
RESEARCH ARTICLE

Improving classification of pollen grain images

of the POLEN23E dataset through three

different applications of deep learning

convolutional neural networks

Vı́ctor Sevillano1, José L. AznarteID
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Abstract

In palynology, the visual classification of pollen grains from different species is a hard task

which is usually tackled by human operators using microscopes. Its complete automatiza-

tion would save a high quantity of resources and provide valuable improvements especially

for allergy-related information systems, but also for other application fields as paleoclimate

reconstruction, quality control of honey based products, collection of evidences in criminal

investigations or fabric dating and tracking. This paper presents three state-of-the-art deep

learning classification methods applied to the recently published POLEN23E image dataset.

The three methods make use of convolutional neural networks: the first one is strictly based

on the idea of transfer learning, the second one is based on feature extraction and the third

one represents a hybrid approach, combining transfer learning and feature extraction. The

results from the three methods are indeed very good, reaching over 97% correct classifica-

tion rates in images not previously seen by the models, where other authors reported around

70.

Introduction

The surge in the prevalence of allergies, with 30 percent of adults and 40 percent of children

having at least one allergy according to the ACAAI [1], implies that measuring the concentra-

tions of airborne pollen grains becomes a necessity for public health institutions and patients.

The determination of such concentrations is usually performed through volumetric spore

traps which capture pollen grains, which in turn have to be visually identified and counted.

The morphological similarity between pollen grains from different vegetal species complicates

the identification process, which is usually performed by the visual inspection of optical micro-

scope images by an experienced human operator.

During last decades, different computational intelligence or machine learning techniques

have been developed to detect objects of interest in images and to identify categories of such

PLOS ONE | https://doi.org/10.1371/journal.pone.0201807 September 14, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Sevillano V, Aznarte JL (2018) Improving

classification of pollen grain images of the

POLEN23E dataset through three different

applications of deep learning convolutional neural

networks. PLoS ONE 13(9): e0201807. https://doi.

org/10.1371/journal.pone.0201807

Editor: Suzannah Rutherford, Fred Hutchinson

Cancer Research Center, UNITED STATES

Received: January 3, 2018

Accepted: July 23, 2018

Published: September 14, 2018

Copyright: © 2018 Sevillano, Aznarte. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The POLEN23E

pollen image dataset is available as part of the

supporting information of the paper Gonçalves AB,
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objects (see [2] for a comprehensive review). Models built with different approaches and data

sets, with different number of classes also. This work reflects the interest in finding a global

classification method capable of adapting to different data sets.

These techniques try to teach computers to do what humans do naturally, i.e., to learn from

experience, and use algorithms capable to learn directly from the images without previous

knowledge of the field under study. A common approach is to extract discriminant features

that represent particular characteristics of the objects of interest. These extracted features are

then used to develop models capable to learn and identify patterns from the image data.

In the standard automatic classification approaches, the design and selection of these fea-

tures is a time-consuming manual process which requires a deep mathematical knowledge of

the information that can be obtained from images, as extraction of features involves pre-pro-

cessing of the images by different operations to discriminate each of them. Recently, so-called

deep learning algorithms have been developed to automatically learn these features from

images without human intervention.

These algorithms are especially suited for image processing, and are being applied to solve

problems such as facial recognition, motion detection, advanced driver assistance technologies

such as autonomous driving, track detection, pedestrian detection and automatic parking,

among many others. In [3], the authors use deep learning-based computer vision techniques

to determine the make, model, and year of all motor vehicles encountered in particular neigh-

borhoods. Data from this census of motor vehicles are used to accurately estimate income,

race, education, and voting patterns at the zip code and precinct level. In other line of work, in

[4] deep learning algorithms are used for detection of lymph node metastases from breast can-

cer. Also, in [5] deep learning techniques have been used to perform gene expression profiling

as a tool to capture the gene expression patterns in cellular responses to diseases, genetic per-

turbations and drug treatments.

Given the similarities in the shape of different pollen types it is an interesting scientific chal-

lenge to study the use of deep learning techniques to develop automatic systems capable to dis-

tinguish between many different species of pollen.

