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Abstract

While there is increasing evidence for habitat specialization in coral reef fishes, the extent to

which different corals support different fish communities is not well understood. Here we

quantitatively assess the relative importance of different coral species in structuring fish

communities and evaluate whether sampling scale and coral colony size affect the per-

ceived strength of fish-habitat relationships. Fish communities present on colonies of eight

coral species (Porites cylindrica, Echinopora horrida, Hydnophora rigida, Stylophora pistil-

lata, Seriatopora hystrix, Acropora formosa, A. tenuis and A. millepora) were examined in

the Lizard Island lagoon, Great Barrier Reef, Australia. Additionally, the differences in fish

communities supported by three coral species (P. cylindrica, E. horrida, H. rigida) were

investigated at three spatial scales of sampling (2x2 m, 1x1 m, 0.5x0.5 m). Substantial differ-

ences in fish communities were observed across the different coral species, with E. horrida

and H. rigida supporting the most fish species and individuals. Coral species explained

more of the variability in fish species richness (20.9–53.6%), than in fish abundance (0–

15%). Most coral species supported distinctive fish communities, with dissimilarities ranging

from 50 to 90%. For three focal coral species, a greater amount of total variation in fish spe-

cies richness and fish abundance was evident at a larger scale of sampling. Together, these

results indicate that the structure of reef fish communities is finely tuned to coral species.

Loss of preferred coral species could have profound effects on reef fish biodiversity, poten-

tially more so than would be predicted on the basis of declining coral cover alone.

Introduction

Habitat characteristics are known to play a key role in structuring natural communities [1–2].

In many ecosystems, living organisms create biogenic habitat that provides critical resources

for a wide variety of mobile species. For example, terrestrial forest biomes form the habitat

structure essential for the survival of many insects, birds and mammals [3–5]. Likewise,
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macro-algae and seagrasses have a similar habitat-forming role in freshwater and temperate

marine ecosystems [6–7]. Numerous studies have examined relationships between the abun-

dance of focal species and the areal cover of biogenic habitat [8–10], however, the strength of

these relationships may depend on the level at which organisms discriminate among habitat

types [11–12]. If focal organisms are highly specialised and discriminate among habitat-form-

ing species, then habitat availability should be measured at the species level. In addition, the

strength of the relationships between organisms and their habitat may depend on the scale of

sampling [13]. Organism-habitat relationships may be obscured if inappropriate taxonomic

resolution or spatial scale of sampling are applied [14–16]. Therefore, to understand popula-

tion and community responses to degrading habitats, it is necessary to understand these spe-

cies and scale-specific phenomena.

On coral reefs, the complex structure of scleractinian corals produces a diversity of habitat

types that provide shelter, food and sites for reproduction for other reef organisms [17–19].

Coral cover is often considered the key variable that influences the abundance of coral-reliant

organisms [8, 20]. However, there is increasing evidence that many organisms preferentially

associate with particular coral species or coral morphologies at critical stages of their develop-

ment [12, 19, 21–24]. For example, Bonin [23] demonstrated that new recruits of at least four

damselfish species (Chrysiptera parasema, Pomacentrus moluccensis, Dascylusmelanurus and

Chrosmis retrofasciatus) had a strong preference for a limited number of Acropora species.

Hence, measures of overall coral cover may fail to detect species-specific habitat associations

that are important in explaining the diversity of reef communities.

Some studies have shown that the presence of different coral species influences the structure

of fish communities and identified the characteristics of the corals likely to be responsible for

these differences [21–23, 25–26]. For example, Messmer et al. [26] identified several coral spe-

cies that tend to support more diverse fish communities (e.g. Acropora nasuta and Seriatopora
hystrix). The physical characteristics of coral species that attract and support a high diversity

and abundance of fishes may relate to the branching structure of the coral colonies [21–22,

25]. In general, structurally more complex habitats tend to support more diverse and abundant

animal communities by providing a greater variety and number of refuge sites, which in turn

can decrease encounter rates between competitors as well as between predators and their prey

[27–29]. Consequently, structurally complex coral species are predicted to support richer and

more abundant fish communities.

The observed relationships between fish diversity or abundance and the structure of the

coral community may also be dependent on the spatial scale of sampling. At very small spatial

scales of sampling, fish-habitat associations may appear to break down due to patchy distribu-

tion of individuals [15, 30]. In contrast, at a large spatial scale, habitat patchiness can become

homogenised and other environmental characteristics, such as depth and currents, become

more important in structuring fish communities [14–16, 21]. Therefore, the spatial scale of

sampling of different corals could have a significant effect on the perceived relationships

between the coral community structure and the structure of fish communities [31].

