
RESEARCH ARTICLE

Agreement and reliability statistics for shapes

Travis B. Smith1*, Ning Smith2

1 Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America,

2 Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, United States of America

* smittrav@ohsu.edu

Abstract

We describe a methodology for assessing agreement and reliability among a set of shapes.

Motivated by recent studies of the reliability of manually segmented medical images, we

focus on shapes composed of rasterized, binary-valued data representing closed geometric

regions of interest. The methodology naturally generalizes to N dimensions and other data

types, though. We formulate the shape variance, shape correlation and shape intraclass

correlation coefficient (ICC) in terms of a simple distance metric, the Manhattan norm, which

quantifies the absolute difference between any two shapes. We demonstrate applications of

this methodology by working through example shape variance calculations in 1-D, for the

analysis of overlapping line segments, and 2-D, for the analysis of overlapping regions. We

also report the results of a simulated reliability analysis of manually delineated shape bound-

aries, and we compare the shape ICC with the more conventional and commonly used area

ICC. The proposed shape-sensitive methodology captures all of the variation in the shape

measurements, and it provides a more accurate estimate of the measurement reliability

than an analysis of only the measured areas.

Introduction

The reliability of an endpoint or outcome measure often must be estimated, for example in

order to design and power a clinical trial appropriately. Several recently published studies in

the field of ophthalmic imaging have attempted to assess the reliability of an anatomical end-

point whose measurement requires manually identifying the boundary of a retinal structure in

a fundus image [1–3]. These studies assessed the reliability of the size—either the area or the

meridional width—of the boundaries manually drawn by a group of raters. They have shown

that the intra-rater repeatability and inter-rater reproducibility [4, 5] appear to be excellent,

and reported an intraclass correlation coefficient as large as 0.996 [1].

These studies could be overly optimistic in their reliability assessments. The area or width is

a simple summary value that discards most of the spatial and shape information contained

within the manually drawn boundaries. Consequently, we expect the area or width would have

less variation than the originally measured shapes from which they are created. Due to the geo-

metric ambiguity that more than one shape can have the same area (or more than one line seg-

ment can have the same width), reliability assessments of the area (or width) could be biased

toward better apparent performance than would actually be borne out if the complete mea-

surement data were used instead. Because the true measurement here is the shape as defined
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by the manually delineated boundary, any agreement or reliability study should focus on

shape differences rather than differences in their corresponding areas or widths.

Motivated by these observations and the need for a shape-sensitive approach, we have

developed a methodology to assess the agreement and reliability [6] of shapes. While there

have been numerous metrics developed to quantize the difference between two shapes [7, 8],

there are comparatively fewer methods available to assess the variation or agreement among a

group of shapes [9]. Because we consider the shapes to be measurements, we are interested in

their absolute agreement; thus, we purposefully avoid any kind of difference mitigation or

shape alignment, as is done with Procrustes analysis [7], which would artificially make the

measurements more similar.

The primary component of our methodology is the shape variance, which is based on a

shape distance metric that quantizes the total absolute difference between two shapes. Other

statistics such as the shape correlation and shape ICC are then derived from the shape vari-

ance. We describe and formulate these shape statistics, and then present several examples to

illustrate their application.

Shape statistics

In this work, a shape is defined as an indicator function for some region or binary pattern of

interest. The shape has value 1 only within the region, and 0 otherwise. For example, a shape

could be a binary silhouette identifying the location of an anatomic structure of interest in a

medical image, or a binary detection map indicating the positions of detected targets. Here, we

focus on rasterized shapes that represent closed, solid geometric regions of interest such as

those shown in Fig 1.

Shape variance

The classical formulation for the variance of a set of N scalar-valued observations X ¼ fxig
N
i¼1

can be expressed as

s2 ¼ VAR Xð Þ ¼
1

N

XN

i¼1
dðxi; mXÞ

2
; ð1Þ

where d(xi, μX) = |xi − μX| is a metric that quantifies the distance between any two values and

μX is the sample mean.