In fact, over the last few years, many studies have been presented with the aim to ease the

classification of pollen grains or to develop automatic classification methods. A few of the

most recent make use of some forms of deep learning, and this is especially the case of the

recent contribution presented in [6]. This contribution is threefold: the authors present a new,

accessible and annotated pollen image dataset, they then study the performance of human

operators faced to the pollen grain identification task and finally, they apply machine learning

to solve this same problem. The results show no great improvement of the automatic tech-

niques over the human operators.

However, in this paper, we present three automatic approaches based on deep learning that

significantly increase the percentage of correct classifications on the same image dataset. The

three methods rely on the use of a convolutional neural network (CNN) to automatically

extract the discriminant features of the images. In the first method, a simple classifier is used

to classify the images directly from the features extracted by the CNN. The second method

applies a technique known as transfer learning and makes use of a pre-trained deep neural net-

work. Finally, the third method constitutes a hybrid solution of the two previous.

The structure of the paper is as follows: the following section presents a brief description of

the state of the art in automatic pollen classification. Consecutively, we present the image data-

set and the deep learning methods, as well as the results obtained. These results are discussed,

and some conclusions are drawn in closing.

Improving pollen grain classification through deep learning
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State of the art

As mentioned earlier, many authors have faced the task of pollen classification. Most of these

authors propose approaches based on the analytical extraction of features from the images.

Amongst them, we can distinguish at least three.

The first of these approaches is based on developing features using morphological methods

in which visual features, such as shape, symmetry or size are measured. In this line of work, [7]

works with grain perimeter, roundness and area, then using a Fisher linear discriminant to

classify up to 12 different types of pollen collected on Henderson Island, Polynesia. They

reported a proportion of correctly classified pollen that depends on the subset of variables

used, with the best set of variables obtaining an overall classification rate of about 95%. [8] uses

changes in grain contour to train a hidden Markov model as classifier to classify 17 genders

and species from 11 different families of tropical honey bee’s plants reporting a mean of

98.77% of success. In [9], researchers use contour-inner pollen segmentation to classify a pol-

len collection dataset with 15 different types and 120 observations per type. A vector support

machine was used as classifier, achieving a mean of 93.8% of accuracy.

A second approach is based on texture-based methods which make use of the characteristics

of the grain surface as discriminant feature. For example, [10] used measurements of gray level

co-occurrence matrices, neighborhood gray level dependence statistics and entropy to classify

5 different types of pollen from three locations, reporting a 76% of success. In [11], wavelet

coefficients are used as a representation of the spatial frequency and to calculate a gray level

co-occurrence matrix which is in turn used to classify 7 types of pollen reporting a F-score of

0.79. Researchers in [12] apply these same techniques to classify different pollen species

responsible for respiratory allergies. The resulting system is evaluated for the discrimination of

species of the Urticaceae family, which are quite similar. The performance reported is about

89% of correct pollen grains. Finally, in [13] an application of segmentation methods based on

texture techniques are used to classify 5 different classes of Brazilian pollen, in which texture,

shape and color features were extracted from each image, obtaining over 98% of success.

The third approach is constituted by hybrid methods which make a combined use of differ-

ent features. For example, [14] combines morphological features, such as area and perimeter,

with Fourier descriptors and color features to train a multilayer neural network as a classifier

to identify 17 pollen species, reporting a mean of 96.49% of success. [15] also classifies five pol-

len types by using shape (area, perimeter, diameter) and texture features (mean, standard devi-

ation, and the entropy of gray level histograms). The approach classifies fraudulent

microscopic pollen grain objects with a reported 92.3% of success. In [16], authors propose an

approach for performing automatic species-level recognition of fossil pollen grains in micros-

copy images that exploits both global shape and local texture characteristics in a patch-based

matching methodology. The method introduces a criteria for selecting meaningful and dis-

criminative exemplar patches. The technique uses these exemplars as a dictionary basis, and

proposes a spatially-aware sparse coding method to match testing images for identification

while maintaining global shape correspondence, achieving 86.13% accuracy on a difficult fine-

grained species classification task, distinguishing three types of fossil spruce pollen. The same

researchers, in [17], use a nearest-neighbor instance-based supervised layered learning system

based on kernel density estimation capable of discriminating between the morphologically

similar pollen of black and white spruce, achieving over 93% of accuracy in classification of

congeneric species.

