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Abstract

Introduction

Multiple myeloma (MM), a malignant plasma cell disorder, is still an incurable disease.

Thus, the identification of novel therapeutic targets is of utmost importance. Here, we evalu-

ated the peripheral blood-based metabolic profile of patients with MM.

Material & methods

Peripheral blood plasma levels of 188 endogenous metabolites, including amino acids, bio-

genic amines, acylcarnitines, glycerophospholipids, sphingomyelins, and hexoses were

determined in patients with plasma cell dyscrasias: monoclonal gammopathy of undeter-

mined significance, a precursor stage of MM (MGUS, n = 15), newly diagnosed MM,

(NDMM, n = 32), relapsed/refractory MM (RRMM, n = 19) and in 25 healthy controls by

mass spectrometry.

Results

Patients with NDMM, RRMM and MGUS have a substantially different metabolomic profile

than healthy controls. The amount of eight plasma metabolites significantly differs between

the NDMM and MGUS group: free carnitine, acetylcarnitine, glutamate, asymmetric

dimethylarginine (ADMA) and four phosphatidylcholine (PC) species. In addition, the levels

of octadecanoylcarnitine, ADMA and six PCs were significantly different between RRMM

and MGUS patients. 13 different concentrations of metabolites were found between RRMM
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Borjan B, Jöhrer K, et al. (2018) The metabolomic

plasma profile of myeloma patients is considerably

different from healthy subjects and reveals

potential new therapeutic targets. PLoS ONE 13(8):

e0202045. https://doi.org/10.1371/journal.

pone.0202045

Editor: Aamir Ahmad, University of South Alabama

Mitchell Cancer Institute, UNITED STATES

Received: April 3, 2018

Accepted: July 26, 2018

Published: August 10, 2018

Copyright: © 2018 Steiner et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors received no specific funding

for this work. Biocrates Life Sciences AG provided

support in the form of salaries for author Müller

Udo, but did not have any additional role in the

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. The

https://doi.org/10.1371/journal.pone.0202045
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202045&domain=pdf&date_stamp=2018-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202045&domain=pdf&date_stamp=2018-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202045&domain=pdf&date_stamp=2018-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202045&domain=pdf&date_stamp=2018-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202045&domain=pdf&date_stamp=2018-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202045&domain=pdf&date_stamp=2018-08-10
https://doi.org/10.1371/journal.pone.0202045
https://doi.org/10.1371/journal.pone.0202045
http://creativecommons.org/licenses/by/4.0/


and NDMM patients (free carnitine, acetylcarnitine, creatinine, five LysoPCs and PCs).

Pathway analyses revealed a distinct metabolic profile with significant alterations in amino

acid, lipid, and energy metabolism in healthy volunteers compared to MGUS/MM patients.

Conclusion

We identified different metabolic profiles in MGUS und MM patients in comparison to healthy

controls. Thus, different metabolic processes, potentially the immunoregulation by indolea-

mine 2,3 dioxygenase-1 (IDO), which is involved in cancer development and progression

supporting inflammatory processes in the tumor microenvironment and glutaminolysis, can

serve as novel promising therapeutic targets in MM.

Introduction

Multiple myeloma (MM) still remains an incurable malignancy of antibody-producing plasma

cells. Monoclonal gammopathy of undetermined significance (MGUS) is a common asymp-

tomatic precursor state of MM. Process of myeloma initiation is mediated by interaction of

inherited genetic and environmental factors [1]. Clinical manifestations of MM occur due to

proliferation of malignant plasma cells or effects of aberrant proteins released by myeloma

cells. Most common signs and symptoms of MM include hypercalcemia, renal function

impairment, anemia and lytic bone disease [2]. Major progress in treatment of multiple mye-

loma has been seen mainly due to development of novel agents, as proteasome inhibitors.

