

in the test set happen to be harder to classify (i.e. represent transitional vegetation), the model’s

performance will decrease. Thus, adequate representation of biomes in the pollen data is essen-

tial in building a robust and reliable predictive model.
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Significant taxa

In Africa seventeen modern pollen indicator taxa were identified by plotting their relative

abundances against annual temperature and precipitation [24]. The majority of these indica-

tors represent lower taxonomic ranks of species or genera. In contrast, the majority of the top

five most important pollen taxa with respect to the RF model represent family ranks. These

Fig 3. Mean decrease in accuracy (MDA) calculated for the machine learning classifiers identifying pollen taxa that contribute to high predictions. a) Linear

Discriminant Analysis, b) Logistic Regression, c) Naïve Bayes, d) K-Nearest Neighbours, e) Classification Decision Tree, f) Random Forest, g) Support Vector

Machine, h) Neural Network. Error bars are standard error of the mean. For each model the most important 30 taxa are plotted. Abbreviations of pollen taxon names

along with their MDA percentages may be found in S2 Table.

https://doi.org/10.1371/journal.pone.0202214.g003
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differences are expected as the two studies investigate different questions. The previous study

attempted to identify potential pollen indicators for quantitative reconstruction of temperature

and precipitation. Thus, lower taxonomic ranks emerge as indicators as they are confined to

smaller geographic ranges than taxa ranked at the Family level. Plant families tend to extend

over wider geographic space and longer environmental gradients than genera or species, and

thus are less likely to be useful in quantitative paleoclimatic reconstructions.

However, many pollen datasets contain large numbers of taxa at the Family level. Our anal-

ysis shows that this limitation of many pollen datasets has a smaller impact on the categorical

classification of assemblages into biomes. For predicting biomes, higher taxonomic rank that

encompass a much larger climatic range are more useful suggesting that this approach works

well for very long environmental gradients. In our Random Forest model important pollen

taxa are indicated by the mean decrease in accuracy (MDA); the higher the MDA for a given

taxon, the more important it is to the model’s prediction. The top three taxa contributing to

the high prediction of the RF model are Combretaceae, Nuxia, and Euphorbiaceae (Fig 1F).

Exclusion of Combretaceae leads to a 4% decrease in the Random Forest model predictive

performance. Combretaceae is a family of flowering plants including trees, shrubs, mangroves,

and lianas. The family is distributed across the globe with the highest species richness in the

tropical and subtropical regions of the Old World particularly rainforest, savannah, woodland,

and mangrove ecosystems [109,110]. As an indicator taxon in the pollen record, Combretaceae

is linked to mesic type savanna [111, 112] and dry bushveld [113]. Given its large range, Com-

bretaceae is an important component of diverse biomes such as savanna, xerophytic scrub,

and various tropical forest types including dry, seasonal, and rain forests [15]. As such, Com-

bretaceae is important to the RF model predictions of the Tropical and Subtropical Moist

Broadleaf Forests, as well as Tropical and Subtropical Grasslands, Savannas and Shrublands

biomes and plays a role in modeling the Deserts and Xeric Shrublands biome.

Exclusion of Nuxia leads to a 4% decrease in the RF model predictive performance. The

Nuxia genus in the Stilbaceae family [114,115] of flowering plants is found in tropical Africa

and is particularly characteristic of African and Madagascar montane forests. This taxon is

also present in open forests and scrub, though rarely in savannas [116]. Nuxia is often indica-

tive of afromontane vegetation [16] and warm temperatures [117]. Thus, for our model this

genus holds significance to the prediction of the Montane Grasslands and Shrublands, the

Tropical and Subtropical Grasslands, Savannas and Shrublands, and the Tropical and Subtrop-

ical Moist Broadleaf Forests.

Table 5. Evaluation metrics calculated for the PFT-based biome model (Jolly et al., 1998, Table 4).