However, there is another way of tackling the problem of pollen image classification:

instead of analytically extracting features from the images, one can rely on an automated sys-

tem to do that job. An example of such alternative is presented, for example, in [18], where a
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model learns not only the features but also the classifier itself from training data under a deep

learning framework. To further enhance the classification ability, the proposal makes use of

transfer learning to leverage knowledge from networks that have been pre-trained on large

datasets of images, to train a dataset of 30 pollen types, achieving a 94% correct classification

rate. In [6], which presents and makes use of the same dataset used in this paper, three differ-

ent alternatives based on automatic feature extractors are explored. The three feature extrac-

tors are the “bag of visual words” (BOW), the “color, shape and texture” (CST) and a

combination of BOW and CST (CST+BOW). They test several machine learning classifiers,

including two variations of support vector machines, a decision tree-based classifier and the k-

nearest neighbor approach. According to these authors, the highest correct classification rate,

64%, is achieved using CST+BOW and support vector machines. Another example is [19],

which uses a neural network approach to perform pollen classification for the reconstruction

of remote paleo environments, reporting over 90% of the grains being correctly identified.

BOW-related techniques have also been applied in [20], with a 70% reported correct classifica-

tion rate over 9 pollen types, and in [21], with a reported 97.2% of accuracy over just 1 pollen

variety.

When comparing different automatic classification methods, it is important to bear in

mind that different experiments have different degrees of difficulty. Of course, the similarity of

the grains from different species is the main challenge, but the quality of the images, for exam-

ple, is crucial as well to develop good classifiers. Also, the amount of tagged images is essential,

as more images for each type will allow to train much more accurate models. Finally, it is very

different to classify just one pollen type with a binary classifier than developing a multiclass

classifier able to recognize tens of pollen types. Thus, in the above comparison of the results

reported by different authors we need to take into account these issues. For example, many of

the aforementioned studies have been made with sets of data with a very limited amount of

images or pollen types. For example, [10–13, 15, 20, 21] work with sets of data containing less

than 10 pollen types. The results presented in [6–9, 14, 18] work with larger sets of data. Partic-

ularly [18] presents results over 94% for a set of images containing 30 different pollen types. Of

course, as the sets contain more classes, the classification process becomes more complicated,

presenting lower performances as in [6]. Attempts to classify datasets with large classes are a

major challenge since they are intended to provide a more generalized method, applicable to a

wider range of solutions.

The solution presented in this paper aims to provide a model capable of adapting to differ-

ent data sets that contain a significant number of classes, even with similar features.

Materials and methods

Image pollen dataset

In [6] the authors presented an image dataset, called POLEN23E, which consists of photos of

23 pollen types present in the Brazilian savannah: Anadenanthera colubrina, Arecaceae, Arrabi-
daea, Cecropia pachystachya, Chromolaena laevigata, Combretum discolor, Croton urucurana,

Dipteryx alata, Eucalyptus, Faramea, Hyptis, Mabea fistulifera, Matayba guianensis, Mimosa
somnians, Myrcia, Protium heptaphyllum, Qualea multiflora, Schinus terebinthifolius, Senegalia
plumosa, Serjania laruotteana, Syagrus, Tridax procumbens and Urochloa decumbens.

The POLLEN23E dataset is publicly available and, according to its description in [6], con-

tains 35 sample images for each pollen type. These were taken with a digital microscope at dif-

ferent angles, compiling a total of 805 images. However, for the type Anadenanthera colubrina
only 20 images were found in the original source, so in our experiment 15 synthetic images
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were generated through rotating and scaling the original images of this type. Fig 1 contains a

sample of each species.

To assess the robustness of the models against over-fitting, the accuracy on each conducted

experiment was measured using a 10 fold cross-validation process.

Convolutional neural networks for image classification

The work presented in this paper is based on the automatic extraction of discriminant features

from images by deep learning convolutional neural networks (CNN).

This type of network is a variation of the well known multilayer perceptron, however,

because its application is performed in two-dimensional matrices, they are effective for artifi-

cial vision tasks, like image classification and segmentation, among other. The fundamentals

of CNN are based on the Neocognitron, introduced by Kunihiko Fukushima in 1980 [22].

This model was later improved by Yann LeCun in 1998 [23], introducing a learning method

capable to train the network through backpropagation. In the year 2012, they were refined by

[24] and implemented in a GPU, thus obtaining impressive results.