In a similar fashion, for a set of shapes S ¼ fsig
N
i¼1

, the shape variance is

s2

s ¼ VAR Sð Þ ¼
1

N

XN

i¼1
dðsi; mSÞ

2
; ð2Þ

with the mean shape defined as the average across all shapes in the set,

mS ¼
1

N

XN

i¼1
si; ð3Þ

which may not be binary valued. If the set consists ofm × n rasterized shapes, then si 2 B
m�n

and them × nmean shape is formed from the pixel-wise average.

The shape distance d in Eq (2) is a metric function that quantifies the difference between

any two shapes as a scalar value, and is defined as the ℓ1 or Manhattan norm of the shape dif-

ference,

dða; bÞ ¼ ka � bk
1
: ð4Þ

Agreement and reliability statistics for shapes

PLOS ONE | https://doi.org/10.1371/journal.pone.0202087 August 23, 2018 2 / 11

https://doi.org/10.1371/journal.pone.0202087


Form × n rasterized shapes,

dða; bÞ ¼
Xmn

k¼1
ja½k� � b½k�j; ð5Þ

which is the total absolute pixelwise difference between the shapes. This function,

d: Rm�n � Rm�n ! R�0; provides a mapping from the multi-dimensional shape space to a

scalar non-negative distance that represents the total absolute shape disagreement, and pro-

vides the same functionality as the distance in the classical variance formulation in Eq (1).

Quantizing shape agreement with this function enables subsequent numerical and statistical

analysis of the agreement among a set of shapes.

If shapes a and b are both binary valued, the shape distance d(a, b) is equivalent to the area

of symmetric difference (ASD). The ASD between two binary shapes is the area of their union

minus the area of their intersection [8, 10], or the area supported by one and only one of the

two shapes. The ASD is equivalent to both the Hamming distance [11, 12] between the binary

images and the area of the exclusive disjunction (XOR) of the binary images.

The ASD is related to the Jaccard distance [7, 9] between two shapes, which is one minus

the ratio of their intersection to their union. We chose to use the ASD for the shape variance

for several reasons. The ASD is more suitable for a shape variance definition because it more

easily allows comparisons between binary shapes and their potentially non-binary means. The

ASD generalizes straightforwardly as shown in Eq (4) to accommodate any continuous valued

data type, whereas the Jaccard distance does not. Also, the ASD has units in the native space of

Fig 1. Example shapes from the simulated reliability study. From left to right, the top row depicts a 49-pixel radius circle representing the true shape,

the simulated shape measurement for rater A, and the simulated measurement for rater B. The bottom row shows plots of the polar coordinate locations

of the boundaries for the three shapes above. The boundaries for rater A and B were generated with zero-sum random walks to simulate measurement

errors, with rater B having twice the error as rater A in delineating the shape boundary.

https://doi.org/10.1371/journal.pone.0202087.g001
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the data, for example square pixels in the case of images, and retains the magnitude of the

shape difference, thus making it more intuitive and interpretable than the Jaccard distance,

which is a normalized measure having a magnitude of at most one.

The shape standard deviation σs can supplant conventional standard deviation to create sta-

tistical agreement metrics for shapes. For example, for a set of shapes, the repeatability coeffi-

cient (RC), which is the upper bound of the difference between any two shapes with 95%

probability [13], and the Bland-Altman limits of agreement [14, 15] for the shapes can be

found by simply substituting σs into their formulations. Another example is the shape covari-

ance of two sets of shapes S ¼ fsig
N
i¼1

and T ¼ ftig
N
i¼1

,

COV S;Tð Þ ¼
1

N

XN

i¼1
dðsi; mSÞd ti; mtð Þ: ð6Þ

Shape correlation coefficient and shape coefficient of determination

The Pearson correlation coefficient for two sets of shapes, S and T as defined above, is

r ¼
COVðS;TÞ

ffiffiffiffiffiffiffiffiffiffi
s2
Ss

2
T

p ¼

PN
i¼1
dðsi; mSÞdðti; mtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1
dðsi; mSÞ

