
RESEARCH ARTICLE

Framework for fusing traffic information from

social and physical transportation data

Zhihao Zheng1, Chengcheng Wang1, Pu Wang1*, Yusha Xiong1, Fan Zhang2, Yisheng Lv3

1 School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan, China,

2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong,

China, 3 The State Key Laboratory of Intelligent Control and Management of Complex Systems, Institute of

Automation, Chinese Academy of Sciences, Beijing, China

* wangpu@csu.edu.cn

Abstract

Tremendous volumes of messages on social media platforms provide supplementary traffic

information and encapsulate crowd wisdom for solving transportation problems. However,

social media messages manifested in human languages are usually characterized with

redundant, fuzzy and subjective features. Here, we develop a data fusion framework to iden-

tify social media messages reporting non-recurring traffic events by connecting the traffic

events with traffic states inferred from taxi global positioning system (GPS) data. Temporal-

spatial information of traffic anomalies caused by the traffic events are then retrieved from

anomalous traffic states. The proposed framework successfully identified accidental traffic

events with various scales and exhibited strong performance in event descriptions. Even

though social media messages are generally posted after the occurrence of anomalous traf-

fic states, resourceful event descriptions in the messages are helpful in explaining traffic

anomalies and for deploying suitable countermeasures.

Introduction

Recent rapid developments in sensing and communicating techniques have facilitated the

boom of big transportation data [1,2]. Many novel analytic and modeling approaches have

been proposed in this context [3,4]. The transportation data used in existing research and

practices were usually collected using sensing devices installed on vehicles or roads. Typical

examples include real-time coordinates of taxies and buses collected by onboard global posi-

tioning system (GPS) signal receivers [5–7], traffic speed information from remote microwave

sensor [8] and the traffic count information collected by loop detectors [9–11] or video cam-

eras [12–14]. Big transportation data have been widely applied in the estimation of travel

demand [15–17], transit passenger flow [18,19] and the management of transportation systems

[20–22].

Given that traffic information in most big transportation data is collected using the physi-

cally installed sensing devices, here we call them physical transportation data according to the

manner of data collection. Despite the good data quality and wide availability of physical trans-

portation data, one common disadvantage of such data is the lack of information on the

PLOS ONE | https://doi.org/10.1371/journal.pone.0201531 August 2, 2018 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Zheng Z, Wang C, Wang P, Xiong Y,

Zhang F, Lv Y (2018) Framework for fusing traffic

information from social and physical transportation

data. PLoS ONE 13(8): e0201531. https://doi.org/

10.1371/journal.pone.0201531

Editor: Peng Chen, Beihang University, CHINA

Received: May 15, 2018

Accepted: July 17, 2018

Published: August 2, 2018

Copyright: © 2018 Zheng et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The authors confirm

that all data underlying the findings are fully

available without restriction. All relevant data are

within the Supporting Information files. The

minimal data set to replicate this study are

uploaded as Supporting Information.

Funding: This work was supported by the National

Natural Science Foundation of China (http://www.

nsfc.gov.cn) No. 61473320, the Fok Ying Tong

Education Foundation (http://www.cutech.edu.cn/

cn/kyjj/hydjyjj/A010302index_1.htm) No. 141075,

and the Project of Innovation-driven Plan in Central

South University (http://syl.csu.edu.cn/Content.

https://doi.org/10.1371/journal.pone.0201531
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201531&domain=pdf&date_stamp=2018-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201531&domain=pdf&date_stamp=2018-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201531&domain=pdf&date_stamp=2018-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201531&domain=pdf&date_stamp=2018-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201531&domain=pdf&date_stamp=2018-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201531&domain=pdf&date_stamp=2018-08-02
https://doi.org/10.1371/journal.pone.0201531
https://doi.org/10.1371/journal.pone.0201531
http://creativecommons.org/licenses/by/4.0/
http://www.nsfc.gov.cn
http://www.nsfc.gov.cn
http://www.cutech.edu.cn/cn/kyjj/hydjyjj/A010302index_1.htm
http://www.cutech.edu.cn/cn/kyjj/hydjyjj/A010302index_1.htm
http://syl.csu.edu.cn/Content.aspx?moduleid=815fd225-685b-4165-bdb3-b20d6513ap11


understanding and analysis of traffic states. For example, taxi GPS data are widely used in esti-

mating vehicle speeds on roads. However, when the abnormally slow vehicle speed is detected,

the GPS data themselves cannot show whether the slow vehicle speed is caused by traffic con-

gestion or a traffic accident. Supplementary information is needed to better understand and

interpret the sensed traffic states, and to design a more suitable management strategy.