Although survival of MM has increased, most of the patients ultimately relapse and become

refractory [3]. Therefore, novel therapeutic options are needed. Dysregulated metabolism has

been considered as one of the hallmarks of cancer [4]. The “Warburg effect” gave the first

insights into the altered metabolism of cancer cells reporting that tumor cells prefer aerobic

glycolysis for nutrient production and proliferation [5]. Recently, the field of metabolomics is

attracting considerable interest due to novel methods and technical progress, which enable

high quality measurements and contributed significantly to a better understanding of meta-

bolic rewiring in pathological diseases as cancer [4]. Metabolic profiling in cancer emerges as a

tool for the diagnosis, classification, treatment decisions and assessment of treatment efficacy,

and identification of novel therapeutic targets. Metabolic profiling can be performed in differ-

ent tissue samples and biofluids, such as serum, plasma, saliva, urine and in a high throughput

fashion [6]. Nevertheless, metabolomics reporting and data analysis is not yet standardized

and often more technical oriented and less biology driven [7].

The first metabolic analysis of MM cells identified that MM depend on glucose and gluta-

mine metabolism [8]. Higher levels of isoleucine, arginine, acetate, phenylalanine, and tyro-

sine, and decreased levels of 3-hydroxybutyrate, lysine, glutamine, and some lipids were

observed in myeloma patients at diagnosis, but not after achieving remission [9]. Bajpai et al.

showed that targeting glutamine metabolism sensitizes MM cells to the bcl-2 inhibitor veneto-

clax. Cellular metabolic investigations revealed LDHA and HIF1α as novel targets for drug

resistance in MM under bone marrow hypoxic conditions. Inhibition of LDHA and HIF1A

can restore sensitivity to therapeutic drugs such as bortezomib [10]. Ludwig et al. highlights

alterations in bone marrow metabolism as an early feature of the development of MGUS and

MM [11]. Despite the interest in metabolomics of MM, the role and potential application in

diagnostics, classification and prediction of therapy response remains unclear. Therefore, this
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study focuses to determine differences in the metabolic phenotype between healthy subjects,

MGUS-, NDMM- and RRMM patients.

Material and methods

Ethics statement

Investigations have been conducted in accordance with the Declaration of Helsinki and the

national and international guidelines and have been approved by the authors’ institutional

review board (Ethics committee of the Medical University of Innsbruck, Austria, number:

1085/2017 and Ethics committee of the Faculty of Medicine, Masaryk University, Brno, Czech

Republic, number: 20/1/2011). Patients provided written informed consent.

Patients and sample collection

Patients with monoclonal gammopathy of undetermined significance (MGUS, n = 15), newly

diagnosed MM (NDMM, n = 32) and relapsed/refractory MM (RRMM, n = 19) according to

the International Myeloma Working Group (IMWG) criteria [12], were included in the study.

All relevant clinical data and disease characteristics are shown in Table 1. Peripheral blood

samples underwent centrifugation for 10 min at 1000-x g and obtained peripheral blood

plasma was collected and stored at -80˚C.

Metabolite analysis

A targeted metabolomics approach with the AbsoluteIDQ™ p180 kit (BIOCRATES Life Sci-

ences AG, Innsbruck, Austria) was used for quantification, based on electrospray ionization

liquid (ESI-LC-MS/MS) and flow-injection analysis mass spectrometry (FIA/MS) measure-

ments. The assay allows simultaneous quantification of in total 188 metabolites out of 10 μL

peripheral blood plasma, including amino acids, biogenic amines, acylcarnitines, glyceropho-

spholipids, sphingomyelins, and the sum of hexoses. Analytic measurements were carried out

on an API 4000 and API 5500 LC-MS/MS System (AB Sciex Deutschland GmbH, Darmstadt,

Germany) controlled by the Analyst 1.5.1 and Biocrates MetIDQ software. For the calculation

of metabolite concentrations, external standards served as a reference. Concentrations of all

metabolites were calculated in μM and normalized with respect to internal quality control

samples.

Metabolomic data pre-processing and statistical analysis

All multivariate (Principal Component Analyses, PCA and Partial-Least-Squares Discrimina-

tion Analysis, PLS-DA and Hierarchical Cluster Analysis, HCA) and univariate statistical anal-

yses were performed with the statistic platform R (Version 3.2.4). The raw data was cleaned

applying a modified 80% rule (at least 80% valid values above the limit of detection (LOD)

need to be available per analyte in the samples for each group), which resulted in exclusion of

48 metabolites (S1 Table). Remaining values below LOD in the dataset were replaced applying

a logspline imputation method with values between LOD and LOD/2 (Parts A and B in S2

Table) [13]. To meet assumptions of statistical tests, data were additionally log2 transformed.

