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Abstract

Cryptocurrency is a well-developed blockchain technology application that is currently a

heated topic throughout the world. The public availability of transaction histories offers an

opportunity to analyze and compare different cryptocurrencies. In this paper, we present a

dynamic network analysis of three representative blockchain-based cryptocurrencies: Bit-

coin, Ethereum, and Namecoin. By analyzing the accumulated network growth, we find that,

unlike most other networks, these cryptocurrency networks do not always densify over time,

and they are changing all the time with relatively low node and edge repetition ratios. There-

fore, we then construct separate networks on a monthly basis, trace the changes of typical

network characteristics (including degree distribution, degree assortativity, clustering coeffi-

cient, and the largest connected component) over time, and compare the three. We find that

the degree distribution of these monthly transaction networks cannot be well fitted by the

famous power-law distribution, at the same time, different currency still has different network

properties, e.g., both Bitcoin and Ethereum networks are heavy-tailed with disassortative

mixing, however, only the former can be treated as a small world. These network properties

reflect the evolutionary characteristics and competitive power of these three cryptocurren-

cies and provide a foundation for future research.

Introduction

Network analysis, such as those reported in [1–4], has attracted increasing attention in eco-

nomics and finance since it provides further insights than traditional methods. Although a

large volume of financial data, e.g., stock price, is available for network related research and

analysis, information about transaction details is usually considered sensitive and not available

for research. Cryptocurrency, where a continuously growing list of records stored in a chain is

accessible, provides opportunities to analyze transaction networks in detail.

A cryptocurrency is a digital currency in which blockchain techniques are used to secure

the transactions and control the generation of new units of currency (the so-called coins),

operating independently without a central authority. Specifically, cryptocurrency relies on a
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private key to prove ownership and a public history of transactions to prevent double-spend-

ing [5]. Since Bitcoin [6], the first cryptocurrency, emerged in 2009, many other alternatives

have emerged with modified rules of transaction and usage, e.g., Namecoin provides decentral-

ized name registration [7], while Ethereum allows the automatic transfer of digital assets

according to the so-called “smart contract” [8]. By introducing new types of assets and new

transaction management methods, cryptocurrency has the potential to replace traditional fiat-

currency. At the time of writing, there are over 900 currencies in the cryptocurrency market

and the total market cap has exceeded $578 billion [9, 10]. Thus, it is the right time to investi-

gate and compare them, so as to fully understand cryptocurrency and provide a foundation for

future research.

Public availability of cryptocurrency transactions provides a basis for analyzing its transac-

tion networks. For networks, especially the so-called complex networks, reported investiga-

tions mainly focus on descriptive statistics, network evolution, statistical mechanics of

network topology and dynamics [11]. There are also studies on the robustness against failures

and attacks, spreading processes and synchronization [12]. The descriptive statistics are

majorly adopted to depict the behavior of Bitcoin users [13, 14]. In the field of Namecoin,

Kalodner et al. [15] analyzed the uses and the transfers of the namespace, they also devised

some principles on mechanism design. Relating to the evolution of networks, most networks

encountered in practice have the tendency to densify over time [16], however, Bitcoin network

densifies only in its first five years [17] and Namecoin network only densifies in the first year

[18]. Motivated by empirical data, complex networks have some typical structure features,

including small worlds, clustering, and degree distribution fitted by the power law. Baumann

et al. [14] found that the Bitcoin system was a “small world” network and followed a scale-free

distribution. Kondor et al. [19] further illustrated that the transaction networks are character-

ized by disassortative degree correlation in the trading phase, they applied linear preferential

attachment to interpret it. Regarding research on multiple currencies, Anderson et al. [20]

studied the characteristics of three representative cryptocurrencies separately, but no compari-

son of network characteristics was provided. Walsh et al. [21] identified eight key characteris-

tics of system design and divided currencies into four archetypes, but there was no in-depth

network analysis.