There are many social media platforms, such as Twitter in the U.S. and Weibo in China

[23]. A significant number of social media users frequently post and spread information on

every aspect of their lives, among which transportation is a frequently discussed topic. These

kinds of transportation data are generated by social media users in a crowdsourcing manner,

here we call them social transportation data. Social transportation data can offer supplemen-

tary traffic information for physical transportation data. For example, social media messages

usually incorporate descriptions of traffic incidents, and the messages may record the possible

reason of a traffic incident or include suggestions on transportation infrastructure planning

and transportation management.

Based on social transportation data, methods for mining traffic information and detecting

traffic anomalies have been investigated in recent years. Wang et al. [24,25] proposed that

social signals comprise one of the most important data sources for parallel transportation and

control of complex transportation systems. Ni et al. [26] developed a systematic approach to

examine the correlation between social media activities and social event occurrences. The

authors found a positive correlation between passenger flow and the rates of social media

posts. Mo et al. [27] used the theories of linguistic dynamic systems to analyze traffic informa-

tion from traffic police micro-blogs. Zeng et al. [28] employed social network analysis methods

to study the topic evolution pattern on social media platforms. The authors found that social

media are more applicable in sensing road emergencies than traditional media. Chen et al.
[29] claimed that social media tweets can act as sensors to monitor traffic congestion. Kuflik

et al. [30] proposed a framework for mining transport-related information from social media

data, and discussed the potential and the challenges in social media data processing.

Motivated by such encouraging discoveries, several researchers have mined various types of

traffic information from social transportation data. Some researchers have focused on a sys-

tematic approach for processing social media data, while others have focused on specific prob-

lems, such as classifying transport-related information, recognizing location entities, etc.

Georgakis et al. [31] developed a framework for real-time detection of traffic events including

the classifying and geolocating processes. Wang et al. [32] proposed a traffic alert and warning

system using the latent Dirichlet allocation method to identify transport-related social media

data. Gu et al. [33] mined social media tweets to extract traffic incident on both highways and

arterials by mapping tweets into a high-dimensional binary vector. Zhang [34] proposed a

hybrid mechanism to model incident-level semantic information from social media data. Fu

et al. [35] collected tweets with real-time traffic information, and filtered redundant tweets to

generate concise and comprehensible textual contents. D’Andrea et al. [36] identified trans-

port-related tweets from Twitter streams using a support vector machine (SVM) algorithm,

and developed a real-time traffic monitoring system to detect traffic events. Tejaswin et al. [37]

proposed a novel location entity extraction method using background knowledge, and built an

automated social media analysis system to assist traffic management. Most recently, a deep

learning approach proposed by Zhang et al. [38] was used to detect traffic accidents in social

media data. The authors compared the results with accident log and loop detector data, finding

that accident-related tweets can be located by most accident log and nearby traffic anomalies.

Learning human mobility from social media data is also a hot topic in this field of research.

Trip purpose, mode of transport, activity duration, and destination choice, as well as land uses,

have been widely studied [39]. Jiao et al. [40] discovered the relationship between geo-tagged
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tweets and a special event, finding that social media can serve as a monitoring tool to learn

future special events. Zhang et al. [41] proposed a sequential-model-based clustering method

to infer the longitudinal travel behavior from geo-tagged social media data. Using similar data,

Hu et al. [42] presented a dynamic model to estimate time-of-day trip arrival patterns at a fine-

grained level, and Hasan et al. [43] inferred individual activity patterns from large-scale geo-

located social media data using a topic modeling classification method. Based on user-gener-

ated data from social media, Gkiotsalitis et al. captured users’ willingness to travel a certain dis-

tance to participate in different types of activities using a utility maximization model [44], and

derived an individual’s preferences on the location of a joint leisure activity and arrival times

from a perceived utility model and a stochastic annealing search method [45].

To visualize traffic information in social transportation data, several information visualization

platforms were developed; examples include the classification analysis systems and Android-

based apps [46–48]. Cui et al. [49] collected traffic information from social media interactions and

developed an Android-based app to capture and broadcast traffic status information. Lécué et al.
[50–52] developed a system named STAR-CITY to analyze, diagnose, explore, and predict traffic

states using semantic web technologies. Recently, Zheng et al. [1] reviewed the data sources, ana-

lytical approaches, and application systems of social transportation research, and stated that social

transportation may be the basis of next-generation intelligent transportation systems.

Most previous research has focused on developing advanced semantic analysis tools and

automated systems to retrieve more information from social media to monitor traffic states.

