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Abstract

Under natural conditions, large seeds with physical dormancy (PY) may become water per-

meable earlier than small ones. However, the mechanism for this difference has not been

elucidated. Thus, our aim was to evaluate the traits associated with PY in seeds of Senna

multijuga (Fabaceae) and to propose a mechanism for earlier dormancy-break in large than

in small seeds. Two seedlots were collected and each separated into large and small seeds.

Seed dry mass, water content, thickness of palisade layer in the hilar and distal regions and

the ratio between palisade layer thickness (P) in the lens fissure and seed mass (M) were

evaluated. Further, the correlation between seed mass and seed dimensions was investi-

gated. Large seeds had higher dry mass and water content than small seeds. The absolute

thickness of the palisade layer in the different regions did not show any trend with seed size;

however, large seeds had a lower P:M ratio than small seeds. Seed mass correlated posi-

tively with all seed dimensions, providing evidence for a substantially higher volume in large

seeds. Since wet, but not dry, high temperatures break PY in sensitive seeds of S. multijuga,

the data support our prediction that internal pressure potential in the seed and palisade

layer thickness in the water gap (lens), which is related to seed mass (i.e. P:M ratio), act

together to modulate the second step (dormancy break) of the two-stage sensitivity cycling

model for PY break. In which case, large seeds are predetermined to become water-perme-

able earlier than small ones.

Introduction

Water-impermeable seeds/fruits have physical dormancy (PY) and specialized structures that

can open in response to environmental cues, thereby creating a ‘water-gap’ whereupon dor-

mancy is broken [1–4]. The intensity of PY can vary between and within species, which may

be related to (1) seed coat thickness, wherein a thick seed coat confers higher resistance to dor-

mancy break [5–8]; (2) seed size, wherein large seeds become sensitive to environmental cues

that break PY earlier than small ones [9–12]; and (3) seed water content during the acquisition

of PY, which may result in differences in dormancy intensity [13–15]. However, the role of

these features of the seeds in the dormancy breaking process is unclear.
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A two-stage model for PY break was proposed by Taylor [16, 17] and Jayasuriya et al. [18,

19], wherein seeds cycle between insensitive and sensitive states (i.e. sensitivity cycling) [18,

19]. In the first step, seeds become sensitive to dormancy-breaking conditions, but they remain

water-impermeable. If sensitive seeds are exposed to the appropriate dormancy-breaking con-

ditions, they become water permeable, i.e. water-gap opens. On the other hand, if sensitive

seeds are exposed to unfavorable dormancy-breaking conditions they revert to the nonsensi-

tive condition [18, 19]. However, it is not known how seed coat thickness, seed size and seed

water content are related to induction of sensitivity or to dormancy break in seeds with PY.

Baskin and Baskin [3, 14] did not subdivide the class PY into lower hierarchial categories in

their seed dormancy classification scheme but suggested that it probably should be subdivided.

Thus, more detailed information is needed to separate PY into levels and types [3, 19]. Based

on seed water content during dispersal, Jaganathan [15] divided PY into two groups: shallow

and absolute. The first group included seeds with a relatively high water content and a low

intensity of PY, and the second group included seeds with a relatively low water content and a

high level of dormancy. In addition to seed water content, seed size could affect PY. Rodri-

gues-Junior et al. [12] proposed a model for PY-break mediated by seed size, with large seeds

being more sensitive to dormancy break than small seeds. These authors found that the seed

size was a determining factor controlling the timing of dormancy-break (and thus germina-

tion) in seeds with PY, wherein small seeds require more time to complete the steps to break

PY. Thus, in the first germination season more large seeds will germinate compared to small

seeds [12]. Schutte et al. [8] suggested a possible trade-off between seed size and seed persis-

tence in soil for species with PY, with persistence being directly related to seed coat thickness.