2PN
i¼1
dðti; mtÞ

2

q : ð7Þ

Confidence intervals and p-values for ρ can be computed in the traditional manner. If we

consider the shapes in set T to be the modeled or predicted shapes for those in set S, then the

coefficient of determination is

R2 ¼ 1 �

PN
i¼1
dðsi; tiÞ

2

Ns2
s

: ð8Þ

Shape intraclass correlation coefficient

The shape intraclass correlation coefficient (ICC) is formulated by inserting the definitions for

shape variance in Eq (2) and mean shape in Eq (3) into an analysis of variance (ANOVA)

model. There are several different types of ICC available depending on the underlying model

and experimental methodology [16], and all can be adapted to accommodate shapes. Here, we

discuss one commonly used type based on a two-way, fully crossed random effects model. This

type of ICC is appropriate to describe the absolute agreement among shape measurements from

a group of k raters, randomly selected from the population of all raters, made on a set of n items.

For example, the items could be medical images from a patient cohort. This ICC was given the

label ICC(2,1) by Shrout and Fleiss [17] and the label ICC(A,1) by McGraw and Wong [18].

Let xij be the measured shape for the ith item by the jth rater, which can be considered the

element at row i and column j in an n × k array of shapes. The between-row or between-item

mean square is

MSR ¼
k

n � 1

Xn

i¼1
dðmi; mÞ

2
; ð9Þ

the between-column or between-rater mean square is

MSC ¼
n

k � 1

Xn

i¼1
dðmj; mÞ

2
; ð10Þ
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and the residual mean square is

MSE ¼
SS � ðn � 1ÞMSR � ðk � 1ÞMSC

ðn � 1Þðk � 1Þ
; ð11Þ

with

mi ¼
1

k

Xk

j¼1
xij;

mj ¼
1

n

Xn

i¼1
xij; ð12Þ

m ¼
1

nk

Xn

i¼1

Xk

j¼1
xij;

and

SS ¼
Xn

i¼1

Xk

j¼1
dðxij; mÞ

2
:

Finally, the ICC is

ICC 2; 1ð Þ ¼
MSR � MSE

MSR þ k � 1ð ÞMSE þ k
n MSC � MSEð Þ

: ð13Þ

The F-statistic and confidence limits for the ICC can be calculated in the conventional man-

ner [17, 19].

Application examples

We provide analytical shape variance calculations for two example sets of shapes and compare

the results with the classical variance of the shape sizes. The first example concerns 2-D shapes

and their areas, and the second example focuses on 1-D shapes (line segments) and their

widths. We also present a simulated reliability study to illustrate the advantages of assessing

measurement repeatability using the shape ICC over the conventional ICC.

Example 1: Circles with random radii

First, we compare the shape and area variances for a set of circles with random areas. Assume

we have a set of N circles all centered at the origin, each with radius ri, where ri is uniformly

distributed between 0 and rmax. The binary-valued ith circle is

ciðrÞ ¼
1; r � ri
0; r > ri

: ð14Þ

(

The mean shape is the circularly symmetric function

m rð Þ ¼ E
1

N

XN

i¼1
ciðrÞ

� �

¼ E ciðrÞ½ � ¼
rmax � r
rmax

; ð15Þ

which is a cone whose height decreases linearly from 1 to 0 as r increases from 0 to rmax.
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The difference between circle ci and the meanm is

fiðrÞ ¼ ciðrÞ � mðrÞ ¼
r

rmax
; 0 � r � ri

r� rmax
rmax

; ri < r � rmax
: ð16Þ

(

From Eq (4), the shape distance between circle ci and the meanm is the scalar value

di ¼ jfiðrÞj1 ¼
Z 2p

0

Z rmax

0

jfiðrÞjrdrdy ¼
p

3

4r3
i

rmax
� 3r2

i þ r
2

max

� �

; ð17Þ

the square of which is

d2

i ¼
p2

9

16r6
i

r2
max

�
24r5

i

rmax
þ 9r4

i þ 8r3

i rmax � 6r2

i r
2

max þ r
4

max

� �

: ð18Þ

Because ri*U(0, rmax), the nth moment of ri is E½rni � ¼ r
n
max=ðnþ 1Þ. Therefore, the expected

shape variance is

E s2

s

� �
¼

1

N

XN

i¼1
E½d2

i � ¼
38p2

315
r4

max: ð19Þ

In comparison to the shape variance, the expected variance of the areas corresponding to

the shapes is

E s2½ � ¼ E a2

i

� �
� E½ai�

2
¼

4p2

45
r4

max; ð20Þ

where ai ¼ pr2
i is the area of the ith circle. Thus, the shape variance is 19/14 or 36% larger than

the area variance.