However, the real value of social transportation data is to provide reasoning descriptions rather

than taking full responsibility for traffic monitoring. We should focus more on discovering

valuable social transportation data and obtain more in-depth traffic information by connecting

them with physical transportation data. So far, in only a few works have researchers tried to dis-

cover the potential of combining two types of data sources. Pan et al. [53] presented a method

to detect traffic anomalies according to routing behavior derived from GPS data, and provided

descriptions for anomalies by mining terms from social media data afterwards. Wang et al. [54]

proposed a coupled matrix and tensor factorization model to fuse traffic information from GPS

probe data and social media data. These pioneering studies proved the vast potential of incorpo-

rating information from social transportation data and physical transportation data.

In this study, we propose a data-fusion framework to detect and describe non-recurring

traffic anomalies reported by social media data. Here, social media data contribute as an initial

filtering of potentially critical traffic events since such events are more likely to be reported by

people. Traffic states from taxi GPS data are used to identify non-recurring traffic events and

provide temporal-spatial information of caused anomalies. We can also describe the causes of

the anomalies with social media data. To identify non-recurring traffic events, we propose an

anomaly detection method using historical GPS data to find anomalous travel paths in gener-

ated searching regions. This framework does not require an exact location from social media

data but utilizes accurate taxi GPS data to pinpoint the time and location of the traffic anomaly,

which minimizes the possibility of missing important social transportation messages. We sup-

pose that the present work can release more potential of social transportation data, conse-

quently promoting the development of social transportation studies and extending the

application of social transportation data in practices.

Data

Here, we describe the social transportation data and physical transportation data used in this

study. The physical transportation data were generated by the GPS receivers of taxies during work-

days in October 2014 (19 days in total). The social transportation data are generated by social
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media users of Sina Weibo during the same observation period. All taxi probe readings were pro-

vided by a third-party organization and all car plates were anonymized by unique identifiers. All

Sina Weibo data were collected according to Sina Weibo’s terms of service and privacy conditions.

Social transportation data

The social transportation data were collected from the largest micro-blog platform in China, Sina

Weibo. The social media platform, Weibo, has 230 million active users, which represents one-sixth

of the Chinese population. Weibo messages usually record users’ descriptions, complaints, and

suggestions regarding traffic and transportation. We used the transport-related keywords shown in

Table 1 to collect transport-related messages from Weibo. A web crawler was developed to auto-

matically collect Weibo messages that contain these keywords (Table 2). The post-time informa-

tion, the message, and the location tag that was voluntarily uploaded by users were recorded.

However, a location tag is not accompanied by a geographical coordinate, and only a small propor-

tion of Weibo posts are geo-tagged. Weibo messages containing transport-related keywords may

not actually reflect traffic events. We manually identified 601 transport-related Weibo messages

from all Weibo messages collected. The two types of Weibo messages are shown in Table 2.

GPS data

We used taxi GPS data collected by 13,584 taxies equipped with GPS receivers. In the observa-

tion period (19 workdays in October 2014), a total of 916,851,503 GPS readings were recorded.

On average, a GPS record is collected every 15 s for each taxi. GPS data are discarded in the fol-

lowing cases: (1) GPS records collected when taxi drivers search passengers. In this case, taxi

drivers intend to drive slower. (2) GPS records of taxies with more than 500 passenger trips

recorded during 1 d, which is usually caused by device failures. (3) GPS records collected

beyond urban active hours (6:00–23:00). Finally, 255,490,492 taxi GPS readings were selected

and used in this study. High-resolution road network data provided by the Shenzhen Trans-

portation Authority were also employed in this study. The road network is composed of

85,389 nodes (breakpoints to determine the geographical shapes of the roads) and 116,642

road segments. The road network data also incorporate attributes of road segments, which

include length, speed limit, number of lanes, and road class.

Method

Map matching of GPS data

We used the ST-matching algorithm [55] to map GPS probe readings to road segments. In the

following, we describe the method in detail.

Table 1. Keywords list.

Traffic Accident Car Vehicle

Road Congestion Street Avenue

https://doi.org/10.1371/journal.pone.0201531.t001

Table 2. Examples of two types of Weibo data in standard format.

Post time Text (translated into English) Location tag Type

11:28 Oct.

17

At 11:25, an accident occurred at South Futian Road and Binhe Avenue,

occupied the middle lane, and caused congestion.

Not

applicable

Road

name

8:40 Oct.

8

At 8:30, a car crash accident at Buji entrance slowed traffic. Buji

entrance

Landmark

https://doi.org/10.1371/journal.pone.0201531.t002
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(1) Determining candidate points: For a trajectory point pi in a GPS trajectory TR = p1!

p2! � � � ! pn, we select candidate road segments with perpendicular distances d� 35 m to pi

(the widest road (one direction) in Shenzhen is 32 m). The candidate point cj
i of the trajectory

point pi is defined as the intersection of candidate road segment j with the perpendicular line

from pi to j. Trajectory points without candidate segments are eliminated from the GPS trajec-

tory TR.