In this paper, we apply statistics and network analysis methods to explore the dynamic

characteristics of three transaction networks. We download transaction data from the respec-

tive blockchain explorers. To the best of our knowledge, these are the largest datasets adopted

in cryptocurrency analysis to date. We analyze the growth pattern of the accumulated network

and find that unlike most networks, these cryptocurrency networks do not always densify over

time. Then based on the datasets, we find that the monthly repetition ratios measured by either

node or edge are relatively low. As such, studying the whole accumulated network, as done in

most previous work [18, 19], is not the appropriate way to understand the network dynamics.

Hence we focus on coining the dynamics through computing the values of typical network

measures on a monthly basis, and make a comparison among the three networks.

The main contributions of our research are: 1) We find that the growth pattern of crypto-

currency transaction networks is different from that of most other networks reported in the lit-

erature in the way that they do not always follow neither the densification law nor the constant

average degree assumption over time; 2) Monthly network, instead of accumulated network, is

proposed as an appropriate object to understand the dynamics of the network; 3) we conduct

the first empirical comparison among three representative cryptocurrency networks and point

out the similarities and differences to help understand the peer-to-peer technology on a net-

work level. Different from previous researches on complex networks, we find that the degree
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distribution of the cryptocurrency transaction networks cannot be well fitted by the famous

pow-law distribution.

The remainder of this paper is organized as follows. In the next section, we provide our

datasets, the necessary background to understand the transaction networks and our methodol-

ogy used to analyze the networks. The Results section presents our findings for Bitcoin, Ether-

eum, and Namecoin networks. We offer our conclusions in the last section.

Methodology

In this section, we first introduce the datasets used for analysis then explain how to construct a

transaction network from corresponding dataset, the transaction network is the basis for the

subsequent dynamic analysis. Finally, we introduce the measures used for the network

analysis.

Datasets

Among the complete list of cryptocurrencies, we choose three representatives for our analysis:

Bitcoin, Namecoin, and Ethereum. Bitcoin is chosen as it is the first and by far the largest cryp-

tocurrency; Namecoin is the first cryptocurrency that works as a decentralized domain name

system; and Ethereum is the first cryptocurrency that supports “smart contract” and is also

one of the most active cryptocurrencies. The data on transactions are from the blockchain

explorers [22–24]. We believe, but cannot fully verify, that the data should be the same as what

one could get as a cryptocurrency client. Even if there are tiny differences, they are likely to

have only a negligible effect on our statistical results. We downloaded the complete list of

transactions of each currency from its inception through 31 October 23:59:59 2017 UTC. A

summary of the datasets is provided in Table 1.

Transaction network

Blockchain is a distributed public ledger that records transactions ever verified in the network.

It is implemented as a chain of blocks, each block containing a hash of the previous block up

to the genesis block of the chain. And each block holds batches of valid transactions in the

form of owner X transferring Y coins to payee Z. In the cryptocurrency system, payers and

payees can create an unlimited number of addresses. A transaction in cryptocurrency system

is a kind of regular bank transaction in the sense that it allows multiple sending addresses and

multiple receiving addresses existing in a transaction.

Take the Bitcoin system as an example, it specifies how many Bitcoins are sent or received

from an address, but there are no details of who sends how many Bitcoins to whom. Fig 1A

shows an example of the transaction with two sending addresses and two receiving addresses

Table 1. Summary of cryptocurrencies studied in this paper.

Cryptocurrency Bitcoin Namecoin Ethereum

Time of genesis block 2009-01-03 18:15:05 2011-04-17 00:26:41 2015-07-30 15:26:28

#blocks 492,558 368,347 4,467,004

#transactions 266,465,682 4,620,786 80,439,683

#addresses 363,937,999 6,906,323 10,241,475

Size on disk 71.72 GB 1.34 GB 3.95 GB

Here “Time of genesis block” represents the time when the corresponding distributed ledger starts, “#” indicates the number of corresponding variables, and “Size on

disk” represents the space occupied by the corresponding dataset on the disk.