Overall accuracy 0.71 Predicted biomes Evaluation metrics

Overall kappa 0.63 DESE STEP SAVA XERO WAMF TDFO TSFO TRFO Recall Precision F1 Kappa

Observed biomes Desert 5 7 0 1 0 0 0 0 0.38 1.00 0.56 0.55

Steppe 0 126 25 14 0 1 0 0 0.76 0.16 0.27 0.70

Savanna 0 27 206 25 3 7 3 0 0.76 0.74 0.75 0.64

Temperate Xerophytic Woods/Scrub 0 2 3 98 6 0 0 0 0.90 0.49 0.63 0.57

Warm Mixed Forest 0 2 2 54 140 1 0 0 0.70 0.88 0.78 0.73

Tropical Dry Forest 0 3 41 8 7 21 8 2 0.23 0.70 0.35 0.32

Tropical Seasonal Forest 0 0 2 0 4 0 32 0 0.84 0.63 0.72 0.70

Tropical Rain Forest 0 0 0 0 0 0 8 13 0.62 0.87 0.72 0.72

Number of correct predictions run diagonally and are highlighted in bold. Recall and precision are calculated as in Table 4.

https://doi.org/10.1371/journal.pone.0202214.t005
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Euphorbiaceae is a large family of flowering plants that includes herbs, shrubs, and succu-

lents. Within the family, the Euphorbia genus is one of the most diverse and largest in the

world with majority of the species endemic to Africa and Madagascar where they occur in vari-

ety of environments [118]. In the pollen record, both Euphorbiaceae and Euphorbia often

reflect dry conditions [119] and are often interpreted as indicative of semiarid conditions such

as those associated with southern African Succulent Karoo biome [120,121]. Exclusion of

Euphorbiaceae from the RF classifier leads to a 2.5% decrease in the model’s performance.

This high importance of Euphorbiaceae to the model’s predictions combined with its modern

broad geographical distribution indicate this family to be a significant taxon for discriminating

between extreme biomes, i.e. arid vs tropical. Furthermore, considering their status as an indi-

cator taxa of semi-arid conditions, we interpret Euphorbiaceae as important in determining

arid and semi-arid environment represented by the Desert and Xeric Shrublands biome.

Nevertheless, interpretations of importance variables must be made with caution. Feature

importances provide insights about how individual pollen taxa affect the predictive power of

each trained model. However, these measures do not enable any inferences about the relation-

ship between pollen features and prediction of individual biome classes or the relationships

between pollen taxa with one another. Furthermore, pollen taxa with low feature importance

values should not be discounted as unimportant to prediction as low features values may sug-

gest that the model placed more weight on a correlated feature. For instance, if taxon A and

taxon B are highly correlated they carry roughly the same amount of information and the

model may place importance on only one of them without compromising performance.

The Random Forest model presented here may be compared to the biomization method on

the bases of statistical metrics. However, the PFT-based biome model for Africa does not pro-

vide directly equivalent statistical evaluations [17]. The PFT model scores lower than the RF

model (Table 5). However, there are several reasons precluding direct comparisons between

the two approaches. For direct comparisons between the two models, the RF classifier must be

applied to the pollen data originally labeled with the PFT-based biomes. Although the same

pollen data were used, the biome label assignments used different versions of the same classifi-

cation systems; while the PFT model uses an older version of the classification system [122],

our machine learning model uses the most recent 2001 version [26]. For instance, in the 1983

version there is no equivalent for Tropical and Subtropical Moist Broadleaf Forest present in

the 2001 version. Furthermore, the number of biome labels is different; the PFT model has

seven biome classes, while the RF model was trained on five classes.

To illustrate the importance of a consistent classification system, consider the following

thought experiment. Take the same data our RF model is trained on. Then, randomly shuffle

the biome assignments and train a new RF model on the shuffled data. Since there is no longer

any correlation between pollen data and biome assignments, the performance of the model

trained on randomly assigned biome labels is expected to be much lower. When labels are

shuffled randomly this presents a harder learning problem. Although this is a contrived exam-

ple, it demonstrates that classification results are not purely a function of the model or the

input data (i.e. pollen counts), but are strongly influenced by the label assignment.

Paleoenvironmental reconstruction

The proof-of-concept Random Forests classifier, validated and tested on modern pollen

data, has the potential for highly accurate predictions of past biomes and awaits applica-

tion to fossil pollen sequences for prediction of past biomes. In Africa, the RF model may

be used to investigate events on both long and short time scales, such as the late Pleisto-

cene arid events [123–125] or more recent and abrupt climatic anomalies like the African
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Humid Period (AHP) [126,127,16]. The AHP has been linked to the greening of Sahara

via empirical [128] and modeling approaches [129,130]. Previous biome modeling studies

predict northward shift of tropical rain forest around 11–9 ka and a reduction of the des-

ert biome at the termination of the AHP [131,15,17]. The Random Forest model may pro-

vide additional insights by quantifying the probability of these biomes occurring at

discrete times. Similarly, the progression and magnitude of the AHP over the African con-

tinent may be constrained using our probabilistic model aiding, for example, in the

understanding of the spatio-temporal extent of the AHP and its impact on higher latitudes

of southern Africa [132–135].