Understanding habitat associations of coral reef fishes is critical given the differential sus-

ceptibility of coral species to increasing temperatures and other stressors associated with cli-

mate change [23, 32–34]. A decline in the abundance of particular coral species could have

significant effects on fish communities if those coral species support diverse and abundant fish

assemblages. At the same time, natural and anthropogenic disturbances will tend to reduce the

average size of coral colonies, which could affect the structure of local fish communities if

smaller corals support fewer individuals and/or species [21, 35]. Understanding the influence

of coral species, coral structural complexity and coral colony size on fish communities will

assist efforts to predict the likely consequences of coral loss to reef fish communities [18, 36].

Coral species as determinant of fish community structure
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The overall aim of this study was to assess the influence of coral species, sampling scales

and coral colony size in structuring reef fish communities. We compared the abundance and

richness of fish assemblages at Lizard Island on the Great Barrier Reef across a range of com-

mon coral species to determine if:

1. Some coral species support more diverse and abundant fish communities than others. We

hypothesised that fish diversity and abundance would be associated with coral structural

complexity, with coral species that have a complex branching structure supporting more

diverse and abundant fish communities than those with a less complex branching structure.

2. The spatial scale of sampling affects the observed relationships between coral species and

fish species richness and abundance. We predicted that fish-coral species associations

would be less evident at smaller scales, however the performance of specific coral species

would remain consistent irrespective of the scale

3. Different coral species tend to accumulate fish species richness and abundance at different

rates as colony size increases. We hypothesized that more structurally complex corals

would accumulate fish species richness and abundance at faster rates than less structurally

complex corals.

Materials and methods

Ethics statement

This study was conducted in accordance with Great Barrier Reef Marine Park Authority

requirements for non-extractive research and was compliant with the James Cook University

Code of Conduct for Research in the Great Barrier Reef. An authorisation for this limited

impact, non-extractive research in the Great Barrier Reef Marine Park was obtained from

James Cook University (Authorisation letter number: MBA5). This research did not involve

any endangered or protected species and no animals were sampled. This study was conducted

in compliance with the James Cook University Ethics Review Committee regulations (Ethics

approval project number: A1124).

Study location

The study was conducted within the lagoon of Lizard Island, northern Great Barrier Reef (14˚

40’S, 145˚28’E), QLD, Australia between November 2006 and January 2007. The Lizard Island

lagoon is relatively shallow with a maximum depth of approximately 15 meters and with the

majority of reefs situated in three to six meters depth. The lagoon is sheltered from the prevail-

ing southeast swell and has well developed reefs around its margins.

Sampling design

Coral structural characteristics. To determine if some species of coral support more

diverse and abundant fish communities than others, we compared fish community structure

among eight of the most commonly occurring coral species in the Lizard Island lagoon: Porites
cylindrica, Echinopora horrida,Hydnophora rigida, Stylophora pistillata, Seriatopora hystrix,

Acropora formosa, A. tenuis and A.millepora. These species have a complex branching struc-

ture, but differ in characteristics such as average branch length, branch density, overall colony

morphology, and maximum colony size. In order to provide quantitative physical and struc-

tural descriptions of the eight coral species, we conducted different physical measures on

Coral species as determinant of fish community structure
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multiple colonies of each study coral species. These measurements were used to classify corals

as species with high and low structural complexity. Inter-branch space of 8–16 colonies of

each of the eight coral species were measured to determine if there were significant differences

in physical characteristics. Additionally, the branch length was measured for the six coral spe-

cies with a branching morphology: A. formosa, E. horrida,H. rigida, P. cylindrica, S. hystrix and

S. pistillata. Ten random distances between branch tips and the length of ten randomly selected

branches were measured to the nearest millimetre using callipers or a ruler for longer

branches. Corals were randomly sampled from around the lagoon of Lizard Island.

ANOVA and Kruskal-Wallis tests were used to examine differences in branch length and

inter-branch space, respectively, among the coral species. The mean of ten branch lengths (six

coral species) was calculated for each coral colony before performing ANOVA. Branch length

was log10 transformed to meet the assumptions of normality and homoscedasticity (Section A

in S1 Supporting Information). The mean of ten inter-branch spaces (eight coral species) was

also calculated for each coral colony before performing nonparametric independent samples

Kruskal-Wallis test, as the data did not meet the assumptions for ANOVA (Section A in S1

Supporting Information). The analysis was performed using SPSS.

Fish community structure and coral species. To determine if some species of coral sup-

port more diverse and abundant fish communities than others, we compared fish community

structure among the eight coral species selected for the study (listed above). A minimum of

five haphazardly selected colonies of each coral species were sampled at 0.5 x 0.5 m spatial

scale (Table 1). Only colonies that showed no obvious signs of disease, bleaching or partial

mortality were used. The fish assemblage occupying each coral colony (up to 0.5 m above the

colony) was surveyed visually for a maximum of six minutes. During the first three minutes all

the larger and more obvious fishes were counted from a distance of approximately one meter.