https://doi.org/10.1371/journal.pone.0202202.t001
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which was added on the blockchain on May 1, 2011, and the relevant details can be queried on

the corresponding crawling website through the identifier. Specifically, the time in the upper

right corner indicates when the transaction was added to the blockchain, and the value on the

first row is the transaction identifier, i.e., a hash value. Next, “1BTC” and its neighboring value

(hash value of transaction address) denote that the address sent 1 Bitcoin. Therefore, Fig 1A

shows a transaction that two sending addresses contribute 1 Bitcoin and 135 Bitcoins respec-

tively, the two receiving addresses receive 135.67 Bitcoins (for payment) and 0.33 Bitcoins

(maybe a transaction fee or a new address for remaining bitcoins). Fig 1B is an example infor-

mation extracted from Bitcoin transactions where the value of the arrow represents corre-

sponding value in Bitcoins that are flowing. Here ai’s represent addresses and ti’s denote

Fig 1. Illustration of transaction network construction. (A) An example of Bitcoin transaction details. (B) Example

information extracted from Bitcoin transactions, and the information in the orange box correspond to the transaction in

(A). (C) The Bitcoin transaction network as a directed graph.

https://doi.org/10.1371/journal.pone.0202202.g001
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transactions. t3 is a transaction with two inputs (a1 and a2) and two outputs (a3 and a4). The

transaction was added to the blockchain on May 1, 2011. t4 is a transaction with five inputs

and two outputs (a5 and a6) happened on the same day. note that two inputs (i.e. a3 and a4) of

t4 are connected to the aforementioned outputs of t3. An input to a transaction is either the

output of a previous transaction or incentives (including newly generated bitcoins and transac-

tion fees) for users. Regarding the number of transaction inputs, it can be a single input from a

previous larger transaction, or multiple inputs combining smaller amounts. For security pur-

poses, a transaction may have multiple outputs: one for the transfer of the rest, if any, back to

the sender, and the other is used for the payment.

Public availability of cryptocurrency transactions and the input-output relationship

between transactions provide a basis for transaction network research. The transaction net-

work represents the flow of cryptocurrency between addresses over time. In a transaction net-

work, each node represents an address. Without the specific value of cryptocurrency flow from

inputs and outputs, there is an edge with a timestamp between any sending address and receiv-

ing address existing in a transaction. For instance, Fig 1C shows the network constructed from

transactions in Fig 1B.

Network measures

In the first part of our analysis, several descriptive statistics are calculated to analyze the accu-

mulated network growth. The number of edges and nodes are adopted to represent the net-

work size. Many networks encountered in practice densify over time with the average degree

increasing, which means the number of edges grow superlinearly with respect to the number

of nodes. This property is quantified by e(t) * n(t)a, where e(t) and n(t) denote the number of

edges and nodes of the graph at time t respectively, and a> 0 is an exponent indicating the

network’s tendency to become denser [16].

The second part of our analysis regards the network topology. Cryptocurrency networks

vary as time goes by: nodes are added by creating new addresses and removed when they are

no longer involved in any transaction, while new edges are created for transactions between

two previously unconnected addresses. We first check the monthly repetition ratio, defined by

Eq (1), to help find a valid investigation object:

Ratiot
Rep ¼

jEt \ Et� 1j

jEt [ Et� 1j
; ð1Þ

where Et refers to the set of edges or nodes in a network at time t, \ is the intersection operator

and [ is the union operator as in ordinary set theory, and |�| gives the number of elements

when applying to a specific set.

For the monthly networks, we further analyze the dynamic characteristics to investigate the

topologic properties. We select four most representative measures for analysis, including

degree distribution, degree assortativity, average clustering coefficient, and properties of the

LCC. The network measures adopted are briefly introduced in the following.

Degree distribution captures the individual connectivity of nodes [11]. The in(out)-degree

of a node represents the number of transactions it involves as output(input), and the degree

distribution is the probability distribution of these degrees over the whole network. Empiri-

cally, observed complex networks tend to show a heavy-tailed distribution following a power-

law distribution p(k) * k−γ, where k is the value of the degree and the coefficient γ has been

found to be the characteristic of a complex network [25].