The term “deep” usually refers to the number of hidden layers in the neural network. Tradi-

tional neural networks (as the multilayer perceptron) contain only two or three hidden layers,

while deep networks can have hundreds of them. In order to train these networks, extensive

tagged data sets are required. CNN are amongst the most popular types of deep neural

networks.

A CNN is especially suited for processing 2D data such as images as it makes use of 2D hid-

den (“convolutional”) layers to convolve the features with the input data. The main strength of

CNN is that it eliminates the need for manual feature extraction by automatically extracting

Fig 1. Sample images for each pollen type.

https://doi.org/10.1371/journal.pone.0201807.g001
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the more discriminant features of a set of images. Of course, this automated feature extraction

makes CNN very useful for artificial vision tasks such as object classification. In this paper,

only a succinct description of CNN is included. For more information, refer for example to

[25]. Fig 2 shows a scheme of a CNN with many layers. Convolutional filters are applied to

each training image with different resolutions, and the output of each convoluted image is

used as input for the next layer. As shown in the figure, a CNN with a single convolutional

layer consists of four fundamental components: the convolutional layer, a ReLu layer, a pool-

ing layer and a fully connected layer.

The convolutional layer forms the basis of the neural network and performs the convolu-

tion operation on the input image. It consists of a three-dimensional array of neurons as a

stack of two-dimensional layers of neurons, one for each channel.

The convolution operator has the effect of filtering the input image with a previously

trained kernel. This transforms the data in such a way that certain features (determined by the

kernel shape) become more dominant in the output image as these have a higher numerical

value assigned to the pixels representing them. These kernels have specific image processing

skills. An example is edge detection, that can be performed with kernels that highlight the gra-

dient in a particular direction.

Neural networks are known to have some tolerance to small perturbations in the input

data. For example, if two almost identical images (different only by a few pixels) are fed

through a neural network, the result should be essentially the same. In the case of CNN, this is

obtained, in part, by the reduction of sampling. By reducing the resolution, the same character-

istics will correspond to a larger activation field in the input image. This is achieved through

max-poolingoperations, which are very effective in summarizing characteristics about a

region.

Training and using convolutional neural networks. To train a CNN from scratch, a very

broad tagged data set must be collected, and a network architecture is designed to learn the

discriminant features and distinguish the images. This is useful for new applications or appli-

cations that will have a very large number of output categories. This approach is less common

because, due to the large amount of required images and the speed of learning, with present

day hardware it usually takes a very long time to train these networks.

Fig 2. Convolutional neural network architecture and operation. Image based on a similar figure published in [26].

https://doi.org/10.1371/journal.pone.0201807.g002
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However, it is possible to apply a transfer learning (TL) approach, a process that involves

the fine-tuning of a previously trained CNN. In this case, the process starts with a pretrained

network (such as AlexNet [27] or GoogLeNet [28]), and feed them with new data containing

previously unknown classes. After making some adjustments in the network, it is possible to

perform a new task categorizing the new data provided to the network. This also has the

advantage of needing much less data (thousands of images are processed instead of millions),

so the calculation time is reduced to hours or minutes.

A less common but more specialized approach is the use of a CNN as feature extractor.

Because all layers have assigned tasks related with learning certain features of the images, these

features can be extracted from the network at any time during the training process. In standard

operation, the CNN will use these features in its last layers, which work as an standard neural

network classifier. However, these features can then be used as input for another machine

learning classifier which will learn them to classify new data.

In this work we will implement three models of deep learning based on these CNN tech-

niques. One of them will be strictly based on the idea of transfer learning, a second model will

be based on feature extraction and a third hybrid model will combine TL followed by feature

extraction.

Linear discriminant classifier

When using a CNN as a feature extractor, as described above, it is important to devise a

machine learning classifier which will take upon the extracted features and discriminate the

input images according to them. In this paper we will use a linear discriminant (LD) classifier

for this task.

Linear Discriminant Analysis is normally used as a technique for dimensionality reduction

in machine learning applications. The objective is to project a dataset onto a lower-dimen-

sional space with better class-separability. This technique was first formulated by Ronald A.

Fisher in 1936 [29], and it also has some practical uses in classification problems. The LD

approach is similar to a principal component analysis, but in addition to finding the compo-

nent axes that maximize the variance of the data, we are also interested in finding the axes that

maximize the separation between multiple classes.