Our model may be applied to other paleo-related research areas The high capacity of our

machine learning model for discerning hidden and non-linear patterns in complex datasets

may reveal new insights and generate new hypotheses in paleosciences. The model may also

have potential application in archeology as various aspects of human evolution have been

linked to climate and resource availability including occupation patterns [136], agriculture

and pastoralism [137,138], and the rise and fall of ancient civilizations [139,140]. The model

may be applied to prediction and modeling of smaller scale vegetation units using regional

vegetation classification to allow for higher resolution picture of past shifts in regional vegeta-

tion cover providing valuable information on regional drivers of climate change. Lastly, the

Random Forest algorithm may find application for regressions problems in palynology as RF-

based quantitative estimates of climate variables from pollen data are a relatively new approach

[141].

Advantages of machine learning approaches to pollen-based biome

prediction and modeling

Our new machine learning approach using the Random Forest algorithm predicts biome types

to a high level of accuracy. The RF model provides improvements for biome predictions from

fossil pollen sequences by incorporating more criteria. Both the indicator species and the bio-

mization methods rely on the reduction of information from taxonomically rich pollen data-

sets to only few taxa. These approaches are well-founded given the low signal-to-noise ratio in

pollen datasets and high computational demands necessary to analyze these complex datasets.

However, it is possible that the reductionist assumptions may not capture the entirety of valu-

able information available in the pollen data. Novel machine learning methods and higher

computational power permit a more complete analysis of complex and noisy data such as pol-

len data.

Furthermore, the application of various machine learning models may shed light on

the nature of the relationship between pollen and biome types. We investigated a number

of popular parametric, non-parametric and semi-parametric models, each representative

of specific set of assumptions. In our analysis, a definite non-linear component is appar-

ent as the Random Forest classifier achieves the highest predictive performance on the

prediction task. Yet, linear assumptions appear to hold significant validity with regards to

the relationship between pollen and biome types. The Linear Regression model makes

strong linear assumptions and yet achieves the second highest performance on the predic-

tion task. Likewise, the simplified assumptions of the Naïve Bayes model, that posits no

interaction between pollen taxa, result in comparatively high prediction. Furthermore, for

the NB model the probability distribution chosen for pollen features was Bernoulli (i.e.

presence/absence). Thus, even when the proportion of individual pollen features is

ignored, the classification and prediction of biomes using only presence/absence proxy

data is possible to a relatively high degree (Table 3).
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Limitations of machine learning approaches to pollen-based biome

prediction and modeling

Our pollen-based predictive biome model is an analogue method. As such, its performance

relies on robust modern pollen dataset for training purposes. Thus, our method is not applica-

ble for regions of the world where modern datasets are unavailable. Where biomes are well

represented in the modern pollen dataset (Fig 4), the performance of our model is high as indi-

cated by high scores on the evaluation metrics attained for both the overall model prediction

(Table 3) and individual biome predictions (Table 4) suggesting it to be a robust and reliable

classifier. For reconstructions of vegetation from Deep Time circumstances our model’s per-

formance would be dependant upon assumptions about past environmental conditions that

may differ from modern environments. In such cases, the most useful information about past

environmental conditions may be gained by combining our method with other available

approaches.

Future work

Future work is needed to establish statistical comparability between the results of our

Random Forest classifier and the biomization method for African biomes. This may be

achieved by using our Random Forest algorithm on the PFT-based biome labels from

[17]. Alternatively, the biomization method may be applied to our data labeled with our

biome classes.

Another area for potential improvement may be labels used for biome assignment. As

classification results are influenced by label assignment, more accurate labels for vegeta-

tion classes would result in more accurate model and predictions. For our biome labels we

use an inclusive classification system that places biota at the core of the concept and

encompasses distinct assemblages of species [26]. However, the label assignments could

be improved by using high resolution satellite data for most current vegetation distribu-

tion and classification.

Moreover, the performance of Neural Networks on the task of biome prediction from pol-

len data may be improved. Neural Networks are universal function approximators, theoreti-

cally able to learn any function [142]. Our hypothesis that the NN model was expected to be

one of the highest preforming models was met. However, here only a simple feed forward neu-

ral network with one hidden layer [21] was used to predict biomes from pollen data. This

model is relatively slow to optimize (S1 Table) but achieves high performance (Table 3) in pre-

dicting biome classes from pollen data. However, state-of-the-art classification using NN mod-

els is achieved for sequentiality and spatially structured data such language translations [143]

and image recognition [144]. However, pollen data is neither sequentially nor spatially struc-

tured. A new self-normalizing NN model [145] has recently been developed for application to

broader classification problems and may achieve higher performance than the feed forward

NN used in our analysis.