Degree assortativity measures the node preference—that nodes with similar degrees

tend to be connected to each other [26]. Its strength, expressed as the degree assortativity
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coefficient, denoted by r, is defined as:

r ¼
M� 1

P
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where ji and ki are the degrees of the nodes at the ends of the i-th edge, and M is the number of

edges.

Clustering coefficient represents the tendency of the nodes in a graph to cluster together,

and the overall level of clustering is measured as the average of the local clustering coefficient

of all nodes:

C ¼
1

N

X

v

jDvj

dvðdv � 1Þ=2
; ð3Þ

where |Δv| denotes the number of triangles containing node v. To calculate |Δv|, we ignore the

directionality of the graph, and dv is the degree of node v in the undirected graph. Watts and

Strogatz [25] applied the clustering coefficient to discover small-world phenomenon within

several networks.

The largest connected component (LCC) is a maximal subgraph in which any two nodes

can be connected by a path. LCC is an important factor in understanding the network struc-

ture [11]. In this paper, we adopt relative size and the diameter of the LCC. The relative size is

calculated by dividing the number of nodes that connect to the LCC by the number of nodes

in the whole network. The diameter is the longest shortest path among all the nodes that form

the LCC.

Results

The analysis of cryptocurrency networks is conducted from three perspectives. In the first

part, we explore the accumulated network growth. Then we select the appropriate investiga-

tion object for analysis. In the last part, we focus on analyzing the dynamics of the monthly

networks and making comparisons. The analysis program is implemented in Python with the

aid of powerlaw [27], Networkit [28], and statsmodel [29] packages.

Accumulated network growth

In this part, we investigate the network growth from cryptocurrencies’ inception till 31 Octo-

ber, 2017. For each month m, we construct a network using all transactions published up to

month m. We analyze two aspects: network size (number of nodes and edges) and average

degree.

The number of edges and nodes can be adopted to represent the size of the network, and

they indicate the adoption rate and competitiveness of currency. As shown in Fig 2, the growth

process can be divided into two phases.

• Initial phase. The system had low activity. Users just tried the currency experimentally and

compared it with other currencies to find relative advantages. When a currency became

more popular, more users would adopt it. Therefore, the network exhibited growing ten-

dency with excessive fluctuations.

• Trading phase. With a certain number of adopters, growth slowed and did not change sig-

nificantly. A reason is that the currency is constantly being accepted and rejected as a result

of competition with other cryptocurrencies in the market.

Evolutionary dynamics of cryptocurrency transaction networks
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When referring to the specific growth rates and duration time, Bitcoin grew over 10,000

times bigger in its first two-and-a-half years, while Namecoin and Ethereum grew over 100

times bigger in their first year. A reason for Bitcoin’s long duration is that during 2009 to 2010,

cryptocurrency was a new concept and Bitcoin was the only cryptocurrency in the market. All

users who wanted to try cryptocurrency had to choose Bitcoin.

Then we investigate the average degree over time to find the network’s tendency to become

dense. Growth patterns in Fig 3 show the differences among the three networks. For Bitcoin,

the average degree increased over time until September 2015. Subsequently, the decrease lasted

for almost two years, probably because it had issues, such as hard to mine and large price fluc-

tuations, and its competitor Ethereum offered a new option, “smart contract,” for users inter-

ested in cryptocurrencies. Bitcoin has shown an increase since July 2017. For Namecoin,

except for the increase in the initial phase, the average degree remained constant with some

fluctuations due to competition among currencies. For Ethereum, the average degree contin-

ued increasing except for a decrease in October 2016. We suspect that the network instability

is caused by a number of denial-of-service (DoS) attacks in late September and the two-stage

“hard fork” to secure the network [30].

To gain more insight, we plot the number of nodes versus the number of edges for each

cryptocurrency network on a logarithmic scale and fit a line reflecting the overall growth pat-

tern of the network, as shown in Fig 4. The fitting parameters are shown in Table 2. For Bit-

coin, the exponent is a = 1.15, which is clearly greater than 1, indicating a large deviation from

linear growth with increasing average degree. For Ethereum and Namecoin, the exponent is

close to 1, corresponding to the constant average degree over time. We also check the latest 1/3

of the data. Surprisingly, the Bitcoin network exponent is less than 1, the Ethereum network

exponent is larger than 1, and the Namecoin exponent is close to 1, which coincides with the

Fig 2. The size of accumulated transaction networks with respect to various cryptocurrencies in log coordinate.