For the following three minutes the spaces between branches were carefully and systematically

searched for cryptic fish species. Only individuals that appeared to use the coral head or hov-

ered above the coral head for the entire time of the observation were recorded. Fish that swam

past the coral head during the observation period were not counted. Individuals were identi-

fied to species level and a life stage for each individual was recorded (adult, juvenile, new

settler).

Fish species richness, total fish abundance, and fish community structure were compared

among the eight coral species that were sampled at 0.5 x 0.5 m. ANOVA was used to test for

significant differences in fish species richness and total fish abundance among the eight coral

species. Fish species richness and fish abundance were log10 transformed to meet assumptions

of normality and homoscedasticity (Section B in S1 Supporting Information). The analysis was

performed using SPSS.

Table 1. Number of coral colonies sampled at three different scales.

Coral species Sampling scale (m) & number of colonies sampled

0.5 x 0.5 1 x 1 2 x 2

Hydnophora rigida 13 12 6

Echinopora horrida 12 12 9

Porites cylindrica 12 11 10

Acropora formosa 5

A. tenuis 6

A.millepora 9

Stylophora pistillata 11

Seriatopora hystrix 10

https://doi.org/10.1371/journal.pone.0202206.t001
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A similarity percentage analysis (SIMPER) and a distance-based permutational multivariate

analysis of variance (PERMANOVA) on a Bray-Curtis similarity matrix were used to compare

fish assemblage structure among coral species. The 16 most abundant and frequently occur-

ring fish taxa (minimum of 4.5% contribution to the abundance and frequency of occurrence

of individuals for at least one coral species) were used in the multivariate analysis. Life stages

of each fish taxa (new settlers, juveniles and adults) were considered separately in the analysis.

Some fish species/age groups could not be identified to species level or occurred with low fre-

quencies or abundances, but belong to a common genus or family. The data for these fish spe-

cies were pooled together to form higher classification groups: Gobiodon, Pomacentrids,

Pomacentrid juveniles, Labrids, Other Juveniles and Other New Settlers. Further pair-wise

PERMANOVA tests were conducted as a post hoc test to identify which coral species were sig-

nificantly different from each other in fish community structure. The data for this analysis

were fourth root transformed prior to analysis to reduce the influence of extreme values of

highly abundant fish species. Unrestricted permutations of raw data (9999) and Type III sums

of squares were used to generate P-values due to the unbalanced design.

Bootstrapped values were calculated over 100 replications per coral species. The relation-

ship between fish assemblage and individual coral species was visually explored using a non-

metric multidimensional scaling (nMDS) plot where bootstrapped values and 95% confidence

intervals were calculated over 100 replications per coral species. All multivariate analyses were

performed using PRIMER v.6 and PERMANOVA+ [37–38].

Fish community structure and spatial scales of sampling. To determine if the spatial

scale of sampling influenced the relationship between fish community structure and coral spe-

cies identity, single-species coral stands of P. cylindrica, E. horrida andH. rigidawere surveyed

using three different sized quadrats (i.e., 2x2 m, 1x1 m and 0.5x0.5m). The spatial scales were

selected based on the site attached behaviour and relatively small home ranges of the majority

of the encountered fish species and on the availability of the study coral stands. Due to differ-

ences in growth forms, these were the only three of the eight coral species that could be sam-

pled at all three spatial scales. A minimum of six haphazardly selected healthy colonies of each

coral species were sampled at each spatial scale (Table 1). In most instances, individual coral

colonies that closely matched one of the sampling scales were chosen. The size of each coral

colony was estimated with a measuring tape. In a few instances (2x2 m scale only), the area

surveyed was a portion of a larger coral colony. In these instances, a 2x2 m quadrat was hap-

hazardly placed over the coral to delineate the sample area. Each coral colony was sampled at

only one spatial scale. Fish assemblages were quantified as described above. Additionally,

water depth and reef zone within the lagoon were recorded for each sampled coral.

A regression tree approach [39] was used to explore and describe the relationships between

coral species, fish species richness and fish abundance at the three different scales. Depth and

reef zone were also included in the analysis to account for their potential effects on the fish

variables. Fish abundance was log10 transformed to reduce the influence of extreme values

(Section C in S1 Supporting Information). Absolute deviations were used to estimate tree

branching and the size of trees was selected by cross-validation, choosing the tree with the

smallest estimated predictive error. Regression tree analysis was used because it is suited to the

exploration of relationships between ecological communities and multiple environmental vari-

ables and where the sampling of variables may be unbalanced, where missing values occur, or

where there are non-linear relationships between the ecological community and the environ-

mental variables [39]. The analysis was performed using the TreesPlus (S-Plus) statistical com-

puter package [39].