Indeed, it is rather difficult to detect a relationship between seed coat thickness and level of

dormancy, and Russi et al. [6] argued that measurements of the seed coat thickness in relation

to seed size, as also evaluated in Schutte et al. [8], gives a more robust understanding of PY.

They did not find a direct relationship between absolute seed coat thickness and dormancy.

As hypothesized by Russi et al. [6], the increase in seed volume accentuates the tension

transmitted mechanically to the weak region (e.g. lens on legume seeds) of the seed coat in

seeds with PY during expansion and contraction induced by environmental changes. Hence, a

thinner seed coat is more susceptible to disruption than a thicker seed coat [6]. These authors

suggested that the volume of seeds with greater mass varies more widely than that of seeds

with less mass when exposed to temperature fluctuations during the year and thus dormancy

break would occur more quickly in large than in small seeds. Furthermore, seeds of some

legume species at different positions within the fruit may exhibit a sequence of PY-break that

is associated with the seed size [9, 10]. Based on differences in seed mass before and after

approximately 2 years on bare soil, Smith et al. [11] suggested that small seeds persist in soil

longer than large ones. However, no study has investigated in detail the effects of seed size and

mass in relation to thickness of the palisade layer on the susceptibility to PY break.

Thus, we hypothesized that seed size and mass are correlated with seed water content and

thickness of the water-impermeable palisade layer in the seed coat and that these features are

related to PY break. Since seed water content can be related to the intensity of PY [15], an

increase in seed volume accentuates the tension on the seed coat and a thinner seed coat is

more susceptible to disruption [6], we predicted that large seeds have higher water content

and a thinner palisade layer than small seeds, thus explaining the differences between sizes on

breaking PY. To test our hypothesis, we used seeds of Senna multijuga, a species with physi-

cally dormant seeds in which seed size mediates the time of response to the environmental

cues during the PY-breaking process [12]. In this species, seeds made sensitive after exposure

to temperatures� 20˚C become water-permeable at a high temperature (35˚C) on a moist

substrate. However, large seeds need a shorter period of time to complete these two steps in
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PY-break, and thus they germinate earlier than small ones during the growing season. Thus,

our aims were to (1) identify the features of large and small seeds of S. multijuga that may be

involved in the breaking dormancy process, and (2) discuss these features in relation to the

second-step of PY-break in seeds in response to summer habitat conditions.

Materials and methods

Seed collection and processing

Seeds were manually collected from dry fruits at two locations on the campus of the Universi-

dade Federal de Lavras, Brazil [seed collection 1 (S1) (21˚ 130 39,34@ S, 44˚ 580 11,85@ W; seed

collection 2 (S2) (21˚ 130 30,53@ S, 44˚ 580 27,12@ W)] in September 2014 from 12 individuals

for each collection. The location where S1 seeds were collected is about 1 km from where the

S2 seeds were collected. Thus, the climate in these two locations is similar. Average tempera-

ture (max/min) is around 30/20˚C during the spring/summer and 25/15˚C during autumn/

winter (Instituto Nacional de Meteorologia–INMET, Brazil). However, a clear distinction

between S1 and S2 is the age of plants from which seeds were collected. S1 plants were older

than S2, which has been shown to have an effect on germination [14]. Nonfilled seeds were dis-

carded after flotation in water. Seeds were then blotted dry and placed in plastic trays in ambi-

ent room conditions [25±5˚C, 40–60% relative humidity (RH)] for 24 h. Then, the seeds were

stored in sealed semipermeable plastic bags in the same conditions until the beginning of the

experiments 1 year later. This storage period does not break PY in S. multijuga seeds [12].

These two seed lots also were used in the study by Rodrigues-Junior et al. [12], who found that

seeds in the S1 collection were larger than those in the S2 collection. Further, large S1 and S2

seeds became sensitive faster than small S1 and S2 seeds, and thus large seeds germinated ear-

lier in the field than small seeds [12].