In brief, the goal of LD is to project a feature space (a set of n-dimensional samples) onto a

smaller subspace k (where k� n − 1) while keeping the class-discriminatory information. In

other words, a LD classifier explicitly attempts to model the difference between the classes of

data. In general, dimensionality reduction does not only help reducing computational costs for

a given classification task, but it can also be helpful to avoid overfitting by minimizing the

error in parameter estimation.

LD analysis is closely related to variance analysis (ANOVA) and regression analysis, and is

a popular classification algorithm because it is fast, accurate and easy to interpret. It is also

especially suitable for large data sets, and it assumes that different classes generate data based

on different Gaussian distributions. To train the classifier, the fitting function estimates the

parameters of a Gaussian distribution for each class, then creating linear boundaries between

classes. It is fast predicting, uses small memory and is easily interpretable, although it has com-

paratively low flexibility.

Experimental design

To avoid overfitting and to test the robustness and generalization ability of the proposed meth-

ods, a 10 fold cross-validation scheme has been applied. For each fold, the original dataset has

been divided into two subsets of images: a training set and a test set, containing 90% and 10%
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of the observations respectively, reserving the last one to test the models after the training pro-

cess. Since there are 35 images per pollen type, in each fold the training set contains 32 images

and the test set is composed of 3 images.

From the previously described techniques, we implemented and trained the following

combinations.

Setup A: Feature extraction and linear discriminant classifier (FE+LD). This approach

is based on the idea of taking advantage of a pre-trained convolutional neural network archi-

tecture (in our case, AlexNet) to perform feature extraction, and then use a LD classifier upon

these features.

The AlexNet network builds a hierarchical representation of the images. Deeper layers hold

sets of higher level extracted features, constructed from lower level extracted features from pre-

vious layers. Thus, the first layer of the network consists of convolutional filters which learn

the basic features. These primitive features are then processed by deeper layers of the network,

combining the first features to create new ones on a higher level. This higher level features are

more suitable for classification tasks since they combine all the primitive features in a better

representation of the image. Selecting a particular layer to extract features is a design consider-

ation, but it is common to select the layer immediately before the classification layer. We have

adopted this convention in Setup A, selecting the seventh convolutional layer of AlexNet to

obtain the representative features.

Fig 3 shows how the aforementioned cross-validation scheme has been applied in this

setup. For each of the 10 folds, the dataset is initially divided into two subsets, training and

test. Each training set is used to perform the feature extraction process. The resulting set of

extracted features is used to train the LD classifier. Once the classifier has been trained with

these extracted features, it is used to classify the images of the test set reserved at the beginning

of the procedure.

Setup B: Transfer learning (TL). In this setup, the pre-trained CNN AlexNet has been

adjusted to learn the particular features of the POLLEN23E images dataset. The last three

Fig 3. Cross-validation schematic for setups A and C.

https://doi.org/10.1371/journal.pone.0201807.g003
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layers of the AlexNet are originally configured for 1000 classes, and they must be fine-tuned

for the new classification problem. For this purpose, all layers are extracted, except the last

three, from the pre-trained network and transferred to learn the new classification task by

replacing these last three layers with a new fully connected layer, a softmax layer, and a classifi-

cation output layer, all adjusted to 23 classes. Then the network is retrained to learn the new

task.

The idea is to keep the features pre-learnt in the convolutional layers of the AlexNet and

force the learning just in the fully connected ones. Hence, we set a low learning rate (0.0001) in

the transferred layers to fine-tune them and a higher learning rate (0.2) in the fully connected

layers to allow learning in the newly created layers. This combination of learning rate settings

results in fast learning only in the new layers and slower learning in the early ones.

Fig 4 shows the schematic description of the cross-validation process applied in this setup

to retrain the CNN and extract the features from the training dataset, and then apply the

retrained network to the test set.

Setup C: Transfer learning, feature extraction and linear discriminant (TL+FE+LD).

This setup is a hybrid approach aimed to preserve the advantages of the two previous setups.

As stated above, through transfer learning we retrain the last three layers of the network leav-

ing the previous layers practically unchanged by setting a very low learning rate for them.