Fish community structure and coral colony size. To determine if different coral species

accumulate fish species richness and total abundance at different rates with increasing colony

Coral species as determinant of fish community structure
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size we compared the relationship of these traits to colony size for the three coral species for

which a range of colony sizes was available: P. cylindrica, E. horrida andH. rigida. Colony max-

imum height, width and length were measured to the nearest centimetre. All fish present

within the colony and up to 0.5 m above it were counted. The branches of each colony were

carefully searched for cryptic species.

ANCOVAs were used to test how fish species richness and fish abundance scaled with coral

colony size among the three coral species. Each fish variable was considered as a dependant

variable while coral species and colony size were categorical and continuous predictors,

respectively. Only P. cylindrica, E. horrida andH. rigida exhibited sufficient variation in coral

colony size to be included in this analysis. Fish abundance and colony size (expressed as colony

average diameter) were log10 transformed to meet the assumptions of normality, homoscedas-

ticity and linearity (Section D in S1 Supporting Information). The analysis was performed

using Statistica v8.

Results

Coral structural characteristics

The eight coral species examined differed in their average inter-branch space (Kruskal-Wallis,

Chi-Square = 374.44, p< 0.001). A post hoc Tukey HSD test showed that A. formosa had sig-

nificantly larger inter-branch distance than the other seven coral species (�x = 66.5 mm,

p< 0.05) and A. tenuis had the smallest interbranch distance among the eight studied coral

species (�x = 18.8 mm, p> 0.05). There was no significant difference in branch length between

A. tenuis, A.millepora, S. hystrix and S. pistillata (p> 0.05). P. cylindrica,H. rigida and E. hor-
rida had an intermediate branch length. The branch length of P. cylindrica andH. rigida also

did not differ significantly from S. pistillata (�x = 27.9 mm, p> 0.05) (Fig 1A).

The six branching corals differed significantly in their branch length (ANOVA, F5,87 =

13.815, p< 0.001). The Tukey HSD test showed that A. formosa had significantly longer

branches than the other five coral species (�x = 106.2 mm, p< 0.05). S. hystrix had the shortest

branch length (�x = 37.5 mm). The branch length of S. hystrix was significantly shorter than

E. horrida (�x = 64.9 mm) and A. formosa, but not the other four coral species (Fig 1B).

For the purposes of this study, corals with intermediate branch length and inter-branch dis-

tance (E. horrida,H. rigida, P. cylindrica) were considered more structurally complex than cor-

als with only small inter-branch distance and branch length or corals with only large inter-

branch distance and branch length. This definition was adopted in accordance with the

assumption that intermediate inter-branch distance and branch length should provide refuge

for small and medium size fishes, while excluding larger predators, similarly to the idea that

lays behind the “intermediate disturbance hypothesis” [40].

Fish community structure and coral species

Fish species richness & fish abundance. Mean fish species richness differed among the

eight coral species (F7,70 = 15.923, p< 0.001). A post hoc Tukey HSD test showed that E. hor-
rida andH. rigida supported significantly higher fish species richness than the other coral spe-

cies, with the exception of P. cylindrica (p< 0.05) (Fig 2A). A. tenuis and A.millepora colonies

supported significantly lower fish species richness than most other coral species, with the

exception of S. pistillata (Tukey HSD, p< 0.05) (Fig 2A). There was no significant difference

in the fish species richness supported by S. pistillata, S. hystrix and A. formosa (Fig 2A).

There was a significant difference in the mean abundance of fish on the eight coral species

(F7,70 = 5.015, p< 0.001). E. horrida supported a greater abundance than A. tenuis, A.millepora
and S. pistillata (p< 0.05, Fig 2B). A. tenuis colonies supported significantly lower fish

Coral species as determinant of fish community structure
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abundance than E. horrida,H. rigida and P. cylindrica colonies (p< 0.05) (Fig 2B). There was

no significant difference in fish abundance among A.millepora, A. formosa, H. rigida, P. cylin-
drica, S. hystrix and S. pistillata (Fig 2B).

Fish assemblages. A total of 57 fish species and 1,205 individuals were observed occupy-

ing the eight coral species sampled at the 0.5 x 0.5 m spatial scale. Fish communities were dom-

inated by damselfishes, which represented 47% (27 species) of the total number of species and

just under 70% of the abundance of all individuals recorded, with Chromis viridis and Poma-
centrus moluccensis being the two most abundant species.

Multivariate analysis of fish community composition revealed significant differences in fish

assemblages among the eight coral species (PERMANOVA+ F7,70 = 4.1, p< 0.001; Fig 3).