(2) Spatial analysis function: Observation probability f ðcj
iÞ is the likelihood of matching the

trajectory point pi to the candidate point cj
i based on the distance xj

i ¼ distðcj
i; piÞ:

f cj
i

� �
¼

1
ffiffiffiffiffiffi
2p
p

s
e�
ðxj

i � mÞ2

2s2 m ¼ 0;s ¼ 20 mð Þ ð1Þ

where σ = 20 m is the standard spatial deviation of GPS readings. Transmission probability

Pðct
i� 1
! cs

iÞ is the likelihood of considering the path between two neighboring candidate

points ðct
i� 1
; cs

iÞ as the shortest path:

P ct
i� 1
! cs

i

� �
¼

di� 1!i

wði� 1;tÞ!ði;sÞ
ð2Þ

where di−1!i = dist(pi,pi−1) is the Euclidean distance between trajectory point pi−1 and trajec-

tory point pi, and w(i−1,t)!(i,s) is the length of the shortest path from candidate point ct
i� 1

to can-

didate point cs
i . Integrating transmission probability and observation probability, the spatial

analysis function Fðct
i� 1
! cs

iÞ is defined as:

Fðct
i� 1
! cs

iÞ ¼ Pðct
i� 1
! cs

iÞ � f ðcj
iÞ; 2 � i � n ð3Þ

We then calculate Fðct
i� 1
! cs

iÞ for all candidate paths between neighboring trajectory

points pi−1 and pi.

(3) Mapping GPS trajectories: We generate a candidate graph G0TðV
0
T ; E

0
TÞ for each trajec-

tory TR: p1! p2! � � � ! pn, where V 0T is the set of candidate points and E0T the set of shortest

paths between any two neighboring candidate points. The candidate path Pc of GPS trajectory

TR is denoted Pc ¼ cs1
1 ! cs2

2 ! � � � ! csn
n , and evaluated by the spatial analysis function

FðPcÞ ¼
Pn

i¼2
Fðcsi� 1

i� 1 ! csi
i Þ. The candidate path with the highest F score is the mapping path

of trajectory TR. The travel time of the path is the time interval between trajectory points p1

and pn.

Here, we generate travel paths satisfying the following requirements: a) all trajectory points

locate in a specified area with limited space, which ensures appropriate length of each path; b)

the sequence of each group of trajectory points is time-ordered and recorded by the same GPS

receiver; and c) the time interval between consecutive trajectory points should be less than 45 s

(one or two GPS probe readings might be missed by the GPS receivers during recording, so 45

s was set to cover this error).

Detecting path with anomalous travel time

The prominent feature of a traffic anomaly is the slowed vehicle speed or the increased travel

time. Some practices only used static information, such as road attributes and speed limits to

determine whether a road segment is in anomalous traffic state. However, this kind of method

fails to discriminate non-recurring anomalies from recurring anomalies. Recurring traffic

anomalies are usually caused by the unbalanced relationship between human travel demand

and road capacity supply, which cannot be solved in a short time. On the contrary, non-recur-

ring traffic anomalies, caused by unexpected incidents, can be controlled or mitigated by

Fusing traffic information from transportation data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201531 August 2, 2018 5 / 19

https://doi.org/10.1371/journal.pone.0201531


taking proper and timely countermeasures. In this paper, we used historical records to identify

non-recurring traffic anomalies and focused only on the analysis of non-recurring traffic

anomalies. The reason we choose path travel time for anomaly detection is that road-segment-

level traffic anomalies are usually caused by ordinary variations of traffic conditions rather

than by accidental traffic events. An example of locating anomalous paths in a searching region

is illustrated in Fig 1. Searching regions with anomalous paths detected are defined as anoma-

lous regions. Because some parallel road segments in the studied high-resolution road network

belong to the same road in real life, we consider paths that pass through the same sequence of

100 m × 100 m grids as the same path. Therefore, a path within a searching region is defined

by a sequence of grids. Obviously, popular routes can have abundant travel time records.