However, during the training process, it is observed that even a low learning ratio for these

previous layers of the network is sufficient to modify the weights of the different convolutional

filters, allowing them to incorporate features of the new provided images, and thus increasing

the classification performance. Then, once applied transfer learning, it is possible to extract the

features from the fine-tuned CNN and subsequently apply a classifier.

In this approach, the learnt features can be extracted from the layer immediately before the

classification layer, exactly as we did in setup A. However, we can also extract the features

from the fully connected layer or even the softmax layer recently retrained. For a dataset like

POLEN23E, with a reduced amount of observations, it is common to select the first option,

that is, extracting the features from the layer immediately before the classification layer. In this

case, the convolutional filters from the earlier layers will have slightly changed their weights

adding new features, but keeping most of the original network features. We keep the same

learning rates applied in setup B, using a low learning rate (0.0001) in the transferred layers

and a higher learning rate (0.2) in the fully connected layer. For sets of images with a higher

amount of observations, extracting features from the new convolutional layers can be a good

alternative to increase the performance.

Once the network has been re-trained and the features extracted, a linear discriminant clas-

sifier is built to tell the images apart.

As it was the case with setup A and B, a 10-fold cross-validation procedure has been applied.

The schematic of this procedure for setup C is the same as for setup A, shown in Fig 3.

Results

This section presents the results obtained in the experiments. As mentioned above, these

experiments correspond to the application of three different setups based on different com-

binations of techniques. To compare the results of the three setups amongst them and with

previous works, we use the following commonly used performance measures for classifica-

tion:

CCR ¼
TP þ TN

TP þ TN þ FP þ FN
ð1Þ
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precision ¼
TP

TP þ FP
ð2Þ

recall ¼
TP

TP þ FN
ð3Þ

F � score ¼ 2 �
precision � recall

precisionþ recall
ð4Þ

In all these, TP refers to true positives, TN to true negatives, FP to false positives, and FN to

false negatives.

In machine learning, it is important to compare models using data previously unseen dur-

ing the training process. These data constitute an example close to reality, since they are

completely unknown to the models and allow to measure their behavior against new observa-

tions. Table 1 presents the results obtained by the three setups using the test datasets. This

table shows averages of the cross-validation results for the correct classification rate (CCR),

precision, recall, and F-score.

Fig 4. Cross-validation schematic for setup B.

https://doi.org/10.1371/journal.pone.0201807.g004
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From the table it is clear that Setup C obtains the best results in all indices. A very high CCR

value, 97.2273%, is obtained with a low standard deviation of 0.9000%. This is accompanied by

high precision and recall values which verify its good performance against false positives and

false negatives, also showing a high F-score value (0.9669) with a low standard deviation

(0.0115). The comparison with the results from [6] show that our models improve especialy in

precision, that is, in the proportion of true positives with respect to the total of predicted posi-

tives. Recall is also improved, especially from the human-based classification results. The

results for CCR are displayed in Fig 5.

In this figure, we observe that setup C is sligthly better both in terms of median CCR and in

the dispersion of this magnitude through the different cross-validation folds. The bottom

“whisker” for this setup is located above 80%, meaning this is the minimum CCR we can

expect for any class. The median is clearly above the value of setup B and slightly better than

the value obtained by setup A. However, the latter bottom “whisker” places the minimum near

0.6 and very far from the first quartile, which suggests discarding this model as a solution.

Setup C is also superior to setup B in terms of the first and third quartiles. However, a Wil-

coxon signed-rank test shows that there are no significant differences amongst the results of

the three methods, so any of them could be used.

Figs 6, 7 and 8 show the confusion matrices for the three setups. These matrices have been

constructed by accumulating the individual cross-validation results in the test dataset(3 test

images per fold, hence the total of 30 in the diagonals) Again, it can be easily observed that

setup C shows slightly better performance than the other two.

Concretely, we can see how the three setups manage to identify most of the pollen types

correctly, and it is interesting how the three find more difficulties when trying to discriminate

certain types that are, undoubtly, similar: Arecaceae, for example, is usually confused with Sya-
grus and Urochloa decumbens, whileMatayba guianensis is confused with Eucalyptus. How-

ever, it is interesting how setup B has trouble distinguishingMimosa somnians and Cecropia
pachystachya, while the other two are capable of discriminating them correctly. Also, setup A

gets not so good results when trying to separate Arrabidaea from Dipteryx alata, while the

other two (especially setup C) have no problems with these two types. These results show that

each setup has its own strengths and weaknesses in this framework, and are in accordance

with the Wilcoxon test mentioned above.