This example shows that when shapes differ only in their area or size and not in their posi-

tion or boundary pattern, then the shape variance is equivalent to the area variance to within a

scale factor. Thus, the two types of variance convey the same information, as expected. The

scale factor will not affect the ICC and other statistics that are based on a ratio of variances.

Example 2: Lines with random locations

Next, we compare the shape and width variances for a set of line segments with random posi-

tions. Each of N lines has the same width w but a normally distributed center point xi, with

xi � Nð0; s2
xÞ. The binary-valued ith line is

liðxÞ ¼
1; jx � xij �

w
2

0; jx � xij >
w
2

: ð21Þ

8
><

>:
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Following the same sequence of equations as in Example 1,

m xð Þ ¼ E liðxÞ½ � ¼
w
ffiffiffiffiffiffiffiffiffiffi
2ps2

x

p e
� x2

2s2
x ; ð22Þ

fiðxÞ ¼ liðxÞ � mðxÞ ¼
1 � mðxÞ; jx � xij � w

2

� mðxÞ; jx � xij > w
2

; ð23Þ

(

di ¼ jfiðxÞj1 ¼
Z 1

� 1

jfiðxÞjdx � 2wð1 � mðxiÞÞ; ð24Þ

d2

i � 4w2 � 8w2mðxiÞ þ 4w2mðxiÞ
2
; ð25Þ

E s2

s

� �
¼

1

N

XN

i¼1
E½d2

i � � 4w2 �
4w3

ffiffiffi
p
p

sx
þ

2w4

ffiffiffi
3
p

ps2
x

: ð26Þ

For Eq (24), we have assumed that w� σx so that the interval [xi − w/2, xi + w/2] is small

enough thatm(x)�m(xi).
In comparison to the shape variance, the expected variance of the widths of the shapes is

E½s2� ¼ 0; ð27Þ

because all of the lines have the same width.

This example shows that when shapes differ only in their position but are otherwise identi-

cal, the shape variance captures these differences whereas a conventional variance based on the

shape size does not. Here, the shape variance is proportional to both the position variation σx
and the line width w.

Example 3: ICC of manually marked boundaries

Finally, we compare the conventional area ICC and shape ICC in a simulated reliability study.

This study mimics the type described in the Introduction in which several human raters delin-

eate an anatomical structure in medical images acquired from a cohort of patients. In such a

study, each rater inspects the image from each patient and outlines the structure of interest.

The structure’s area is the endpoint of interest, and the inter-rater reliability of the measure-

ments is being determined. The conventional agreement statistic is the ICC of the measured

areas. We compare this with the shape ICC, which is created directly from the raters’ shape

measurements and therefore captures all of the measurement variation and provides a more

accurate reliability assessment. For both conventional and shape ICC, we use type ICC(2,1)

[17], as formulated in Eq (13).

In our simulated study, there were 100 patients and 2 raters. The images were 201x201 pix-

els, and the anatomy of interest for each patient was represented by a circle with a radius uni-

formly distributed between 0 and rmax = 50 pixels. The measurement error for outlining each

shape was generated in polar coordinates and represented by a radially oriented deviation

from the true boundary. Each deviation was generated from a 1D random walk over the 2π
radians around the circle perimeter, with underlying step sizes that were normally distributed

with mean zero and standard deviation σe. The walks were zero-sum to ensure that the start (0

radians) and end (2π radians) of each deviation were identical, so that the rater’s measured

outline did not contain unrealistic discontinuities. Measurement errors for rater A and rater B
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were set to σe,A = 1 pixel and σe,B = 2 pixels, respectively. Example shapes from this simulated

study are shown in Fig 1.