Seed dry mass and water content

Firstly, S1 and S2 seeds were separated into two groups: (1) large seeds and (2) small seeds (Fig

1). To do this, seeds of each collection were first visually separated into large and small (since

the difference regarding seed sizes is evident), and then seeds from each group were individu-

ally weighed. The mass of large S1 seeds was > 0.02 and that of small S1 seeds < 0.016 g, and

the mass of large S2 seeds was> 0.01 g and that of small S2 seeds < 0.008 g. These two groups

were separated since the difference between these two sizes in relation to breaking PY and con-

sequent germination is quite clear (Rodrigues-Junior et al., [12]). To determine seed water

content and dry mass, 25 seeds from each of the four groups (two seed sizes x two seed collec-

tions) were scarified with sandpaper to allow water loss during drying, weighed individually

using a Shimadzu AUX220 analytical balance (0.00001 g), oven-dried at 103˚C for 17 hours

and then weighed again. The data for seed water content were expressed as percentage of

water on a fresh weight basis [20].

Relationship between thickness of palisade layer and seed size and mass

Thickness of the palisade layer in the hilar and in the extra-hilar (in the middle third of the lat-

eral part) regions was measured for large and small S1 and S2 seeds. Seeds were made water-

permeable by immersing them in hot water (80˚C for 15 min) [21]. Then, seeds were fixed with

FAA for 48 h, dehydrated in a graded ethanol series and infiltrated with and embedded in

2-hydroxyethyl-methacrylate. Seed material was sectioned (8 μm) transversally using a Zeiss

Hyrax M40 microtome, stained with 0.05% toluidine blue, pH 4.7 (modified from O’Brien et al.

[22]) and mounted in synthetic resin. Sections were observed using a Leica DM500 optical
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microscope and photographs taken with a Leica ICC50 HD digital camera. Five measurements

were made on each seed, using 10 replicates for each of the two sizes of S1 and S2 seeds. Thick-

ness of the palisade layer was measured on the lateral part of the hilar region (M1), in the middle

of the lens (M2) and on the two sides (lateral position) of the lens where a split had occurred

(M3, M4). Thickness of the palisade layer was also measured in the distal (extra-hilar) region

(M5) (Fig 2). The average for M3 and M4 was used to determine the mean thickness of the pali-

sade layer in the lens split. The ratio between thickness of the palisade layer (P) in the lens fis-

sure and seed fresh mass (M) was calculated (P:M ratio) based on Russi et al. [6] and Schutte

et al. [8].

Relationship between seed mass and seed dimensions

To assess the relationship between seed mass and seed length, width and thickness, S1 and S2

seeds were randomly sampled, and these three dimensions and seed mass were measured for

individual seeds. For this assay, we used seeds of all sizes, i.e. large, small and those on the gra-

dient between large and small, in the two collections. The three dimensions were measured

using Mitutoyo 500-144B digital calipers, and fresh mass of each seed was determined using

the Shimadzu AUW220D analytical balance. One-hundred seeds (50 S1 and 50 S2) were used.

Then, the relationship between each seed dimension and seed mass was analysed.

Statistical analyses

The data for seed dry mass and water content, palisade layer measurements and P:M ratio

were firstly tested in separate models for normality (Shapiro-Wilk test) and homoscedasticity

(Barlett test) (P�0.05) to verify that they fit the assumptions of ANOVA. Since the data were

Fig 1. Large (L) and small (S) Sennamultijuga seeds from collections S1 and S2. Bars = 1 mm.

https://doi.org/10.1371/journal.pone.0202038.g001
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nonparametric, they were analysed with a generalized linear model (GLM) with binomial dis-

tribution, and the means were compared by the post-hoc LSD test at 5% probability using R

software for Windows [23]. The statistical models included the effects of seed collection and

seed size as well as their interactions. Regression analyses were applied to evaluate the relation-

ship between seed mass and seed dimensions. All graphs were designed using SigmaPlot1

software (Systat Software Inc., San Jose, California, USA).