The density based spatial clustering of applications with noise (DBSCAN) algorithm [56]

was used to cluster historical travel time records of a path. First, two input parameters, epsilon

(EPS) and minimum number of points (MinPts), were determined. The parameter EPS defines

the eps-neighborhood scope of a data point and the parameter MinPts is the minimum number

of points within the eps-neighborhood scope. According to reference [56], the value of MinPts

was set to 4, and the value of EPS was determined as follows. We calculated the EPS value for

each path every 30 minutes. The average path-travel-time records of each day in the same

30-min time intervals were grouped and normalized by the largest value during the time inter-

val. Here, only paths with more than 15 historical records at the same time interval were consid-

ered, and the distances between any two records of a group were calculated. We used Euclidean

distance to calculate the distance between the two normalized path-travel-time records t1 and t2:

distðt1; t2Þ ¼ jt1 � t2j ð4Þ

Anomalous path 1
Anomalous path 2
Anomalous path 3
Searching region
Road network
Grid

Fig 1. Example of traffic anomaly detection using taxi GPS data. Blue rectangular area confines the region for detecting anomalous paths; colored paths (red, green

and purple) illustrate anomalous paths.

https://doi.org/10.1371/journal.pone.0201531.g001
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The fourth-nearest distances of each record to other records were used to fit an exponen-

tial probability distribution function. We used the fourth-nearest distance, in which the

slope of the exponential function equals to -1, as the value of parameter EPS. For each

30-min time interval, we calculated the average path travel time hti and the standard devia-

tion σ of the largest cluster. Path travel time records exceeding hti + 3σ during the time

interval are regarded as anomalous records. Paths with anomalous travel time records are

defined as anomalous paths.

Results

Data fusion framework for physical and social transportation data

Although traffic anomalies can be identified using taxi GPS trajectory data, it is difficult to

infer the reason for such anomalies. Encapsulated with a rich description of traffic events,

Weibo messages can help understand the reason for traffic anomalies and decide what proper

countermeasures to take. Yet, there are several difficulties in mining traffic events from Weibo

data: 1) it is difficult to obtain accurate location by geocoding location entities (i.e., road

names and landmarks) of Weibo messages; 2) Weibo messages are usually posted with delay;

3) social media users have different descriptions for the same traffic event in terms of location

and influential scale.

We propose a data fusion framework to take advantage of both social media data and taxi

GPS data (Fig 2). Location entities extracted from Weibo data can be categorized into two

types: road names and landmarks. Landmarks are easy to locate because they can be confined

to a specific area. Road names, however, usually represent roads with a length of several kilo-

meters. Event location cannot be easily pinpointed using the social media information alone in

this case. To deal with this, taxi GPS data are used to identify the anomalous paths along the

studied road. First, we retrieve all road segments of the studied road by matching the road

name with the database of road information. If no record was matched, we used the location

tag or the manually identified location entity as the landmark. Second, multiple searching

regions were generated along the target road to detect traffic anomalies. If multiple roads were

recognized, we generated searching regions for each target road. For social transportation data

with only landmarks recorded, the landmark was transformed into a GPS coordinate using an

online geocoding service. A 1000 m × 1000 m rectangular area around the geocoded location

was generated as the searching region. Third, if any anomaly is detected, we regarded the

Fig 2. Framework for fusing traffic information from physical and social transportation data.

https://doi.org/10.1371/journal.pone.0201531.g002
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traffic event reported by Weibo as a non-recurring event; otherwise, we assumed that the

Weibo message referred to a recurring traffic anomaly. Finally, since traffic events reported on

social media platforms have been connected with anomalous traffic states, a piece of traffic

information with a detailed linguistic description and accurate temporal-spatial description

was obtained.

Case studies

Here, we applied the proposed data fusion framework to three traffic events reported from

Weibo messages with road names and one traffic event from Weibo messages without road

names. As shown in Table 3, Cases 1–3 include Weibo messages with road names recorded,

whereas Case 4 is a Weibo message with only the landmark recorded. Different types of traffic

events, from car crashes to disabled cars to road construction, are presented. All Weibo mes-

sages reported traffic jams, but the traffic jams are caused by different factors. We can also see

that the reasons for traffic jams are often provided in social media messages, and are helpful

for deploying effective countermeasure.

In social media messages, there are sometimes landmarks recorded to offer more descrip-

tion about the event location with road names, e.g., the landmark “Yinhu flyover” in Case 1

and the landmark “Yayuan Overpass” in Case 2. In previous studies, some researchers used

joint words, such as “from. . .to” and “between. . .and,” to identify such location information

[54,57]. However, this rule-based method lacks flexibility, and the locations may not be the

exact locations, but rather the nearest landmarks that social media users can refer to. Road

descriptions like “North Wenjin Road” can be recognized by computers, but the exact location

and influential scale of the event are unknown due to the fuzziness of human language and the

limited length of Weibo posts. Hence, we present an approach to divide a road into several sec-

tions and detect the location of anomalous sections in this study:

1. In the studied road network, critical nodes connecting more than two road segments

(neighboring critical nodes are confined to be more than 500 m apart) are used to divide

the target road into several sections. For each section, the maximum and minimum longi-

tudes and the maximum and minimum latitudes of nodes are used as geographical refer-

ences to determine the boundaries of the searching regions (Fig 3).