The average results from 40 repetitions of this study with the above parameters are as fol-

lows. The average measured area of all shapes was 2612 square pixels for rater A, and 2676

square pixels for rater B. Compared to the expected mean shape area of

E pr2
i

� �
¼ p

3
r2
max ¼ 2618, rater A with the smaller σe,A was closer on average. The average mea-

sured area for rater B was larger because of a positive bias in the simulated deviations that was

more pronounced with larger σe, especially for smaller shapes. This positive bias occurred

because simulated deviations on the inner side of the true boundary—where the rater’s mea-

surement was approaching the origin—were rounded off to avoid exceeding the circle radius,

thereby imparting a floor effect that limited the deviation magnitude, skewed the measure-

ments outward from the boundary, and led to larger measured areas.

The ICC of the measured areas was 0.94 (95% CI: 0.92–0.96), which appears to show good

reliability. However, the ICC of the measured shapes was 0.78 (95% CI: 0.69–0.85), signifi-

cantly smaller (P< 0.001) than the area ICC. This reduction in ICC reflects the additional

between-rater variation captured by the shape-sensitive approach that was missed by the area-

only analysis. This example demonstrates the importance of incorporating shape into reliabil-

ity studies of summary measures such as the area or width of geometric regions. The code and

data to reproduce these ICC values are available in S1 and S2 Files.

To better understand the relationships between ICC and rater inaccuracy in this example,

we extended the simulation to include more raters and larger measurement error. Fig 2a

shows the area and shape ICC from studies simulated as described above but with additional

raters, where in each study the ith rater has error σe,i = i pixels. For example, with four raters,

the rater measurement errors were 1, 2, 3, and 4 pixels. Fig 2b shows the ICC trends as mea-

surement error σe increases in studies with two raters having equal error statistics. In both

plots, the difference between shape ICC and area ICC becomes more significant as rater

Fig 2. ICC trends from simulated reliability studies. (a) The shape and area ICC are reported from simulated studies with increasing numbers of

raters in which additional raters had larger measurement errors. The error bars represent the 95% confidence intervals, and the p-values are shown for

the difference between shape and area ICC. (b) The shape and area ICC are reported as rater error increases for two raters with identical measurement

error standard deviation σe.

https://doi.org/10.1371/journal.pone.0202087.g002
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accuracy improves, indicating that the importance of shape information in such studies grows

with the skill of the raters.

Discussion

Studies of measurements of a region’s boundary should include shape-sensitive statistics in

their analysis. The area and width are summary measures created by distilling the shape

boundary to a simple scalar value, and they exhibit inherently less variation than the

original shape boundary measurements which generated them. Shape ICC captures all of

the measurement variation and works naturally and directly with the raw measurements.

The shape ICC is a more accurate estimate of measurement reliability than the area ICC or

width ICC. Reliability analyses that neglect this variation could yield a misleadingly large

ICC.

A shape-sensitive framework offers an important additional benefit, as well. The ASD of

binary shapes a and b is separable into two components: the area inside a but outside b
(denoted a\b), and the area inside b but outside a (b\a). If, for example, shapes a and b repre-

sent anatomy before and after treatment, then the first component quantifies the reduction in

size due to the treatment, and the second component quantifies the growth. Compared to a

conventional difference of areas, this shape-sensitive approach provides additional informa-

tion about the positive and negative components of the difference, which creates new opportu-

nities for analyzing and understanding the data.

The methodology presented here is flexible and extensible. Although the focus of this work

has been on binary images representing closed geometric regions, the methodology is applica-

ble to the analysis of any kind of discretized binary-valued pattern and all possible 2mn images

within the domain Bm�n. Furthermore, it generalizes straightforwardly to any type of continu-

ous-valued data, not just binary data, for which basic arithmetic operations are defined. It also

generalizes naturally to accommodate data of any dimension, making it useful to 3D imaging

for example.

Supporting information

S1 File. Source code. MATLAB code to calculate shape ICC and area ICC, and a script that

reproduces the results from Example 3, to be used with S2 File.

(PDF)

S2 File. Complete data set. MATLAB .mat file containing all simulated shapes used in Exam-

ple 3.

(ZIP)
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