Pair–wise tests identified differences in fish community structure among most of the coral spe-

cies examined; however, fish community structure did not differ between E. horrida,H. rigida
and P. cylindrica or between A.millepora, A. tenuis and A. formosa (Table 2). These results

were supported by SIMPER analysis, which showed high levels of dissimilarities between most

coral species (~50–90%) (Table 3).H. rigida and A. tenuis, and E. horrida and A. tenuis had the

most dissimilar fish communities (91% in both cases), whereas E. rigida andH. horrida had

the most similar communities (52.4% dissimilarity). Bray-Curtis similarities for each coral spe-

cies (within groups similarities) were relatively low ranging from 16% (A.millepora) to 49%

(E. horrida). C. viridis, P.moluccensis, pomacentrid and labrid species exploited most of the

studied corals. Gobiodon histrio was observed on A.millepora and A. tenuis, while Paragobio-
don xanthosomus was only observed on S. hystrix. N.melas new settlers were predominantly

observed on A.millepora and A. tenuis. While S. nigricans exclusively occupied A. formosa
stands (Table 4).

Fish community structure and spatial scales of sampling

Fish species richness. Coral species was the only variable that explained a significant

amount of variation in fish species richness at each of the three sampling scales. Regression

tree analyses for the three coral species sampled at the 2x2 m, 1x1 m and 0.5x0.5 m scale each

produced a two-leaf tree (Fig 4). One leaf represented high fish species richness associated

with E. horrida and H. rigida and the second leaf represented low fish species richness associ-

ated with P. cylindrica colonies. On average, E. horrida andH. rigida colonies contained twice

as many fish species compared with P. cylindrica at each of the three sampling scales (Fig 4).

Overall, the largest sampling scale examined (2x2 m) explained twice as much of the varia-

tion in the data (53.6%) than the two smaller scales (32.5% and 20.9%, respectively). However,

E. horrida andH. rigida supported a richer fish community than P. cylindrica regardless of the

scale of sampling (Fig 4).

Fish abundance. Overall, as for species richness, the larger spatial scale explained much

more variation in the abundance of fish species than the two smaller scales. Coral species

explained a substantial amount of variation in fish abundance only at the two largest sampling

scales (2x2 m and 1x1 m) (Fig 5). Regression tree analyses of log fish abundance for the three

coral species sampled at the 2x2 m and 1x1 m scale produced a three-leaf tree in each case,

explaining 26.5% and 18.9% of the variance, respectively (Fig 5). In both cases the first split

was based on coral species, and the second split was based on water depth, explaining 15%

(2x2 m, first split) and 11.5% (2x2 m second split), 8.4% (1x1 m, first split) and 10.5% (1x1m,

second split) of the variation in fish abundance. One leaf represented high fish abundance

Fig 1. (a) The differences in the inter-branch space of the eight study coral species. Shared letters indicate no significant difference. (b) The

differences in branch length of the six branching coral species. Shared letters indicate no significant difference.

https://doi.org/10.1371/journal.pone.0202206.g001
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associated with E. horrida andH. rigida colonies at shallower depth, the second leaf repre-

sented intermediate fish abundance associated with E. horrida and H. rigida colonies in deeper

areas. The third leaf represented the lowest fish abundance associated with P. cylindrica colo-

nies. On average, E. horrida andH. rigida colonies supported twice as high fish abundance as

P. cylindrica at 2x2 m and 1x1 m scales (Fig 5A and 5B). The regression tree analysis of the log

fish abundance for the three coral species sampled at the 0.5x0.5 m scale produced a two-leaf

tree explaining 13% of the variance (Fig 5C).

Fish community structure and coral colony size. Fish species richness increased as col-

ony size increased (ANCOVA; colony size F1,67 = 75.3195, p< 0.001; Fig 6A). There was no

interaction between coral species and coral colony size (Homogeneity of slopes, F2,65 = 0.5147,

p> 0.05) indicating that all three coral species accumulated fish species richness at approxi-

mately the same rate with increasing colony size. E. horrida and H. rigida supported higher

fish species richness than P. cylindrica on colonies of similar size (ANCOVA; coral species,

F2,67 = 6.1785, p< 0.05; Fig 6A).

Fig 2. (a) Log fish species richness supported by eight coral species. Shared letters indicate no significant difference. (b) Log fish abundance

supported by eight coral species. Shared letters indicate no significant difference.

https://doi.org/10.1371/journal.pone.0202206.g002

Fig 3. Two-dimensional, non-metric multidimensional scaling (nMDS) plot showing ordination of fish assemblages in relation to eight study coral species based

on bootstrapped values calculated for 100 replications per coral species. Bootsrap averages (coloured symbols), group averages (black symbols) and 95% confidence

intervals (coloured ellipses) based on bootstrap sampling with replacement are also shown.

https://doi.org/10.1371/journal.pone.0202206.g003
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Similarly, log fish abundance increased with colony size (ANCOVA; colony size, F1,67 =

70.6107, p < 0.001, Fig 6B). There was no interaction between coral species and colony size

(Homogeneity of slopes, F2,65 = 0.2785, p> 0.05) indicating that all three coral species accu-

mulated fish abundance at approximately the same rate with increasing colony size. E. horrida

Table 2. PERMANOVA pair-wise comparisons using Bray-Curtis similarity values to test for differences in fish community structure on different coral species.