2. To ensure that the searching region covers all potential road segments where a traffic event

(reported in social media messages) occurred, we extend the original boundary by 100 m to

generate new searching regions.

Table 3. Three types of traffic events reported by Weibo.

Case

no.

Post time Weibo messages (translated into English) Event type

Case 1 18:41

Oct. 9

[North Central Avenue] a faulty car occupied the second lane near Yinhu

flyover (eastbound).

Disabled car

Case 2 08:14

Oct. 9

At approximately 8:10, two cars crashed in the middle lane of North Wenjin
Road near Yayuan Overpass (southbound), resulting in a traffic jam.

Car crash

Case

3–1

17:22

Oct. 9

[Meiguan Road] one lane of the ramp connecting Meiguan Road and

Caitian Road is closed due to road construction, slowing traffic.

Road

construction

Case

3–2

17:50

Oct. 9

17:45, a car crash on Meiguan Road at Nanping Bridge (southbound)

occupied the rightmost lane, slowing traffic.

Car crash

Case 4 8:59 Oct.

13

A disabled car at Caimei overpass (southbound) occupied one lane and

slowed down the traffic.

Disabled car

https://doi.org/10.1371/journal.pone.0201531.t003
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We analyzed GPS records in six 10-min time windows before and after the time window in

which the social media message was posted. The state of each searching region i in time win-

dow t can be described as

SRiðtÞ ¼
0; no anomalous path detected

1; anomalous path detected
ð5Þ

(

where t�{T − 6,. . .,T,. . .,T + 6}, with T the post-time window of the Weibo message.

We used two analytic tools, the anomaly index R and the anomaly matrix, to capture the

temporal-spatial influence caused by a traffic event, as follows.

The anomaly index R of a road segment e is defined as

Re ¼ 1 �
veðtÞ
�veðtÞ

ð6Þ

where ve(t) is the average vehicle speed of road segment e at time window t, and �veðtÞ the

monthly workday average vehicle speed of road segment e at time window t. We calculate the

values of anomaly indexes R for road segments within the searching regions, focusing only on

road segments with average vehicle speeds lower than the monthly averages. The anomaly

index R becomes larger when the vehicle speed ve(t) becomes smaller, indicating a worse traffic

situation.

The anomaly matrix is defined as

A ¼ fsritg; srit ¼ SRiðtÞ ð7Þ

where entries of anomaly matrix srit are binominal values SRi(t). Using an anomaly matrix, we

can see how many searching regions are affected in a time window, and how many time win-

dows the anomaly lasts in one searching region. The anomaly period is defined as the begin-

ning of the time when an anomaly is first detected in a searching region to the time window

when an anomaly is last detected in a searching region.

Using these methods, we analyzed Case 1–3 shown in Table 3 (Case 3 contains two Weibo

messages because they are both about the same road during the same hour). We first present

the results of a traffic anomaly caused by a disabled car on North Central Avenue. The anom-

aly index R of road segments during the Weibo post window are shown in Fig 4. The anomaly

matrix is shown in Table 4. This traffic incident was first detected in searching region SR3 at

five time windows before the Weibo message was posted. The traffic incident lasted for three

time windows in searching region SR3. After the congestion was alleviated in searching region

SR3, the anomalous traffic state spread to searching region SR2 when the Weibo message was

posted. This traffic event caused a traffic anomaly of a relatively small scale and did not mas-

sively influence the traffic conditions in the road network. It was interesting to find that the

Weibo message was posted in the last anomalous time window when traffic conditions had

begun to rehabilitate. This reveals the property of the delay of Weibo messages.

The second social transportation message recorded a traffic anomaly caused by a car crash

accident on North Wenjin Road. The influence of the car crash accident on traffic was obvi-

ously larger than the disabled car in Case 1. A traffic anomaly was first detected four time win-

dows before the Weibo post. The influence of the traffic accident was not eliminated three

time windows after the Weibo message was posted (Table 5). More seriously affected road seg-

ments were observed during the time window when the Weibo was posted. The affected road

segments were not only on the target road, but had also spread to peripheral areas (Fig 5).

We finally present a massive traffic anomaly caused by multiple traffic events on Meiguan

road. The traffic anomaly lasted for nearly 2 h and influenced traffic conditions on almost the
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entire target road (Table 6). There were two Weibo messages describing the traffic anomalies

of this road. The first message reported a traffic regulation due to road construction at time

window T, and the second message reported a car crash accident at time window T0(T + 2).

