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Abstract

The emergence of functional specialization is a core problem in biology. In this work we

focus on the emergence of reproductive (germ) and vegetative viability-enhancing (soma)

cell functions (or germ-soma specialization). We consider a group of cells and assume that

they contribute to two different evolutionary tasks, fecundity and viability. The potential of

cells to contribute to fitness components is traded off. As embodied in current models, the

curvature of the trade-off between fecundity and viability is concave in small-sized organ-

isms and convex in large-sized multicellular organisms. We present a general mathematical

model that explores how the division of labor in a cell colony depends on the trade-off curva-

tures, a resource constraint and different fecundity and viability rates. Moreover, we con-

sider the case of different trade-off functions for different cells. We describe the set of all

possible solutions of the formulated mathematical programming problem and show some

interesting examples of optimal specialization strategies found for our objective fitness func-

tion. Our results suggest that the transition to specialized organisms can be achieved in sev-

eral ways. The evolution of Volvocalean green algae is considered to illustrate the

application of our model. The proposed model can be generalized to address a number of

important biological issues, including the evolution of specialized enzymes and the emer-

gence of complex organs.

Introduction

The division of labor and functional specialization emerge ubiquitously in different biological

systems and at different levels of life organization. For instance, the division of labor occurs in

simple multicellular individuals [1–2], such that cyanobacteria [3–4], mycobacteria [5], Volvo-

calean green algae [6–7] and multicellular yeast [8]. Various specialization patterns can be

observed in different multicellular organisms. We can underline two major directions here:

specialization in distinct somatic functions and germ-soma specialization [5–7]. In this work

we mainly focus on the emergence of germ-soma specialization.
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There are some mathematical models that try to describe the evolution of specialization

among somatic functions [5,9]. For example, Ispolatov et al. have considered the process of

formation of two-cell aggregates [5]. Each aggregate can exist either in a unicellular or in a

two-cell form. The fraction of time that a cell spends in a two-cell form is controlled by cell

stickiness, which can evolve in time. Also, each cell produces two metabolites. In a two-cell

form cells can exchange the produced metabolites with other cells, whereas a single cell cannot

be involved in such an exchange. Ispolatov et al. [5] have shown that multicellular organisms

can emerge from genetically identical ancestors and that the benefits of aggregation, achieved

through specialization in metabolites production, stimulate this emergence. This aggregation

allows increasing the dimension of phenotype space and provides new global maxima of the

fitness function. It is worth noting that the changes in cell stickiness can lead to further differ-

entiation of cell types in the colony.

Now we will discuss the main issue of our study: the emergence of germ-soma specializa-

tion [10–12]. Volvocalean green algae are the most appropriate biological system for studying

this issue [13–14]. Volvocalean green algae are flagellated photosynthetic organisms. Their

lineage contains unicellular organisms, multicellular organisms without cell differentiation,

multicellular organisms with partial specialization and multicellular organisms with full germ-

soma specialization [13]. In their seminal work, Michod et al. [14] have studied the origin of

specialization in colonies of identical cells. The fitness of the colony has been defined through

its two basic components: viability and fecundity. These authors have introduced a specific

trade-off function reflecting the intrinsic relationships that link viability and fecundity within

a given cell. This trade-off emerges due to the cells physiology and other constraints. Michod

et al. [14] have shown how the colony’s fitness can be defined using the trade-off functions of

individual cells. Their work suggests that the curvature of trade-off functions is an important

factor that influences the emergence of functional specialization. Moreover, Michod et al. [14]

have stated that small-sized colonies with low initial costs of reproduction have concave trade-

off functions at each cell; large-sized colonies require high initial costs of reproduction and,

hence, convex trade-off functions.

Solari et al. [15] have supported the idea that initial costs of reproduction play a significant

role in the process of germ-soma separation. The model proposed by these authors allows ex-

plaining the GS (undifferentiated colonies)–GS/S (colonies composed of specialized somatic

cells and unspecialized cells)–G/S (colonies with complete germ-soma specialization) form of

the complexity evolving process in Volvocalean green algae. Hallmann [16] has examined in

detail the evolution of reproductive development in Volvocalean green algae. Gavrilets [17] has

studied the emergence of germ-soma specialization via developmental plasticity. This author has

investigated how regulatory gene expressions, mutation rate, size of a colony and costs of plastic-

ity influence the dynamics of the division of labor. Willensdorfer [18] has discussed the phenom-

enon of somatic cells. No any full-terminate somatic cell can reproduce. It dies after the colony

reproduces. This means that these cells should provide some benefits to the organism in order to

justify their existence. Willensdorfer has presented a model that allows one to determine whether

somatic cells are advantageous for the organism or not, and to calculate the optimal fraction of

these cells. Solari et al. [19] have considered the problem under study using some knowledge

about different physical processes underlying the organism’s evolution. Rueffler et al. [20] have

introduced a general mathematical model of multicellular individuals. The main assumption of

the model presented in [20] is the presence of some modules that can contribute to different evo-

lutionary functions connected by a trade-off relationship. It has been shown that three factors

favor different contributions of modules to tasks–positional effects, accelerating performance

functions and interaction between modules. Despite of its generality, the model of Rueffler et al.