Results

Seed dry mass and water content

Large seeds had higher dry mass than small seeds in both collections. Small S1 and large S1 seeds

had higher dry mass than small S2 and large S2 seeds, respectively (P<0.001) (Fig 3A). Large

seeds had higher water content than small seeds in both collections. Small S1 and large S1 seeds

had higher water content than small S2 and large S2 seeds, respectively (P<0.001) (Fig 3B).

Relationship between thickness of palisade layer and seed size and mass

There was no interaction between seed collection and seed size in the measurements at the hilar

region, and only seed size affected thickness of the palisade layer in the hilar region (P = 0.03)

(Fig 4A). There was an interaction between seed size and seed collection for thickness of the pal-

isade layer in the lens (in middle region) (P = 0.02), but no trend was found for these measure-

ments. Large S1 seeds had a thicker palisade layer than small seeds, and small S2 seeds had a

thicker palisade layer than large seeds (Fig 4B). For thickness of the palisade layer in the slits in

Fig 2. Sections of Sennamultijuga seeds showing locations where palisade layer was measured. (A) Cross-section in

hilar region. (B) Detail of region indicated by rectangle in A. (C) Cross-section in distal region (lateral position of the

median third). (D) Detail of the region indicated by the rectangle in C. M1–M5 = locations where measurements were

made on each seed.

https://doi.org/10.1371/journal.pone.0202038.g002
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Fig 3. Mean (± s.e.) dry mass (A) and water content (B) of small and large S1 (seed collection 1) and S2 (seed

collection 2) seeds. Different lowercase letters indicate significant differences between seed collections within a seed

size and different uppercase letters significant differences between seed sizes within a collection, according to Fisher’s

test (P�0.05).

https://doi.org/10.1371/journal.pone.0202038.g003
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Fig 4. Thickness of palisade layer (mean ± s.e.) in different parts of S1 (seed collection 1) and S2 (seed collection 2) seeds. Different lowercase

letters indicate significant differences between seed sizes within a collection and different uppercase letters significant differences between seed

collections within a seed size, according to Fisher’s test (P�0.05). There was no interaction between seed size and seed collection in A and D.

https://doi.org/10.1371/journal.pone.0202038.g004
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the lens, there was an interaction between seed size and seed collection (P<0.001). In the slit

region, large S1 seeds had a thicker palisade layer, whereas small S2 seeds were thicker in this

region. Small S2 had a thicker palisade layer in the slit region than small S1 seeds. S1 large seeds

had a thicker palisade layer in the lens slit than S2 large seeds (Fig 4C). Seed size (P<0.001), and

seed collection (P<0.001) affected thickness of the palisade layer in the distal region. Large

seeds had a thicker palisade layer in the distal region than small ones in both seed collections,

and S1 seeds had a thicker palisade layer in the extra-hilar region than S2 seeds (Fig 4D).

There was an interaction between seed size and seed collection (P<0.001) for the P:M ratio,

and both S1 and S2 small seeds had a higher ratio than large seeds. S1 large and small seeds

had a lower P:M ratio than S2 large and small seeds, respectively (Fig 5).

Relationship between seed mass and seed dimensions

Seed dimensions increased with seed mass (Fig 6A–6C). All of these seed parameters were

strongly and positively related to seed mass (P<0.0001). That is, with an increase in seed

length, width or thickness there was an increase in seed mass. Also, S1 seeds had more mass

than those of S2 (Fig 6A–6C).