Analysis of variance (ANOVA) and post-hoc t-tests were performed to identify significant

metabolite alterations between the different patient groups and healthy controls. Data were

corrected for multiple testing using the Benjamini–Hochberg (BH) procedure. Metabolites

with p-values below a significance level of α = 0.05 were considered as statistically significant.
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Table 1. Patient demographics and characteristics (n = 66).

Parameter MGUS NDMM RRMM

n = 15 % n = 32 % n = 19 %

Median age (range), years 66 (52–72) 73 (60–80) 62 (55–68)

Sex f/m

F 4 27 15 47 10 53

M 11 73 17 53 9 47

ISS

I 6 19 4 21

II 6 19 8 42

III 20 62 7 37

Type of Ig heavy chain (serum)

IgG 13 87 16 50 11 58

IgM 0 0 0 0 2 10.5

IgA 2 13 7 22 2 10.5

IgD 0 0 1 3 0 0

Light chain only 0 0 8 25 4 21

Type of Ig light chain (serum)

Kappa 8 53 19 59 10 53

Lambda 7 47 13 41 9 47

β-2 microglobulin >UNV 9 64 26 87 15 79

LDH >UNV 4 27 6 19 5 26

Creatinine�1.3 mg/dl 5 33 21 66 7 37

Serum calcium >UNV 0 0 6 19 3 16

Haemoglobin �12 g/dl 8 53 27 84 14 74

Platelets <100,000/mm3 1 7 7 22 12 63

Osteolytic bone lesions 1 7 27 84 19 100

Cytogenetic standard risk 4 27 17 53 5 26

Cytogenetic high risk 2 13 14 44 13 69

Cytogenetic not available 9 60 1 3 1 5

Therapy lines at sample collection

1st line 0 0 0 0 0 0

2nd line 1 7 0 0 3 16

3rd line 0 0 0 0 7 37

4th line 0 0 0 0 2 11

5th line 0 0 0 0 2 11

6th line 0 0 0 0 4 21

7th line 0 0 0 0 1 5

1–3 therapy lines 1 7 0 0 10 53

� 4 therapy lines 0 0 0 0 9 47

BTZ based therapy 0 0 0 0 11 58

IMiD based therapy 1 7 0 0 7 37

Other therapies 0 0 0 0 1 5

No therapy 14 93 32 100 0 0

N, number of patients; ISS, International staging system; Ig, Immunoglobulin; UNV, upper normal value; LDH, lactate dehydrogenases; IMiD, Immunomodulatory

drugs; BTZ, Bortezomib

https://doi.org/10.1371/journal.pone.0202045.t001
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Results

1. Supervised metabolic analysis of MM patients versus healthy controls

Multivariate supervised PLS-DA, that relies on the class membership of each observation, was

used on the transformed metabolomic data set (in total 188 metabolites) to identify overall dif-

ferences. First PLS-DA was applied to compare peripheral blood plasma samples of healthy

controls with those of the MM group (MGUS+NDMM+RRMM). As shown in the score-plot

(Fig 1), the samples from controls were largely separated from the MM group. This finding

indicates clearly a distinct metabolic composition of these two populations.

Second, PLS-DA was used to detect separations between MGUS-, NDMM- and RRMM

patients (Fig 2). Because of the high complexity and in-group variation in the data, differences

based on the largest principle components PC1 and PC2, were not as prominent as compared

to controls. The substantial overlap remaining between the three patient groups indicates

an overall similar metabolic composition. The difficulty in separating these three individual

groups by the measured metabolites is likely due to the fact that their differences that segregate

the samples are reduced by the intrinsic variations found from patient to patient.

In addition, based on the known percentage of plasma cells in the bone marrow of MM

patients, we evaluated differences in the metabolic profile with respect to this parameter. In

total, 18 metabolites from various classes such as the branched-chain amino acids (BCAAs;

isoleucine, leucine and valine), various medium- and long-chain acylcarnitines (C10, C16 and

C18) were significantly altered between the plasma cell ranges (S3 Table).

2. Metabolite alterations among the healthy controls and MGUS/MM

patients

Student’s t-tests, fold change calculations and biochemical pathway mapping were performed

in the following data analysis step to gain more precise insights about metabolic alterations

between the four different groups.