Groups t p-value� Unique permutations

A. formosa E. horrida 2.1759 0.0014 4942

H. rigida 2.2717 0.0009 5899

P. cylindrica 1.8453 0.0034 4944

S. hystrix 1.6432 0.0064 2886

S. pistillata 1.6754 0.0167 3896

A.millepora 1.2243 0.1904 1992

A. tenuis 1.3958 0.1068 336

E. horrida H. rigida 1.1394 0.264 9943

P. cylindrica 1.2218 0.202 9916

S. hystrix 2.668 0.0001 9872

S. pistillata 2.341 0.0002 9885

A.millepora 2.7335 0.0001 9797

A. tenuis 3.0917 0.0001 7730

H. rigida P. cylindrica 1.1824 0.2394 9935

S. hystrix 2.579 0.0001 9905

S. pistillata 2.29 0.0003 9930

A.millepora 2.6789 0.0001 9857

A. tenuis 3.0628 0.0002 8368

P. cylindrica S. hystrix 2.0059 0.001 9870

S. pistillata 1.716 0.0099 9904

A.millepora 2.0693 0.0001 9763

A. tenuis 2.1957 0.0024 7611

S. hystrix S. pistillata 1.9203 0.002 9823

A.millepora 1.7432 0.0043 9427

A. tenuis 1.5334 0.0405 5704

S. pistillata A.millepora 2.0047 0.0005 9660

A. tenuis 1.8603 0.0026 6865

A. millepora A. tenuis 0.62136 0.8354 4310

�Significant values are highlighted in bold.

https://doi.org/10.1371/journal.pone.0202206.t002

Table 3. Results of SIMPER routine to analyse dissimilarity between groups (coral species). Pair-wise comparisons are shown.

A. formosa E. horrida H. rigida P. cylindrica S. hysrix S. pistillata A. millepora
A. tenuis 82.8 91 91 85.2 80.6 82.9 75.2

A. millepora 84.6 89.4 88.6 87.2 87.7 89

S. pistillata 82.2 71.9 72.2 72.5 78.8

S. hysrix 84.7 78.5 78 77.6

P. cylindrica 82.5 59.5 59.9

H. rigida 80.4 52.4

E. horrida 77.7

https://doi.org/10.1371/journal.pone.0202206.t003
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supported higher log fish abundance then P. cylindrica andH. rigida (ANCOVA; coral species,

F2,67 = 4.6293, p< 0.05; Fig 6B).

Discussion

Substantial differences in fish species richness, abundance and assemblage structure were

found among the eight coral species. Two coral species, E. horrida andH. rigida, supported the

highest fish species richness and abundance. In general, the different corals supported distinct

fish communities, with dissimilarities ranging from 50–90%. Coral species was the main vari-

able explaining variation in fish species richness at three different sampling scales, with more

variation explained at the largest scale of sampling. Fish species richness and abundance

increased with coral colony size at similar rates for different coral species, but there were sub-

stantial differences among species at similar coral colony sizes. These results have important

implications for interpreting the effects of declining coral cover, species diversity and coral

size in response to the increasing severity and frequency of disturbances impacting on coral

reefs.

Importance of coral species

Our results are consistent with other studies showing that coral diversity has a strong influence

on fish species richness and abundance [25, 41]. Our findings also indicate that some coral

Table 4. Percentage occurrence of fish taxa on each coral species.

A. formosa (22%) E. horrida
(49%)

H. rigida
(47%)

P. cylindrica
(36%)

S. hysrix
(28%)

S. pistillata
(33%)

A. millepora
(16%)

A. tenuis
(25%)

Other NS 13.6

(34%)

0.84 1.7 - 8 2.6 9.1 11.8

Other Juv - 4.2 5.9 7.5 8 - 4.5 5.9

Pomacentrids 9.1 8.4

(22%)

9.3

(25%)

10.4

(20%)

6 5.1 9.1 5.9

Pomacentrus mollucensis 4.5 9.2

(27%)

11

(33%)

14.9

(41%)

8 17.9

(36%)

4.5 -

P.mollucensis Juv� 9.1 4.2 1.7 7.5 8

(10%)

20.5

(40%)

9.1 17.6

(33%)

P.mollucensis NS� - 0.84 1.7 6 10

(14%)

5.1 9.1 17.6

(26%)

Chromis viridis 4.5 3.4 6.8

(10%)

4.5 2 7.7 4.5 -

Labrids 9.1 9.2

(23%)

5.9 6 2 7.7 - -

Gobiodon histrio - - - - - - 13.6

(11%)