Discussion

Large seeds of S. multijuga had higher dry mass and higher water content than small seeds,

which is what we predicted. However, contrary to our predictions, there was no trend in the

Fig 5. Relationship between P:M ratio and seed size for S1 (seed collection 1) and S2 (seed collection 2) seeds (mean ± s.

e.). Different lowercase letters indicate significant differences between seed sizes within a collection and different uppercase

letters significant differences between seed collections within a seed size, according to Fisher’s test (P�0.05).

https://doi.org/10.1371/journal.pone.0202038.g005
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relationship between absolute thickness of palisade layer and seed size. On the other hand,

large seeds had a low P:M ratio, while small seeds had a high P:M ratio. Thus, the relative thick-

ness of the palisade layer (when seed mass was taken into account) indicated differences bet-

ween large and small seeds. Also, S2 (collection with smallest seeds) had a higher P:M ratio

than S1 seeds. There is a direct relationship between seed mass and seed dimensions in S. mul-
tijuga, and thus an increase in seed volume occurs with an increase in seed mass. All of these

results support the seed size-mediated model for PY-break proposed by Rodrigues-Junior

et al. [12]. In this model, small seeds need more time to complete the two steps to break PY

than large seeds, spreading germination over time.

To explain differences in relation to PY break among Acacia species, Venier et al. [24]

found that seeds with a thin seed coat were responsive to dormancy-break during gut passage

through cattle, while those with thick seed coat remained dormant. These results could indi-

cate that absolute seed coat thickness is associated with dormancy relief. However, for other

Fig 6. Relationship between seed mass and (A) seed length, (B) seed width and (C) seed thickness. (n = 100, all P< 0.0001).

https://doi.org/10.1371/journal.pone.0202038.g006
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species this association is not clear [6, 8]. Since different seeds have distinct physical properties,

it is difficult to make comparison among species. On the other hand, when the comparison is

made within a species there is a clear pattern for the breaking of PY, with large seeds becoming

nondormant earlier than small ones [9, 10]. Thus, to understand why this pattern occurs in

physically dormant seeds, we need to gather information about breaking PY in seeds.

For some species, an increase in internal vapour pressure affects the breaking of PY [25].

This occurs for seeds of Ipomoea lacunosa (Convolvulaceae) [25]. In this species, the increase

in the internal vapour pressure is caused by absorption of water vapour through the fissure

formed in the hilum in sensitive seeds, which closes after water vapour absorption. Thus, hilar

closure prevents loss of internal water, and thus vapour pressure increases with an increase in

temperature. Senna multijuga seeds require the same conditions (wet substrate, 35˚C) [12] as

those of I. lacunosa to break dormancy [25], and the fissures formed in the hilum could act in

the same way, thus contributing to an increase in seed internal pressure when subjected to

high temperatures. High temperatures may elevate the internal energy and exert force on the

seed coat, which disrupts in the weakest region of the seed coat, namely the lens. Senna multi-
juga seeds remain water-impermeable at temperatures lower than 35˚C [12]. Therefore, if the

model proposed by Jayasuriya et al. [25] fits S. multijuga seeds, why is dormancy in large seeds

broken earlier/faster than that in small ones? The higher water content of large than of small

seeds and thus more water per volume may increase internal vapour pressure more in large

than in small seeds. Therefore, with exposure to high temperatures enough force is generated

in large seeds to move the palisade layer outward in the weak region in the lens. In fact, the

role of internal pressure on the mechanism to break PY was first mentioned by Hanna [26],

but this author suggested that a possible increase in pressure caused by heat treatment could

be due to an increase in the number of vascular bundle below the lens for Acacia kempeana
seeds. In fact, Fig 3B shows that the water content of large S2 seeds was not significantly differ-

ent from that of small S1 seeds. However, this is explained by the differences in seed size in

each collection. That is, small S1 and large S2 seeds are quite similar, as described above.

Hanna [26] and Serrato-Valenti et al. [27] found an evident weak region in the lens in Aca-
cia kempeana and Leucaena leucocephala seeds (Fabaceae, Mimosoideae). This weak region

was related to a decrease in height of cells in the palisade layer, but it was not determined if

changes in cell height were related to the dormancy level in these species. We also found a

decrease in height (thickness) of cells in the palisade layer on the two sides of the lens where a

split occurs. However, in S. multijuga thickness of the palisade layer is related to the propensity

for breaking dormancy only when seed mass is taken into account. Thus, in addition to the

internal pressure in the seeds, thickness of the palisade layer may affect the PY-breaking mech-

anism by providing physical resistance to the force exerted by internal pressure, and seed size

can modulate this mechanism.