Conclusions

We develop a new robust model for modern biome predictions using vegetation proxy data

via a supervised classification approach. By testing and validating various machine learning

classifiers we identify the Random Forest algorithm as the highest performing model. The

model may be now applied to fossil pollen sequences for probabilistic reconstructions of past

biomes. Thus, our model has the potential to improve understanding of spatial and temporal

distribution of past vegetation.
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Fig 4. Detrended correspondence analysis (DCA) of the modern pollen assemblages color-coded by biome type (Olson et al., 2001).

https://doi.org/10.1371/journal.pone.0202214.g004
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Supporting information

S1 Table. Time requirement for hyper-parameter optimization for the validation set.

Hyper-parameters were fitted to 10 folds for each of 50 candidates, totaling 500 fits. Acronyms

denote LDA for Linear Discriminant Analysis, SVM for Support Vector Machines, NN for

Neural Networks, RF for Random Forest, LR for Logistic Regression, NB for Naïve Bayes,

CDT for Classifivation Decision Tree, and KNN for K-Nearest Neighbors.

(XLS)

S2 Table. List of biome assignments (Olson et al., 2001) to modern pollen data (Gajewski

et al. 2002). Latitude (Lat) and longitude (Long) values were rounded to the nearest two deci-

mal points. The column “Context” refers to the deposit type a pollen sample was collected

from. The collumn “Symbol” refers to a color-coded position of a pollen sample on map in

Fig 2.

(XLS)

S3 Table. Complete list of mean decrease in accuracy (MDA) metrics for all pollen taxa cal-

culated for each model. Acronyms denote LDA for Linear Discriminant Analysis, SVM for

Support Vector Machines, NN for Neural Networks, RF for Random Forest, LR for Logistic

Regression, NB for Naïve Bayes, CDT for Classifivation Decision Tree, and KNN for K-Near-

est Neighbors.

(XLSX)

S1 Python Code. Documented Python code used to train and evaluate the eight statistical

and machine learning classification models for the task of biome prediction using pollen

data. Documentation in the code consists of comments (#) and docstrings (’ ’ ’). Comments

explain that portion of the code and are placed immediately before the section of code they

refer to. Docstrings provide a detailed description of a function and are placed after the func-

tion is defined.

(DOCX)
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1944; 66: 463–483. https://doi.org/10.1080/11035894409445689

8. Guiot J, Pons A, de Beaulieu JL, Reille M. A 140,000-year continental climate reconstruction from two

European pollen records. Nature. 1989; 338: 309–313. https://doi.org/10.1038/338309a0

9. Nakagawa T, Tarasov PE, Nishida K, Gotanda K, Yasuda Y. Quantitative pollen-based climate recon-

struction in central Japan: Application to surface and Late Quaternary spectra. Quat Sci Rev. 2002;

21: 2099–2113. https://doi.org/10.1016/S0277-3791(02)00014-8

10. Mauri A, Davis BAS, Collins PM, Kaplan JO. The climate of Europe during the Holocene: A gridded

pollen-based reconstruction and its multi-proxy evaluation. Quat Sci Rev. Elsevier Ltd; 2015; 112:

109–127. https://doi.org/10.1016/j.quascirev.2015.01.013

11. Wu H, Guiot J, Brewer S, Guo Z. Climatic changes in Eurasia and Africa at the last glacial maximum

and mid-Holocene: Reconstruction from pollen data using inverse vegetation modelling. Clim Dyn.

2007; 29: 211–229. https://doi.org/10.1007/s00382-007-0231-3

12. Newnham RM, Alloway B V., Holt KA, Butler K, Rees ABH, Wilmshurst JM, et al. Last Glacial pollen–

climate reconstructions from Northland, New Zealand. J Quat Sci. 2017; 32: 685–703. https://doi.org/

10.1002/jqs.2955

13. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM. A global biome model

based on plant physiology and dominance, soil properties and climate. J Biogeogr. 1992; 19: 117–

134. https://doi.org/10.2307/2845499

14. Prentice IC, Guiot J, Huntley B, Jolly D, Cheddadi R. Reconstructing biomes from palaeoecological

data: a general method and its application to European pollen data at 0 and 6 ka. Clim Dyn. 1996; 12:

185–194. https://doi.org/10.1007/s003820050102

15. Elenga H, Peyron O, Bonnefille R, Jolly D, Cheddadi R, Guiot J, et al. Pollen-based biome reconstruc-

tion for southern Europe and Africa 18,000 yr BP. J Biogeogr. 2000; 27: 621–634. https://doi.org/10.