11.8

Paragobiodon xanthosomus - - - - 14

(32%)

- - -

Neoglyphidodon melas NS 4.5 - - - - - 18.2

(55%)

17.6

(23%)

Stegastes nigricans 13.6

(38%)

- - - - - - -

� NS–new settlers; Juv–juveniles

Note: Those species that contributed>10% to the Bray-Curtis similarity of each group from SIMPER analysis are shown. The within group percent similarity is also

displayed and individual species contribution to the within group percent similarities is given for major contributors (>10%) (in bold).

https://doi.org/10.1371/journal.pone.0202206.t004
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 P. cylindrica E. horrida
H. rigida

5.73
(11)

12
(24)

32.5% of variance explained

P. cylindrica E. horrida
H. rigida

11.7
(10)

21.5
(15)

53.6% of variance explained

P. cylindrica
E. horrida
H. rigida

4.92
(12)

8.8
(25)

20.9% of variance explained

.b.a

c.

Fig 4. Regression tree analysis of the fish species richness at Lizard Island, Great Barrier Reef, QLD, Australia. The explanatory variables were: coral

species, depth, and reef zone. For each of the terminal nodes the distribution of the observed values of fish species richness is shown in a histogram. Each

node is labeled with the mean rating and the number of observations in a group (in parentheses). (a) 2x2 m scale. The tree explained 53.6% of the total

variability in the data. (b) 1x1 m scale. The tree explained 32.5% of the total variability in the data. (c) 0.5x0.5 m scale. The tree explained 20.9% of the total

variability in the data.

https://doi.org/10.1371/journal.pone.0202206.g004
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.b.a

c.

P. cylindrica

Depth > 1.9 m

E. horrida
H. rigida

Depth < 1.9 m

1.66
(10)

1.96
(11)

2.15
(4)

26.5% of variance explained

P. cylindrica

Depth > 4.3 m

E. horrida
H. rigida

Depth < 4.3 m

1.21
(11)

1.29
(6)

1.58
(18)

18.9 % of variance explained

Depth > 3.1 m Depth < 3.1 m

1.04
(12)

1.34
(25)

13% of variance explained

Fig 5. Regression tree analysis of the log fish abundance at Lizard Island, Great Barrier Reef, Australia. The explanatory variables were: coral species, depth,

and reef zone. For each of the terminal nodes the distribution of the observed values of fish species richness is shown in a histogram. Each node is labeled with the

mean rating and the number of observations in a group (in parentheses). (a) 2x2 m scale. The tree explained 26.5% of the total variability in the data. The first split

based on coral species explained 15%, second split based on depth explained 11.5%. (b) 1x1 m scale. The tree explained 18.9% of the total variability in the data.

Coral species as determinant of fish community structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0202206 August 13, 2018 14 / 20

https://doi.org/10.1371/journal.pone.0202206


species tend to support more diverse and abundant fish communities than other coral species

and therefore may play a more important role in supporting fish diversity. E. horrida and H.

rigida supported richer and more abundant fish communities than the other six coral species

examined. Three coral species A.millepora, A. tenuis and S. pistillata supported the least

diverse and least abundant fish communities. Several studies have investigated the importance

of different Acropora and Pocillopora species as coral reef fish habitat [23, 27, 42], however

other common coral species, which may be important fish habitat, have received less attention.

While there is an obvious effect of coral species identity on fish communities, there may also

be an interaction effect of different coral species, with some combinations being able to sup-

port higher fish diversities and abundances. These possible relationships require further

investigation.

Current estimates indicate that less than 10% of reef fish species are coral dependent [18,

24], although a much larger proportion of species are known to respond to declining coral

cover [8, 42]. The strength of the species-specific patterns observed here suggest a large num-

ber of small fish species discriminate among coral species in some way. Many fish species pre-

fer to settle on or near live coral [23–24, 43], even if adults of the same species are not coral

dependant. Coker et al. [24] reported that there is large variation in habitat specialisation on

coral reefs, with some fish species being strongly linked to single coral species and others being

found to occupy a number of species of corals. The corals in our study that supported the high-

est richness of fishes appeared to be providing suitable habitat for a large array of fish species.