Seed water content at the onset of dormancy in S. multijuga is related to seed size, and it

determines whether dormancy is broken earlier or later in the growing season. Large seeds

may lose less moisture than small ones because they accumulate a larger amount of dry mass,

and the distance from the distal region of the seed to the hilum (region where the moisture

moves out of the seed) is greater than that in small seeds. Consequently, large seeds tend to

have higher water content at equilibrium with the surrounding environment than small seeds.

This conclusion agrees with Hyde’s [28] statement that “The duration of the impermeable con-

dition increased with the degree of desiccation brought about by loss of water through the

hilum”. Hyde [28] also demonstrated that exposing dormant seeds to gradually increasing

humidity can manipulate the mechanism of water control by the hilum and increase seed

water content. In the conditions tested, an increase in water content was associated with an

increase in germination [28].

Mechanism of physical dormancy break
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The consequent increase in seed volume in large seeds could affect the rate of water loss

during the acquisition of PY. That is, in large seeds there is a reduction in the amount of water

lost since the cell-to-cell water transport towards the hilum requires more time in large than it

does in small seeds. Furthermore, Hyde [28] demonstrated that the water content of dormant

seeds (with PY) equilibrates with the lowest relative humidity in the environment surrounding

the seed. However, we found a difference in water content between large and small S. multijuga
seeds collected from the field. A greater resistance to further dehydration in large than in small

seeds allows the maintenance of a higher water content in large than small seeds. Thus, we pro-

pose a conceptual model for the differences in water loss in relation to seed size (Fig 7).

A relationship has been found between seed size and PY, wherein small seeds tend to be

more dormant than large ones [6, 8, 10, 12]. However, since PY is coat-imposed the differences

in dormancy are caused by variation in the ability to open the water gap. Resistance of the

Fig 7. Conceptual model of differences in water loss during onset of PY in relation to seed size. Blue dotted arrows indicate path of water inside the

seed towards the hilar region. Red scale represents the variation in water loss among the sizes of seeds. Blue scale represents the variation in water

content among the sizes of seeds.

https://doi.org/10.1371/journal.pone.0202038.g007
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water gap to disrupt (seed coat thickness) plus internal force (pressure) act during the process

of breaking physical dormancy. With an increase in the thickness of the seed coat, the force

required to open the water gap increases. This relation is true in the case of physically dormant

seeds that need moisture to break dormancy. The role of internal pressure in breaking PY was

hypothesized by Jayasuriya et al. [25, 29], who observed a distinct response to wet and dry con-

ditions for seeds of congeneric species of Convolvulaceae to become permeable. Similarities

are shared by S. multijuga and Ipomoea lacunosa seeds during the second step of dormancy

break, as evidenced by Rodrigues-Junior et al. [12], and both species require summer habitat

conditions to become water-permeable. The requirement for wet-high temperatures to break

PY in S. multijuga seeds and the relationship between seed traits of this species support the

role of internal pressure in the PY-breaking mechanism in seeds proposed by Jayasuriya et al.

[25, 29].

Large S. multijuga seeds have a higher water content and a lower P:M ratio than small

seeds. That is, the impermeable barrier can be broken in the weak region of the lens earlier in

large seeds than in small ones, which explains why large seeds germinated earlier than small

ones in the study by Rodrigues-Junior et al. [12]. Therefore, the PY-breaking mechanism is

much more complex than a simple retraction and expansion of the seed coat. The relationship

between internal pressure potential and the relative palisade layer thickness in the water gap

(lens in this case) is related to seed size, and jointly they modulate the second step of the two-

stage model for PY break proposed by Taylor [16, 17] and Jayasuriya et al. [18, 19].
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