Fig 1. Multivariate PLS-DA of the metabolomic dataset. MM patients versus healthy controls. PLS-DA was applied

on the cleaned, imputed and log2 transformed data set. 95% confidence interval ellipses are shown for the different

groups.

https://doi.org/10.1371/journal.pone.0202045.g001
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57 metabolites were found to be significantly different between healthy controls and

NDMM patients. These plasma metabolites comprised free carnitine (C0), acetylcarnitine

(C2) as well as five long-chain acylcarnitines (C14:1, C16, C18, C18:1 and C18:2), which were

all increased in the NDMM population (Fig 3A and Part A in S1 Fig). 36 metabolites from dif-

ferent biochemical pathways were significantly altered between controls and MGUS patients

(Fig 3B and Part B in S1 Fig). Notably, the metabolic profile of the patient receiving an IMiD-

based treatment did not differ significantly from other subjects in the MGUS group.

Prominently, three branched-chain amino acids (leucine, isoleucine, and valine) displayed

low concentrations in NDMM patients, indicating a possible higher consumption of these

metabolites (uptake by the MM cells in the bone marrow). In addition, glutamate, one of

the most abundant amino acids in the human body, was significantly increased in NDMM

patients compared to healthy controls, suggesting that MM cells in the bone marrow secrete or

detoxify glutamate. In line, a recent meta-analysis of clinical metabolic profiling in blood and

tissue of cancer patients identified glutamate as the most increased metabolite in blood as well

as in tissue [7].

The activation of the kynurenine pathway occurs when the activity of indoleamine 2,3 diox-

ygenase-1 (IDO1), which catalyzes the conversion of tryptophan to kynurenine, is increased

[14, 15]. This process reduces blood tryptophan levels, which in turn decrease the availability

of a higher kynurenine/tryptophan ratio, as detected in the NDMM patients. In addition, eight

lysophosphatidylcholines (LysoPCs) were significantly lower in NDMM patients. Out of the

25 significantly altered phosphatidylcholines (PCs), 23 were increased in NDMM samples.

Metabolite differences in acylcarnitines, amino acids and biogenic amines between healthy

controls and RRMM patients were comparable to those observed between controls and

NDMM patients. 32 metabolites were significantly altered and long-chain acylcarnitines

(C16, C18, C18:1) were elevated in RRMM patients in comparison to the control group (Fig

3C and Part C in S1 Fig). All three BCAAs and ADMA were increased in healthy subjects. The

Fig 2. Multivariate PLS-DA of the metabolomic dataset. Separation between MGUS-, NDMM- and RRMM

patients. PLS-DA was applied on the cleaned, imputed and log2 transformed data set. 95% confidence interval ellipses

are shown for the different groups.

https://doi.org/10.1371/journal.pone.0202045.g002
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kynurenine/tryptophan ratio, reflecting possible increased IDO activity, was higher in RRMM

patients.

Metabolic alterations between healthy controls and MGUS patients (in total 36 significant

metabolites) were similar to the changes in the RRMM and NDMM groups, with significantly

enriched plasma acylcarnitines in MGUS samples (C2, C18, C18:1 and C18:2). Increased

Fig 3. A) Pathways representation of significantly altered metabolites between healthy controls and NDMM. B)

Pathways representation of significantly altered metabolites between healthy controls and MGUS. C) Pathways

representation of significantly altered metabolites between healthy controls and RRMM. D) Pathways representation

of significantly altered metabolites between MGUS and NDMM. E) Pathways representation of significantly altered

metabolites between MGUS and RRMM. F) Pathways representation of significantly altered metabolites between

NDMM and RRMM. Measured metabolites of the different pathways including glycolysis, TCA-Cycle and Urea Cycle

are shown in circles. Statistically significant single metabolites or metabolites within a specific biochemical class

(LysoPCs, PCs, Sphingomyelins, Acylcarnitines) are highlighted in blue and red.

https://doi.org/10.1371/journal.pone.0202045.g003
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kynurenine pathway activation and lower ADMA levels could be again detected in MGUS

patients.