To compare the computational complexity of each setup, Table 2 presents the prediction

speed (measured in observations processed per second) and the total training time for each

setup. We observe that the three models offer reasonable training times, highlighting the setup

C prediction speed, with approximately 170 predictions per second.

Table 1. Average correct classification rate over the test set for each setup. Results from [6] are computed from their confusion matrices. In parentheses under the val-

ues, standard deviation.

CCR (%) precision recall F-score

CST+BOW (from [6]) 68.5714 0.3988 0.8203 0.5366

Human (from [6]) 63.5710 0.3030 0.6279 0.4087

Setup A (FE+LD) 96.6247

(± 1.1107)

0.9366

(± 0.0210)

0.9955

(± 0.0016)

0.9592

(± 0.0137)

Setup B (TL) 96.1529

(± 1.2089)

0.9275

(± 0.0229)

0.9949

(± 0.0020)

0.9541

(± 0.0151)

Setup C (TL+FE+LD) 97.2273

(± 0.9000)

0.9477

(± 0.0170)

0.9964

(± 0.0014)

0.9669

(± 0.0115)

https://doi.org/10.1371/journal.pone.0201807.t001
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Discussion

In this paper, we present three deep learning classifiers of pollen grain images, based on a pre-

trained convolutional neuronal network (Alexnet) to which we apply transfer learning and

extract features that are subsequently classified by a linear discriminant classifier.

Any of the three hereby proposed solutions considerably improve the results presented in

[6] for the same POLEN23E dataset. In that work, researchers obtain the best results by apply-

ing a technique known as bag-of-words (BOW) as feature extractor. However, the results

obtained by this technique are poor, with a median CCR around 66% for the best non-human

classifier. Humans reached a 67% median CCR in their experiment.

To explain these results, the nature of the POLLEN23E images must be taken into account.

These images are centered on the frame and occupy most of it. In addition, there are similari-

ties between different classes that make the classification process difficult by itself. The BOW

technique is used to classify images, but is generally better suited for images that contain differ-

ent features and are not centered inside the frame (landscapes or objects of a very diverse

nature). This has to do with the fact that BOW is based on a k-nearest neighbor algorithm,

which makes it outstand, for example, in handwritten digit recognition because the space of

digit images (and thus the possible variation amongst them) is much smaller than the space of

all possible images.

However, for the POLEN23E dataset, features are spread almost uniformly throughout the

feature space, not concentrated on or near any lower dimensional manifold. Hence, given the

high similarity of the images, many of the features that the k-nearest neighbor algorithm must

classify will be very similar. On the other hand, BOW extracts by default 500 “words”, generat-

ing a high dimensionality problem for the classifier. Considering that many of these “words”

are similar because of the images similarity, even amongst different classes, it incurs in what is

known as the curse of dimensionality. As mentioned in [30], with this setup, in high dimen-

sions all examples look alike, implying that the choice of the nearest neighbor (and therefore

the class) tends to be random.

The solution proposed in this paper is based on deep learning convolutional filters. These

filters are capable of extracting specific and discriminating features of each image to work

Fig 5. Correct classification rate for human operators and the best model reported by [6], together with the three

proposed deep learning setups.

https://doi.org/10.1371/journal.pone.0201807.g005
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properly with a simple classifier in high dimensions. The way in which these filters extract the

image features makes possible to obtain the most relevant characteristics to each class, avoid-

ing those common to several classes that introduce noise in the classifier. Therefore, the

instances (features) are sufficiently distant between their corresponding classes for the classi-

fier to correctly identify them.

Fig 9 shows the cross-validation average CCR obtained by setup C for each class. It is impor-

tant to clarify that, since in each fold the test set was composed only of 3 images, the CCR for

each class in each fold could take values in f1; 0:66; 0:33; 0g, depending on the model properly

identifying all the 3 images, two of them, one or none at all (the latter has not been recorded in

our experiments).