Differences in fish species richness, abundance and community composition supported by

different coral species may potentially be related to the branching structure of the corals. In

general, coral species with an intermediate branch spacing and length supported the most rich

and abundant fish communities (e.g. E. horrida,H. rigida). Small fish species or younger life

stages were predominantly associated with tightly branched corals like A.millepora and A. ten-
uis, while the large damselfish S.nigricans was almost exclusively confined to A. formosa coral

colonies, which was the most open branching coral in this study. Although branching com-

plexity does not necessarily exclude predators, it is likely to aid in prey escape [44]. Tightly

branched corals would be expected to decrease predation levels and allow higher survival for

smaller fish species; however, only a few fish species would be able to use these corals as refuge

due to the size limitations (e.g. corymbose corals, such as A.millepora, A. tenuis). On the other

hand, the more open corals, with larger distances between branches and abundant free space

available, would allow a large number of different fish species to enter the colony; however, it

also means that larger predators can access prey more easily. Coral species that provide ade-

quate space among the branches for movement and feeding of resident fish, and at the same

time a sufficiently dense structure to offer protection from larger predators, might be expected

to be favoured by a wide range of small reef fishes. Coral reef fish often use holes of approxi-

mately their own body diameter as shelter [21, 27], which may explain why more structurally

complex coral species support more diverse fish communities.

Although coral species was the most important factor affecting the structure of fish commu-

nities, water depth also had a small, but detectable, influence on overall fish abundance. Water

depth explained 10–15% of the variance in fish abundance, with higher abundances associated

with coral colonies in shallower water. It has been suggested that the relationship between fish

abundance and live coral cover may be stronger in shallower zones, as fish are forced to remain

in close proximity to the substratum in such areas [45].

The first split based on coral species explained 8.4%, second split based on depth explained 10.5%. (c) 0.5x0.5 m scale. The tree explained 13% of the total

variability in the data.

https://doi.org/10.1371/journal.pone.0202206.g005
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Importance of sampling scale

Coral species explained a greater amount of total variation in fish species richness and fish

abundance at the largest sampling scale examined (2x2 m) compared with two smaller sam-

pling scales. Moreover, while coral species explained a relatively large amount of variation in

fish species richness at all three sampling scales (21–54%), this relationship was not as strong

for fish abundance (0–15%). The findings indicate that fish species richness-habitat associa-

tions become less apparent at very small spatial scales. The smaller change in the proportion of

variation in fish abundance explained at all three spatial scales, compared with fish species

richness, indicates that spatial scale has less influence on fish abundance-habitat associations

than it does on fish species richness-habitat associations. These results show that the spatial

scale of sampling can have a significant effect on the strength of the relationship between coral

and fish communities, but does not alter the basic patterns.

Importance of colony size

We found that fish species richness and abundance increased with coral colony size for the

three coral species examined. Other studies have also reported positive correlations between

reef or coral head size and corresponding fish species richness or fish abundance [21, 46–47].

This relationship is usually explained by the assumption that larger areas contain larger num-

bers of refuges and are likely to create a greater number of microhabitats. Therefore, larger

areas can facilitate niche partitioning and support a greater number of individuals, and thus,

larger areas are also likely to contain a larger number of species [21, 48–49]. Fish abundance

and richness increased at a similar rate with increasing colony size for the three coral species

examined. This suggests that the same mechanisms may be regulating abundance and species

richness on the three coral species. One such mechanism could be coral structural characteris-

tics. In the lagoon of Lizard Island, the variations in fish species richness and fish abundance

were explained by coral species themselves. E. horrida and H. rigida supported higher fish spe-

cies richness than Porites cylindrica at all sizes, while E. horrida supported higher fish abun-

dance than the other two corals at all sizes.

Conclusion

This study found that the diversity and abundance of the fish communities was strongly

related to the coral species examined. Furthermore, the strength of the association with coral

species was stronger for species that could be sampled at larger spatial scales. The majority of

fish species exhibited preferences for two of the coral species surveyed, E. horrida andH. rigida.

In addition, for a given coral species, fish species richness and abundance increased as colony

size increased, however E. horrida andH. rigida supported higher fish species richness than P.

cylindrica at all colony sizes. These results suggest that similar processes influence fish distribu-

tion up to the largest scale examined here and that physical characteristics of the coral species

are likely to have a significant influence on both the number of individuals and the number of

fish species found on coral colonies.

These results have important implications for our understanding of the likely effects of

degrading coral communities on fish communities. Often, the coral species supporting the

most diverse fish communities also appear to be highly susceptible to coral bleaching, storms

and cyclones, and other disturbances [23, 32–33]. Various disturbances will tend to reduce the

Fig 6. (a) Relationships between fish species richness supported by three different coral species and an average diameter of a range of coral

colonies. (b) Relationships between fish abundance supported by three different coral species and average diameter of a range of coral colonies.

https://doi.org/10.1371/journal.pone.0202206.g006
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average size of surviving coral colonies, further negatively influencing the abundance and

diversity of coral reef fish communities. Together, these results suggest that a reduction in the

cover of coral species, especially those that support diverse and abundant fish communities,

could cause significant reductions in the diversity and abundance of local coral-associated fish

communities. Triggers to initiate management actions are often based on gross estimates of

declining coral cover. However, management plans to preserve the biodiversity of coral reefs

must focus on detecting declines in and protecting structurally complex coral species.
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