does not predict whether specialization emerges in the system or not.
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Several authors have developed new models based on the concept of a fitness function. In

[21–23], the models of social choice have been applied to the problem under study. It has been

shown that the use of the axiomatic approach allows one to construct different social welfare

functions that describe the types of fitness-ranking on the set of alternatives representing all

states relevant to the group. Bossert et al. [23] have suggested applying extensive social welfare

functions and using their axiomatic properties to better describe the fitness functions of colo-

nies. These authors have shown that their axioms are in complete agreement with the fact that

the emergence of germ-soma specialization is accompanied by replacing concavity by convex-

ity in the trade-off functions.

Most of the fundamental studies discussed above focus on a trade-off relationship between

the germ and somatic functions and, in particular, on how this relationship drives the emer-

gence of specialization. These studies shed light on how different model’s parameters, such as

the number of cells in the colony, different levels of regulatory genes expression or the initial

cost of reproduction, can change the shape of a trade-off relationship. There are, however,

some other factors whose impact on the germ-soma separation has not been studied in detail.

For instance, it is well known that the emergence of specialization is closely related to environ-

mental conditions [24]. More precisely, a number of empirical studies have shown that the

reproduction strategy varies in response to environmental changes [25]. Kisdi et al. [24] have

suggested that environmental conditions influence reproductive strategy of cell colonies. Also,

differences in environmental factors influence viability of the colony. If we use a trait-like fla-

gellar motility as an approximation of viability, then viability would depend on the amount of

resources dissolved in the surrounding fluid [19] and the type of environment, e.g., still or

mixed (see [26]). In [27], the rate of survival is used as an approximation of viability. In this

case, restricted resources lead to a competition between colonies and this competition influ-

ences the rates of survival of all interacting colonies. It means that there exists a relationship

linking fecundity of the colony to its viability and environmental factors.

The models described in [14–15] assume that all cells of the colony are identical and thus

have the same trade-off relationships. However, this is a very strong simplification. There are

several factors which can lead to the emergence of non-identical cells in the colony and to a

non-equivalence of cells with respect to biological functions. The first such a factor is the pres-

ence of mutations. Mutations and the natural selection trigger and drive the process of evolu-

tion. A number of important theoretical approaches to evolution are based on the process of

selection involving mutations. One of them uses the concept of adaptive dynamics, which is

derived based on the selection gradients [28–30]. Mutations occur during cell divisions and

change intrinsic structures of cells. In other words, this means that different cells can have dif-

ferent trade-off functions. Even though initially all cells in the colony are identical, the situa-

tion can changes further. For instance, Ispolatov et al. [5] have considered a model where the

genetic parameter of stickiness evolves in time and thus takes different values for different

cells. A difference between stickiness among cells within the group can lead to the emergence

of non-equivalence of cells with respect to a task and, thus, to different trade-off functions of

cells.

The second factor here is the presence of a specific developmental program which is charac-

terized by asymmetric divisions [31] (Developmental program 2 in Volvocalean green algae

[13]). The activation of the gls genes in the embryos leads to the appearance of large-small sis-

ter-cell pairs [31]. Gavrilets [17] has provided a model with two prototypes (proto-soma and

proto-germ) that can be easily linked to large-small sister-cell pairs. However, it would be also

interesting to elucidate how the number of these prototypes evolves and to develop a model

that deals with an arbitrary number of prototypes.
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The third factor here is the presence of positional effects described by Rueffler et al. [20].

More precisely, positional effects mean that the contribution of different cells to different tasks

depends on the position of each cell within the colony. For example, in Volvocalean green

algae, cells in the interior or on the edges of the colony do not need to have the same opportu-

nity to contribute to viability. Michod et al. [14] have assumed that specialization occurs first,

and pointed out that specialized germ cells are nonflagellated and thus do not contribute to

motility. These cells are located in the interior of the colony, making the colony spheroid

smaller and lowering drag. Another vision would be that if for some reason cells are located in

the interior of the colony, then it would make sense for them to become specialized in germ.

Thus, difference in cells locations generates difference in trade-off relationships among cells.