The first Weibo message was posted in the time window when the traffic state reached the

worst situation. During time window T, searching regions covering two locations referred in

the Weibo messages exhibited the most serious congestion, implying that our method can

potentially infer the event location to some degree (Fig 6).

For Weibo messages without recording road names (Case 4), we searched anomalous paths

in a 1000 m × 1000 m rectangular area. Weibo users do not report a road name of a traffic

event probably because the traffic event occurred exactly at a landmark or closely nearby. Such

a situation occurs less frequently than traffic events occurring at locations without landmarks

nearby, which can be seen in the comparison of the numbers of collected Weibo messages (99

versus 502). As shown in Table 7, the traffic anomaly completely dissipated when the Weibo

message was posted, showing that Weibo data sometimes lack time efficiency. Comparatively,

the traffic state inferred from GPS data showed an anomaly four time windows ahead of the

Weibo data and offered the spatial distribution of affected road segments (Fig 7).

Statistical analysis

As illustrated in the Case studies, we employed similar methods to analyze the identified 601

Weibo messages. There were 502 Weibo messages containing road names and 99 Weibo

100m

100m

100m

Critical nodes
Target road
Searching region
Road network

Nodes of target road

Fig 3. Illustration of method of generating searching regions. Green paths are the target road referred to in the Weibo message; blue rectangles represent generated

searching regions.

https://doi.org/10.1371/journal.pone.0201531.g003

Fusing traffic information from transportation data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201531 August 2, 2018 10 / 19

https://doi.org/10.1371/journal.pone.0201531.g003
https://doi.org/10.1371/journal.pone.0201531


messages with landmarks only, implying that road names are the easiest location entity people

can refer to. We detected non-recurring traffic anomalies for 350 of the 502 Weibo messages with

road names. Only 64 out of the 99 Weibo messages without road names could be successfully geo-

coded. The geocoding failures could be caused by the ambiguous descriptions of landmarks. The

online map service may not be able to identify the location of corresponding Point of Interest

(POI). This finding also implies that Weibo users sometimes cannot describe the location appro-

priately. Non-recurring traffic anomalies were detected in 35 of the 64 geocoded messages.

SR1

SR2

SR3

Yinhu flyover

R

0

0 - 0.3

0.3 - 0.6

0.6 - 1

North Central Avenue

Fig 4. Anomaly index of road segments within searching regions during time window when a social transportation message was posted (Case 1).

https://doi.org/10.1371/journal.pone.0201531.g004

Table 4. Traffic anomaly matrix of Case 1.

SRi(t) T−6 T−5 T−4 T−3 T−2 T−1 T T+1 T+2 T+3 T+4 T+5 T+6

SR1 0 0 0 0 0 0 0 0 0 0 0 0 0

SR2 0 0 0 0 0 1 1 0 0 0 0 0 0

SR3 0 1 1 1 0 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0201531.t004

Table 5. Traffic anomaly matrix of Case 2.

SRi(t) T−6 T−5 T−4 T−3 T−2 T−1 T T+1 T+2 T+3 T+4 T+5 T+6

SR1 0 0 1 1 1 1 1 0 1 1 0 0 0

SR2 0 0 1 1 1 1 1 0 0 0 0 0 0

SR3 0 0 0 0 1 1 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0201531.t005
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SR1

SR2

SR3

North Wenjin Road

R

0

0 - 0.3

0.3 - 0.6

0.6 - 1

Yayuan Overpass
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We focused on the efficiency of 350 detected anomalies reported by Weibo messages with

road names. The distribution of duration of anomalies is shown in Fig 8(A). More than half of

non-recurring traffic anomalies last for more than 1 h, implying that non-recurring traffic

events usually lead to severer traffic disruption. We then separated Weibo messages into three

types: 1) Weibo messages posted before a traffic anomaly; 2) Weibo messages posted during a

traffic anomaly; 3) Weibo messages posted after a traffic anomaly. Results show that only 11 of

the 350 Weibo messages were posted before a traffic anomaly, while 288 of the 350 Weibo mes-

sages were posted during a traffic anomaly. Additional efficiency analysis of GPS data and

Weibo data were carried out among 288 Cases. Most Weibo messages were posted 60 mins

after the beginning of the anomaly period [Fig 8(B)], while, from another point of view, they

are not too late because most are still 30 mins ahead of the end of the anomaly period [Fig 8

(C)]. More importantly, we calculated the time interval between the Weibo post window and

the time window with most anomalous regions [Fig 8(D)]. Most Weibo messages are posted in

or closely around the time window with the largest traffic disruption. The results show that

GPS data out-perform Weibo data in terms of time efficiency, while Weibo data can provide

supplementary information about the significant traffic disorder during the most urgent

situation.