The number of nodes and edges are used to represent the size of networks. The three networks have similar growth

pattern with rapid growth first and slower growth later.

https://doi.org/10.1371/journal.pone.0202202.g002
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findings in Fig 3. The difference between the results of all data and the last 1/3 of the data indi-

cates that the overall trend does not represent the real-time situation.

The above analysis on accumulated networks indicts that the cryptocurrency transaction

networks do not always follow the densification law and the constant average degree assump-

tion, which is different from most networks investigated in [16]. We must point out that there

are several previous researches on cryptocurrency which have reported similar findings.

Chang et al. [18] recognized that Namecoin only densifies in the first year while Holtz et al.

[17] verified that Bitcoin densifies in the first five years. However, our conclusion is more valid

and general since our conclusion is based on a quantitative analysis on three cryptocurrencies

and our dataset covers a longer history.

Fig 3. The average node degree of accumulated networks over time. The average degree of the three networks is not

constant.

https://doi.org/10.1371/journal.pone.0202202.g003

Fig 4. The number of edges e(t) versus the number of nodes n(t) in accumulated transaction networks in log coordinate.

The red lines show fitted power-law distribution for the networks. In the figure’s equation, x represents the number of nodes

and ŷ represents the fitting number of edges, and the exponents are 1.15, 1.00, 1.05, respectively.

https://doi.org/10.1371/journal.pone.0202202.g004
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Why do the cryptocurrency networks not obey the densification law? Security is the most

probable explanation. In cryptocurrency system, to securely receive, store, and send coins, a

user can spread his coins in multiple wallets, corresponding to multiple nodes in the network,

to reduce risks. Therefore, in a transaction network, one user may have multiple nodes corre-

sponding to multiple addresses. While in other real networks, a user usually has only one

node.

The object for dynamic analysis

Since the nodes and edges of the networks are changing all the time, we checked the monthly

repetition ratio as shown in Fig 5. As to the nodes, Bitcoin and Namecoin have repetition ratio

less than 0.1, while the value of Ethereum is less than 0.25. As to the edges, Bitcoin and Name-

coin have repetition ratio less than 0.1, and the value of Ethereum is less than 0.2. Thus, after

the initial phase, both the node and edge repetition ratio reach relatively low values, indicating

that a lot of nodes and edges do not survive from one time window to the next and network

reconfiguration takes place all the time. The low survival ratio of both nodes and edges can be

Table 2. Fitting parameters of the power law.

total lastest 1/3 of the data

a R2 95% confidence level a R2 95% confidence level

BTC 1.15 0.998 [1.145, 1.163] 0.86 0.987 [0.830, 0.900]

ETH 1.00 0.995 [0.970, 1.029] 1.38 0.998 [1.332, 1.429]

NMC 1.05 0.989 [1.027, 1.078] 0.99 0.982 [0.938, 1.049]

Here a is the exponent of e(t) * n(t)a, and R2 is the coefficient to measure the goodness of fit. It ranges from 0 to 1, the better the power law fits the data, the closer the

value of R2 is to 1.

https://doi.org/10.1371/journal.pone.0202202.t002

Fig 5. Monthly repetition ratios over time. (A) The ratios of edges. (B) The ratios of nodes. After the initial phase, all

ratios reach relatively low values.

https://doi.org/10.1371/journal.pone.0202202.g005
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illustrated by the aforementioned security reason as well. Specifically, in order to enhance

security, users may constantly change their addresses. These surviving addresses may be the

addresses of fixed payees, such as donors and miners, and these addresses are used to receive

cryptocurrencies which are inconvenient to replace.