Differences between NDMM-, RRMM- and MGUS patients were not as prominent as com-

pared to the healthy control group with fewer significantly affected metabolites. In total, eight

metabolites were significantly altered between the NDMM and the MGUS group, including

free carnitine, acetylcarnitine, glutamate, ADMA, and four PCs species (Fig 3D and Part D in

S1 Fig). Eight metabolites (ADMA, octadecanoylcarnitine and 6 PCs) were significantly altered

between RRMM- and MGUS patients (Fig 3E and Part E in S1 Fig). In RRMM- and NDMM

patients the 13 significantly altered metabolites comprised free carnitine, acetylcarnitine, creat-

inine, several LysoPCs and PCs (Fig 3F and Part F in S1 Fig). Mean concentration and stan-

dard deviation (SD) of significantly altered metabolites are shown in Parts A-F in S4 Table.

Discussion

MM is a heterogenic disease with a dynamic metabolic and proteomic process in bone marrow

and its microenvironment [16]. In the literature only marginally reports exist about a specific

metabolic profile in MM [10]. In this study we determined differences in metabolic pheno-

types between healthy subjects, MGUS-, NDMM- and RRMM patients.

Using multivariate PLS-DA of peripheral blood plasma samples, we could clearly separate

healthy controls from MGUS-, NDMM-, and RRMM patients. Thus, it appears that MM

patients have a different metabolic profile than healthy subjects. We found 57 metabolites to

be significantly different between healthy controls and NDMM patients. Free carnitine (C0),

acetylcarnitine (C2) and five long-chain acylcarnitines (C14:1, C16, C18, C18:1 and C18:2)

were all increased in the NDMM population. Carnitine is essential for the transport of long-

chain acyl groups from fatty acids into the mitochondrial matrix. Inside the mitochondrial

matrix fatty acids can be broken down to acetyl-CoA through a process called ß-oxidation, so

they can enter the tricarboxylic acid (TCA) cycle for energy production [17]. Thus, acylcarni-

tines represent the carrier form of activated fatty acids for the transport across the inner mito-

chondrial membrane and alterations potentially point toward changes in lipid breakdown.

Moreover, 36 amino acids and biogenic amines were significantly increased or decreased

between controls and MGUS patients. The three BCAAs (leucine, isoleucine, valine) had a

lower concentration in NDMM patients. Notably, BCAAs are not only an essential nutrient

source, but can also function as potent signaling molecules and changes in their levels have

been linked to cancer progression [18]. BCAAs can be efficiently used for protein synthesis

or oxidized for energy purposes by cancer cells. As BCAAs are essential, cancer fully rely on

dietary BCAA intake or their release from protein degradation [19]. In addition, it has been

shown that the enzymes catalyzing the first step in BCAA degradation are overexpressed in

many cancer types [20, 21]. The cytosolic branched chain-amino transferase 1 (BCAT1),

which converts BCAAs to their corresponding branched-chain a-keto acids is involved in

cancer proliferation and has been proposed as a prognostic cancer marker [18, 22–24]. More-

over, a study investigating the metabolic profile of bortezomib resistance in cell culture and

primary cells showed that the serine synthesis pathway (SSP) has significantly increased activ-

ity in bortezomib resistant MM and plasmacytoid lymphoma cell lines. Importantly, the study

also observed a strong correlation between SSP activity and the ability of cells to withstand

increasing bortezomib concentrations in all bortezomib resistant cell lines tested [25]. In this

concern, it may be that serine and glycine were significantly increased in our NDMM- and

RRMM patients.

Furthermore, kynurenine, which is converted from the essential aromatic amino acid tryp-

tophan by the enzyme IDO1 plays an important role in several cellular functions. The activity

Plasma metabolic profile in multiple myeloma patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0202045 August 10, 2018 8 / 13

https://doi.org/10.1371/journal.pone.0202045


of IDO and the activation of the kynurenine pathway, which is indirectly reflected by the

kynurenine to tryptophan ratio, was elevated in NDMM patients. The IDO enzyme has been

reported to be a key player in both cancer development and progression as it supports inflam-

matory processes in the tumor microenvironment, mediates immune tolerance to tumor

antigens and suppresses T-cells and natural killer cells [26, 27]. In addition, the extent of the

abnormality in tryptophan metabolism has been shown to directly correlate with the aggres-

siveness of the malignancy [28, 29]. Therefore, the results of this study corroborate that the

aberrant kynurenine pathway activation by IDO may serve as a potential cellular mechanism,

which is present in NDMM patients to induce a systemic deregulation of immune responses

[30, 31]. Based on the evidence for immune tolerance, there has been increasing interest in

IDO as a novel therapeutic target for the development of new anti-cancer and anti-myeloma

drugs. Thus, promising IDO-inhibiting drugs for use in multiple myeloma are now the focus

of research.