Discussion and conclusions

In this study, we present a data fusion framework for detecting high-priority traffic informa-

tion from social transportation data. This framework incorporates several analytical tools to

capture multi-dimensional traffic anomaly information from taxi GPS data and social media

data. Case studies of different types of traffic anomalies are analyzed. The results prove the

effectiveness of our framework in evaluating the influential scale and in validating the reality

of non-recurring traffic anomalies reported by Weibo messages. Statistical analysis shows the

efficiency of our framework in capturing traffic anomalies of different scales. Weibo data then

provide valuable descriptions of traffic events to illustrate anomalies. Our framework leverages

the advantage of both physical transportation data and social transportation data and inspires

a bright future for similar research.

However, future research is required to further understand the features of different traffic

anomalies. First, the generation and dissipation of traffic anomalies are complicated processes

that vary with different triggering events. Hence, the pattern of anomalies should be analyzed

temporally and spatially to more accurately locate the incident. Second, more tools are needed

to discriminate traffic anomalies when multiple incidents occur on the same road. Finally, the

Fig 5. Anomaly index of road segments within searching regions during time window when a social transportation

message was posted (Case 2).

https://doi.org/10.1371/journal.pone.0201531.g005

Table 6. Traffic anomaly matrix of Case 3.

SRi(t) T−6 T−5 T−4 T−3 T−2 T−1 T T+1 T+2 T+3 T+4 T+5 T+6

SR1 0 0 0 0 0 0 0 0 0 0 0 0 0

SR2 0 1 1 1 1 1 1 1 0 0 0 0 0

SR3 1 1 1 1 1 1 1 1 1 1 1 1 0

SR4 0 0 0 1 1 1 1 1 1 0 0 0 0

SR5 1 1 1 1 0 0 1 1 1 0 0 0 0

SR6 0 0 0 0 0 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0201531.t006
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SR6

SR5

SR4

SR3

SR2

SR1

Nanping bridge

Meiguan road and 
Caitian road

R

0

0 - 0.3

0.3 - 0.6

0.6 - 1

Meiguan Road

Fig 6. Anomaly index of road segments within searching regions during time window when social transportation

messages were posted (Case 3).

https://doi.org/10.1371/journal.pone.0201531.g006
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Table 7. Traffic anomaly matrix of Case 4.

SRi(t) T−6 T−5 T−4 T−3 T−2 T−1 T T+1 T+2 T+3 T+4 T+5 T+6

SR1 0 0 0 1 1 1 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0201531.t007

R
0

0 - 0.3

0.3 - 0.6

0.6 - 1

Geocoded location

Caimei overpass

Fig 7. Anomaly index of road segments within searching regions during time window when a social transportation message was posted (Case 4). The blue triangle

is the geocoded location of the landmark referred in the Weibo message.

https://doi.org/10.1371/journal.pone.0201531.g007
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framework illustrated in this paper can be easily extended to multiple data sources, and can

provide richer and more accurate information about traffic anomalies.

This study mainly investigates the potential of social media data in traffic and transporta-

tion analysis. In future works, more data mining techniques can be incorporated into the pres-

ent framework to collect traffic and transportation information in an automatic manner. For

example, the transport-related Weibo messages are manually identified in this study. However,

this process can be automatically conducted using a number of classification tools (e.g. support

vector machine (SVM) [1]). In addition, named entity recognition (NER) [2] can be used to

identify location entities when no road names nor location tags are provided.

One difficulty for applying the presented framework in an automatic manner is the lack of

methods that can automatically extract the reasons of traffic events and the suggestions of travelers

from social media messages. To our best knowledge, there is no dedicated method to accomplish

this goal. Although the present study uses human resource to parse the textual information, it still

represents a feasible approach in practices. During the 19 days of data collection in Shenzhen,

totally 385 non-recurring traffic anomalies are identified. Parsing roughly 20 Weibo reports per

day will not generate too much extra work for traffic regulators, and the obtained information is

useful for understanding the reason of accidental traffic event and take suitable countermeasures.

Supporting information

S1 Dataset. The minimal dataset to replicate this study.
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3. Iqbal MS, Choudhury CF, Wang P, González MC. Development of origin-destination matrices using

mobile phone call data. Transp Res Part C Emerg Technol. 2014; 40: 63–74. https://doi.org/10.1016/j.

trc.2014.01.002

4. Lv Y, Duan Y, Kang W, Li Z, Wang FY. Traffic Flow Prediction With Big Data: A Deep Learning

Approach. IEEE Trans Intell Transp Syst. 2014; 16: 865–873. https://doi.org/10.1109/TITS.2014.

2345663
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