Due to the above characteristics of the cryptocurrency transaction networks, it is better to

analyze the transaction networks in separate time intervals, rather than in the accumulated

manner as done by most of the previous works. In the following of this paper, we set the time

interval as one month and construct the monthly transaction networks to understand the

dynamics of the transaction networks.

Monthly network analysis

In this part, we present our main results on dynamic characteristics of cryptocurrency based

on the monthly networks.

Degree distribution. We first check whether the degree distribution of the three represen-

tatives can be fitted by the power law. In the case of cryptocurrency networks, often the initial,

small values of the data do not follow the power-law distribution, thus we ignore these data

when fitting. Further, we use the Kolmogorov-Smirnov (KS) test to assess the goodness-of-fit.

We find that almost all degree distributions cannot be accepted as the power law strictly under

the 95% confidence level. However, the degree distribution is still a clear heavy-tailed distribu-

tion, which means that the majority of addresses have low degrees, while small but not negligi-

ble addresses have relatively high degrees. As shown in Fig 6, we divide the phases as follows.

• The number of adoption users is small, and there exist large errors in the fitting. Specifically,

Bitcoin has a longer duration for the reason discussed in the “Accumulated network analy-

sis” section.

• With a certain number of adoption users, the data are approximately fitted by the power law,

though the acceptance rate using the KS test of power-law fit on the degree distribution is

low. And the exponent fluctuates within a certain range. Specifically, the ranges of the expo-

nent γ are: [2.0, 3.0] for Bitcoin, [1.5, 3.0] for Ethereum, and [1.5, 3.5] for Namecoin. Note

that the coefficient for the power law typically lies in the range [2, 3] as reported in [31].

• Due to fierce competition with other currencies, the range of data that satisfies the power-

law distribution narrows. During and after the transition phase, different currencies have

different features as follows: for Bitcoin and Ethereum, after the transition stage, the data are

again approximately fitted by the power law and the exponents do not change significantly;

for Namecoin, in the transition stage, there exists a phenomenon that the number of nodes

with large degree is large too, thus it does not fit the power law.

Our analysis suggests that when adoption users reach a certain amount, the distribution

approximately fits with the power law. However, under market competition, the scale of

Namecoin network’ nodes stabilize at a relatively small level of ten thousand, while the other

two networks have millions of nodes. At the same time, due to the specific function of domain

registration, there are some enthusiasts who insist on using Namecoin, leading to the phenom-

enon that the number of nodes with large degree is large too. In summary, under the effect of

market competition, failed currencies do not fit well with the power law, while successful cur-

rencies approximately fit with the power law with fixed exponents.

Degree assortativity. We use the in-assortativity r(in, in) and out-assortativity r(out, out)
to further investigate how the nodes are mixing by the degree in the network. A positive value

for r (assortative mixing) indicates that high-degree nodes are preferentially attached to other
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high-degree nodes. A negative value for r indicates disassortative mixing, i.e., high-degree

nodes are prone to connect to low-degree ones. Finally, r = 0 (neutral mixing) indicates the

network is non-assortative.

As shown in Fig 7, except for the initial phase, the ranges of the in-assortativity and out-

assortativity are [-0.05, 0] for Bitcoin and [-0.1, 0] for Ethereum, which suggests that the two

networks are disassortative. The coefficients of Namecoin stay in the range of [-0.1, 0.1], mak-

ing it difficult to judge its degree assortativity. In general, small values of r are hard to interpret,

thus we measure the quantity hknni ¼
P

k0k
0Pcðk0jkÞ, i.e., the average degree of nearest neigh-

bors of nodes with degree k, for the in-degree and out-degree of the last month (October

2017).