Glutamate, which was elevated in NDMM patients, is a nonessential amino acid and serves

as the major bioenergetic substrate for proliferating normal but also neoplastic cells. Glutamate

functions as an excitatory neurotransmitter that plays essential roles in metabolic, and onco-

genic signaling pathways [32]. As an intermediate in glutaminolysis, glutamine is converted

into TCA cycle metabolites through the activity of multiple enzymes. Aberrant glutaminolysis

has been described as a hallmark of cancer, as many cancer cells undergo metabolic repro-

gramming that makes them highly glutamine dependent for their survival and proliferation

[33, 34]. Especially, targeting the glutaminolysis pathway by inhibition of glutamine synthase

(GS), cellular glutamine transporter (GLUTs) or oncogenes involved in the regulation of this

metabolic pathway is a promising approach for heavily pretreated multiple myeloma patients

[35].

Asymmetric dimethylarginine (ADMA), which was enriched in healthy controls, is an

endogenous inhibitor of nitric oxide synthase (NOS) and is derived from methylation of argi-

nine residues in proteins. Increased blood levels of ADMA have been linked to cardiovascular

diseases, renal failure and hypertension, in which ADMA was described as an independent

risk factor [36, 37].

Moreover, in our study we observed that eight lysophosphatidylcholines (LysoPCs) were

significantly lower in NDMM patients. LysoPCs result from the partial hydrolysis of PCs,

at which one fatty acid group is enzymatically removed by Phospholipase A2 [38]. LysoPCs

are emerging as a novel class of inflammatory lipids, joining thromboxanes, leukotrienes

and prostaglandins, with which they share common metabolic pathways and regulatory

mechanisms.

Additionally, we found that 32 metabolites were significantly changed and again several

long-chain acylcarnitines (C16, C18, C18:1) were elevated in the RRMM group, indicating

again changes in overall lipid energy metabolism. In line with the NDMM group, all three

BCAAs as well as ADMA were increased in the control samples, whereas a higher kynurenine/

tryptophan ratio was present in RRMM patients, pointing towards an elevated kynurenine

pathway activation. Compared to the NDMM group, a smaller number lysoPCs and PCs were

significantly altered between controls and RRMM patients.

The metabolic alterations between healthy controls and MGUS patients were again similar

to the changes in the RRMM- and NDMM groups, with significantly enriched peripheral

blood plasma acylcarnitines in MGUS samples (C2, C18, C18:1 and C18:2). An increased

kynurenine/tryptophan ratio and lower ADMA levels again could be detected in MGUS

patients. Metabolic alterations of several different biochemical classes in the bone marrow

environment from MGUS patients were recently reported [11]. These changes, especially for

the lipid metabolism, could also be observed in our study with peripheral blood.

Plasma metabolic profile in multiple myeloma patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0202045 August 10, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0202045


In our study we found significantly different changed metabolites in MGUS, NDMM

and RRMM patients. Moreover, we identified a distinct metabolic profile with significant

alterations in amino acid, lipid and energy metabolism in healthy volunteers compared

to MGUS/MM patients. We assume that several cellular metabolic processes, most likely

immunoregulation by IDO or glutaminolysis may serve as novel promising therapeutic

targets in MM. Promising future treatments may combine approaches to target different

metabolic pathways such as glutamine metabolism, glycolysis or the TCA cycle. Further

investigations are needed to examine the association of certain metabolites with disease pro-

gression and drug resistance.
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(DOCX)

S1 Fig. A) heat maps of metabolites between healthy controls and NDMM. B) heat maps of

metabolites between healthy controls and MGUS. C) heat maps of metabolites between healthy

controls and RRMM. D) heat maps of metabolites between MGUS and NDMM. E) heat maps

of metabolites between MGUS and RRMM. F) heat maps of metabolites between NDMM and

RRMM.

(TIF)
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