We note that there are three classes (Matayba guianensis, Myrcia and Schinus terebinthifo-
lius) which registered a low CCR value of 33:3% in some of the folds, while the same classes

Fig 6. Confusion matrix for the test set in setup A.

https://doi.org/10.1371/journal.pone.0201807.g006
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reach CCR values of 100% in other folds. This surely happens because the number of observa-

tions contained in the POLEN23E set is small, making the results of each fold very sensitive to

the training/test split of the dataset. If the images included in the test set are “difficult”, for

example in the sense that the grains are in such position that some of their distinguishing char-

acteristics are not clearly seen, the model performance will be easily affected. This effect could

be diminished by increasing the number of available observations per class, allowing for bigger

test sets which would make the experiments more robust.

It is also remarkable that the proposed setup manages to identify 100% of the examples in

almost all of the folds for two thirds of the available classes. For these fifteen classes (Arrabi-
daea, Cecropia pachystachya, Chromolaena laevigata, Combretum discolor, Croton urucurana,

Dipteryx alata, Eucalyptus, Faramea, Hyptis, Mabea fistulifera, Mimosa somnians, Qualea mul-
tiflora, Senegalia plumosa, Serjania laruotteana and Tridax procumbens) the first and third

Fig 7. Confusion matrix for the test set in setup B.

https://doi.org/10.1371/journal.pone.0201807.g007
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quartiles are equal to the median, which is set at 100%. They are thus perfectly identified by the

model, which is able to fully aprehend the particular characteristics of each class.

In a similar take, in [18] an approach based on pre-trained CNN transfer learning is pre-

sented, obtaining results around 94% of CCR for data sets obtained by light-microscopy and

scanning electron microscopy. However, they do not specify if the results are obtained over

Fig 8. Confusion matrix for the test set in setup C.

https://doi.org/10.1371/journal.pone.0201807.g008

Table 2. Measures for computational complexity.

Prediction speed Training time

Setup A (FE+LD) *140 obs/sec 8.69 min

Setup B (TL) *155 obs/sec 16.49 min

Setup C (TL+FE+LD) *170 obs/sec 16.61 min

https://doi.org/10.1371/journal.pone.0201807.t002
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the training set or the test set, and hence they are not directly comparable with ours. They also

use data augmentation to increase the number of samples for their datasets, a technique that

could probably improve our results as well.

Conclusions and future work

In this work, three different models based on deep learning convolutional neural networks

and capable of satisfactorily classifying the POLEN23E dataset images have been presented.

The three solutions have exceeded the 95% threshold of correct classifications. Amongst them,

the most accurate is obtained after applying transfer learning to the AlexNet pre-trained net-

work and then using a linear discriminant classifier to the extracted features. This solution per-

fectly classifies two thirds of the pollen types, reaching up to a global 97% of correctly classified

samples. Finding an automated solution to pollen classification implies significant potential

advantages in different areas, including allergy-related clinical applications or industries like

honey production.

These excellent results prompt us to try the same ideas with different datasets and different

pre-trained networks, and also networks trained from scratch. Expanding the number of

images available through data-augmentation also looks promising in order to increase the clas-

sification capacity of the proposed solutions.
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Investigation: Vı́ctor Sevillano, José L. Aznarte.

Methodology: Vı́ctor Sevillano, José L. Aznarte.
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Graña M, Cho SB, editors. Pollen Grains Contour Analysis on Verification Approach. Springer Berlin

Heidelberg; 2012. p. 521–532. Available from: https://doi.org/10.1007/978-3-642-28942-2_47.

9. Travieso CM, Briceño JC, Ticay-Rivas JR, Alonso JB. Pollen classification based on contour features.

In: 2011 15th IEEE International Conference on Intelligent Engineering Systems; 2011. p. 17–21. Avail-

able from: http://ieeexplore.ieee.org/document/5954712/?reload=true.

10. Fernández-Delgado M, Carrión P, Cernadas E, Galvez JF. Improved Classification of Pollen Texture

Images Using SVM and MLP. In: 3rd IASTED International Conference on Visualization, Imaging and

Image Processing (VIIP2003). vol. 2; 2003. Available from: https://www.researchgate.net/publication/

228441194_Improved_Classification_of_Pollen_Texture_Images_Using_SVM_and_MLP.
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13. Andrade W, Quinta L, Gonçalves A, Cereda MP, Pistori H. Segmentação baseada em Textura e Water-
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