In networks without degree correlations, the degrees of connected nodes do not depend on

each other. Therefore for such networks, we expect the hknni of the in-degree and out-degree

Fig 6. Samples of degree distributions of monthly networks. Data are sampled from Bitcoin (top row), Ethereum (middle

row), and Namecoin (bottom row). Example data for power-law fitting are approximate fit (first column), poor fit (medium

column), and inconsistent fit (last column). The legends show the fitting exponent γ in p(k) * k−γ with respect to indegree

and outdegree distribution.

https://doi.org/10.1371/journal.pone.0202202.g006
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should be constant. Regarding the last month’s cryptocurrency transaction network, as can be

seen from Fig 8, we find that for the Bitcoin and Ethereum networks, hknni is a decreasing

function, which indicates that nodes with high degree are prone to connect with low-degree

nodes, thus the networks are disassortative. For the Namecoin network, the curve is nearly

constant, which means that the degrees of connected nodes do not rely on each other, so the

Namecoin network is non-assortative. A possible reason is that for highly heterogeneous

(scale-free) networks, the maximum entropy principle leads to disassortativity [32]. Thus the

cause of the difference in assortativity is also the market competition.

In summary, based on the analysis of the networks’ in/out-assortativity and hknni of in/out-

degree, we find that Bitcoin and Ethereum networks are disassortative, while the Namecoin

network is non-assortative, which is consistent with the observation that the degree distribu-

tions are heavy-tailed for the Bitcoin and Ethereum networks.

Average clustering coefficient. In order to find the evidence for a small-world network,

we further compare the average clustering coefficients of networks to a random network with

the same degree sequence [33]. In cryptocurrency networks, small-world means the currencies

Fig 7. Evolution of the degree assortativity. In the figure of Bitcoin, we magnify the y-axis of the data in the yellow

box and display it in the bottom right corner. After the initial phase, the coefficients of Bitcoin and Ethereum are

negative, and the coefficient of Namecoin converges to a certain range near 0.

https://doi.org/10.1371/journal.pone.0202202.g007
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can be transferred between most nodes in the network by a small number of hops or steps if

they want.

As shown in Fig 9, for these three networks, in the initial phase, there is no significant dif-

ference between the clustering coefficient of the cryptocurrency network and the coefficient

of the random network with the same degree sequence, and even sometimes the value of the

random network is larger than the value of transaction network. In the latter phase, the three

networks behave differently. Specifically, for Bitcoin, the clustering coefficient reaches a sta-

tionary value around C� 0.05, which is still higher than the clustering coefficient of random

networks with the same degree sequence (C� 0.0045). As a developing currency, Ethereum

network was abnormal in middle stage (from August to December 2016). While for Namecoin,

the coefficients are not always higher than the coefficients of random networks.

The phenomenon at the initial stage maybe results from transactions taking place between

addresses belonging to a few enthusiasts who try to play the system by moving cryptocurren-

cies between their addresses. The possible reason for the later phase of Bitcoin is that it is disas-

sortative, which means newly added nodes tend to attach to high degree nodes, resulting the

nodes tend to cluster together and form a small world. Ethereum’s abnormalities in 2016 were

caused by the network instability. And Namecoin network is non-assortative, that is, there is

no correlation between pairs of linked nodes, thus the network does not exhibit this property.

Properties of the largest connected component (LCC). Last but not least, we measure

the relative size and diameter of the LCC in the transaction network (Fig 10).

For the Bitcoin network, after the initial phase, the LCC connects about 60% of the nodes in

the network. For the Ethereum network, the percentage of LCC connecting nodes rises with a

fluctuation and most recently connects about 40% of the nodes. And for the Namecoin net-

work, the LCC connects less than 5% of the nodes in the network. Therefore, the relative sizes

of the LCC of Bitcoin and Ethereum are relatively large, while the size of Namecoin network is

Fig 8. A comparison of the average degree of nodes’ neighbors and the degree of nodes. The red line indicates the

degree of the node and the average degree of the node’s neighbors is equal. In networks without degree correlations,

the hknni is constant. However, for Bitcoin and Ethereum, hknni is a decreasing function, while for Namecoin hknni is

not.

https://doi.org/10.1371/journal.pone.0202202.g008
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relatively small. This result is consistent with our previous finding that the Bitcoin and Ether-

eum networks are disassortative mixing in the ways that the new nodes with lower degrees

tend to connect to the nodes with higher degrees and vice versa, while the Namecoin network

is non-assortative as there is no correlation between nodes.