1046/j.1365-2699.2000.00430.x

Predictive pollen-based biome modeling using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0202214 August 23, 2018 23 / 29

https://doi.org/10.1016/j.palwor.2014.08.002
https://doi.org/10.1016/j.palwor.2014.08.002
https://doi.org/10.1111/gcb.12737
http://www.ncbi.nlm.nih.gov/pubmed/25204435
https://doi.org/10.1016/S0277-3791(03)00173-2
https://doi.org/10.1002/jqs.2818
https://doi.org/10.1002/jqs.2818
https://doi.org/10.1191/095968301680223486
https://doi.org/10.1016/j.revpalbo.2014.08.007
https://doi.org/10.1080/11035894409445689
https://doi.org/10.1038/338309a0
https://doi.org/10.1016/S0277-3791(02)00014-8
https://doi.org/10.1016/j.quascirev.2015.01.013
https://doi.org/10.1007/s00382-007-0231-3
https://doi.org/10.1002/jqs.2955
https://doi.org/10.1002/jqs.2955
https://doi.org/10.2307/2845499
https://doi.org/10.1007/s003820050102
https://doi.org/10.1046/j.1365-2699.2000.00430.x
https://doi.org/10.1046/j.1365-2699.2000.00430.x
https://doi.org/10.1371/journal.pone.0202214
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slides. Landslides; 2016; 13: 671–681. https://doi.org/10.1007/s10346-015-0593-2

35. Cox DR. The Regression Analysis of Binary Sequences. J R Stat Soc Ser B. 1958; 215–242.

36. Strother HW, Duncan DB. Estimation of the probability of an event as a function of several indepen-

dent variables. Biometrika. 1967; 54: 167–179. https://doi.org/10.1093/biomet/54.1–2.167 PMID:

6049533

37. Calef MP, McGuire AD, Epstein HE, Rupp TS, Shugart HH. Analysis of vegetation distribution in Inte-

rior Alaska and sensitivity to climate change using a logistic regression approach. J Biogeogr. 2005;

32: 863–878. https://doi.org/10.1111/j.1365-2699.2004.01185.x

38. Westerling AL, Turner MG, Smithwick EAH, Romme WH, Ryan MG. Continued warming could trans-

form Greater Yellowstone fire regimes by mid-21st century. Proc Natl Acad Sci. 2011; 108: 13165–

13170. https://doi.org/10.1073/pnas.1110199108 PMID: 21788495

Predictive pollen-based biome modeling using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0202214 August 23, 2018 24 / 29

https://doi.org/10.1016/j.quascirev.2016.09.023
https://doi.org/10.1046/j.1365-2699.1998.00238.x
https://doi.org/10.5194/cp-9-2759-2013
https://doi.org/10.1007/11494669_93
https://doi.org/10.1.1.214.9232
https://doi.org/10.2113/gselements.5.2.99
https://doi.org/10.1016/S0277-3791(01)00152-4
https://doi.org/10.1016/S0277-3791(01)00152-4
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
https://doi.org/10.1046/j.1523-1739.1998.012003502.x
https://doi.org/10.1046/j.1523-1739.1998.012003502.x
https://doi.org/10.1890/07-0539.1
http://www.ncbi.nlm.nih.gov/pubmed/18051647
https://doi.org/10.1016/j.palaeo.2015.07.037
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1007/978-94-007-2745-8
https://doi.org/10.1016/j.quaint.2012.03.025
https://doi.org/10.1016/j.quaint.2012.03.025
https://doi.org/10.1175/JCLI-D-14-00831.1
https://doi.org/10.1175/JCLI-D-14-00831.1
https://doi.org/10.1007/s10346-015-0593-2
https://doi.org/10.1093/biomet/54.12.167
http://www.ncbi.nlm.nih.gov/pubmed/6049533
https://doi.org/10.1111/j.1365-2699.2004.01185.x
https://doi.org/10.1073/pnas.1110199108
http://www.ncbi.nlm.nih.gov/pubmed/21788495
https://doi.org/10.1371/journal.pone.0202214
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