The diameter of the Bitcoin LCC is around 100, indicating inefficient system transfer,

which is possibly the result of anonymous users trying to hide their identity by moving their

own bitcoins as reported in [14]. The Ethereum LCC diameter is gradually increasing, possibly

because the network is in its developing phase. The diameter of the Namecoin LCC fluctuates,

which may be caused by the competition with other cryptocurrencies. Thus, during the period

of our analysis, the LCCs of these three networks do not have a sign of shrinking diameter, and

the possible reason may be the same as the reason that Bitcoin’s LCC has a larger diameter.

Discussion and conclusion

This paper analyzed the dynamic characteristics of the transaction networks of three represen-

tative cryptocurrencies: Bitcoin, Ethereum, and Namecoin. We first analyzed the growth of the

Fig 9. Evolution of clustering coefficients. If the average clustering coefficient of a network is rather higher than a

random network with the same degree sequence, the network is a small-world network. In the figure of Bitcoin, we

magnify the y-axis of the data in the red box and display it in the upper right corner. We find only Bitcoin exhibits this

feature.

https://doi.org/10.1371/journal.pone.0202202.g009
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transaction networks as they reflect the relative competitiveness of the cryptocurrencies under

investigation. By analyzing the accumulated network growth, we find similar growth patterns:

they all grow with large fluctuations in the initial phase then their growth slows down and fluc-

tuates within a narrow range. However, unlike most networks reported in the literature, the

cryptocurrency transaction networks do not always densify over time. This phenomenon is

possibly due to the anonymity of the cryptocurrencies, where a user can create multiple

addresses to receive, store, and send cryptocurrencies.

Through computing the repetition ratio, we found that the overall accumulated network is

not an applicable research object to investigate cryptocurrency properties. We thus conducted

a monthly analysis on typical network measures and obtained the following insights on these

three currencies. 1) Both Bitcoin and Ethereum networks may converge to heavy-tailed distri-

bution in the long run, however, their degree distribution can only be approximately fitted by

the power-law distribution. For Namecoin, its degree distribution cannot be fitted by the

power-law distribution. 2) Bitcoin and Ethereum networks exhibit disassortative mixing, that

is, newly added nodes tend to connect to nodes with higher degree. 3) Only the Bitcoin net-

work is a small-world network according to the analysis of clustering coefficients. 4) Bitcoin

Fig 10. The properties of the LCC. The relative size (blue line) is the proportion of LCC nodes in all nodes, and the

diameter (green line) reflects the connectivity of the LCC. Later stage, the relative sizes of the three networks are 60%,

40% and 5% respectively, and the diameter of BTC is 100, while the other two are in fluctuations.

https://doi.org/10.1371/journal.pone.0202202.g010
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and Ethereum’s LCCs contain a relatively large proportion of nodes, however, the anonymity

of Bitcoin results in a relatively large diameter.

The causes of these differences might be the original design ideas and user adoption of the

cryptocurrencies. Since Bitcoin is the oldest and the most dominant cryptocurrency in the

market, it was the unique choice for enthusiastic users, especially in the early days. At the same

time, price volatility is another reason to attract users to Bitcoin by treating it as an investment

alternative. Thus it is reasonable that Bitcoin network is heavy-tailed and organized as a small

world. Ethereum, as a younger cryptocurrency, allows developers to write their own programs

by replacing Bitcoin’s more restrictive language with “smart contract”, which attracts a great

deal of user attention after its emergence. As a developing cryptocurrency, its network is

heavy-tailed, but not a small world. The original design idea of Namecoin is to create a decen-

tralized domain system, in which users can pay Namecoin to register and update the names of

their domain. However, there are some other competitors in the market, say EmerCoin and

NXT, which provide similar functionality. And this may be treated as the cause of its volatility

characteristics.

Our findings suggest that these network properties reflect the evolutionary characteristics

and competitive power of different cryptocurrencies. In the future, we will relate these transac-

tion network properties with the currency characteristics to guide the design of digital finan-

cial products, policy regulations, and legislation.
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