In this work we consider a colony of cells and try to understand incentives for specialization

within this colony depending on a given fitness function, encompassing different fecundity

and viability rates, and a specific resource constraint. We describe three new mathematical

models which represent some important generalizations and extensions of the core model of

Michod et al. [14]. Firstly, the colony of identical cells is studied. We examine whether the

changes in available resources and/or fecundity and viability rates can increase the number of

specialized cells in small-sized and large-sized colonies. Secondly, the colony of cells of differ-

ent types is studied. This differentiation of types may occur as a result of gene mutations, an

asymmetric division or positional effects. It corresponds to the changes in trade-off functions

between viability and fecundity within cells. We investigate whether the differentiation of

types can lead to the increase in the number of specialized cells in small-sized and large-sized

colonies. Moreover, we explore how the difference in the types of trade-off functions, available

resources or fecundity and viability rates influences the optimal number of specialized cells in

the colony. Thirdly, we describe a possible generalization of the models considered in the two

previous sections. The last section provides further discussion and presents some ideas for

future research.

Materials and methods

Optimization model for the colony of identical cells

The model. Consider a colony of N cells, with cells indexed i = 1,. . .,N. Each cell can con-

tribute to two components of fitness, viability and fecundity. Let bi be fecundity of the cell i
and vi be viability of this cell. Denote b = (b1,..,bN) and v = (v1,..,vN). Also, we assume that there

is an intrinsic relationship between viability and fecundity within each cell, called a trade-off

relationship between viability and fecundity [14]. Such a trade-off reflects the inner structure

of a cell and can be mathematically represented as

vi � φðbiÞ; for i ¼ 1; . . . ;N: ð1Þ

The function φ is the trade-off function between bi and vi. It describes the relationship

between viability and fecundity for all cells of the colony since in this model we assume that all

cells within the colony are identical (i.e., they have the same intrinsic structure).

Here we describe a set of important requirements that the trade-off function φ should sat-

isfy. First of all, we define the constant bmax2R+, such that bmax <1. This constant represents

the maximal level of fecundity achieved by a cell, which is bounded due to the cell physiology.

We assume that the contribution to fecundity provided by each cell cannot be negative. Thus,

we can describe the trade-off function as φ : ½0; bmax� ! Rþ [ f0g. For the sake of simplicity

we assume that the function φ is continuous on [0,bmax] and twice continuously-differentiable

on (0,bmax). The investment in one biological component of fitness (viability or fecundity)

detracts from the other, leading to the following property:
dφ
db < 0 for all b2(0,bmax). Also, this
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property implies that φ(bmax) = 0, φ(0) = vmax, vmax2R+ and vmax<1. This means that if a cell

makes the maximal possible contribution to one of the fitness components, its contribution to

the other component should be minimal or minimally possible (i.e., zero).

The group’s level of fecundity, B, is an additive function of variables bi, i = 1,.., N. Likewise,

the group’s level of viability, V, is an additive function of variables vi, i = 1,.., N:

B ¼
XN

i¼1

bi and V ¼
XN

i¼1

vi: ð2Þ

The additive form of the group’s fecundity seems biologically reasonable, but the additive

form of the group’s viability is more questionable. Following Michod et al. [14], we use a trait-

like flagellar motility as an approximation of viability. Hence, this additive form of the group

viability is appropriate here (further, we show that in many cases the assumption of additivity

is not necessary for the viability function).

Now we will define the fitness of the colony. The fitness function, W, should be a function

of B and V, satisfying the following properties: W(B,V) is a nonnegative function, such that W
(B,V) = 0 if and only if B = 0 or V = 0. Moreover, the fitness function should be an increasing

function on B and V for all nonnegative values of variables [14], [23]. We suggest using the fol-

lowing fitness function, satisfying the selected properties:

W ¼ BaVb; with a > 0 and b > 0: ð3Þ

First of all, note that the form (3) of the fitness function reflects the fact that both fitness

components are essential for the colony’s evolution and survival [5]. Furthermore, this form of

fitness implies the following essential property [14]. Assume that the colony consists of two

cells only: one cell has a high level of viability and a low level of fecundity, while the other cell

has a low level of viability and a high level of fecundity. Each cell by itself has a low fitness, but

together within the colony, the cells can interact with each other, hence, achieve a higher level

of fitness. Moreover, the form (3) of the fitness function is a generalization of the fitness func-

tions that have been considered in a number of recent works [14], [15], [26], and [27]. For

example, with α = β = 1, we get the fitness function that has been considered by Michod et al.

[14]. If the parameters α and β are interpreted as inverses of the time for growth, we get the fit-

ness function proposed by Maliet et al. [27], where the time for growth represents the time that

the cell is growing during its life cycle. If the parameter α is interpreted as an inverse of the

generation time, we get the fitness function introduced by Solari et al. [15]. Another interpreta-

tion of these parameters stems from Herron et al. [26]. These parameters reflect the ‘impor-

tance’ of the fecundity and viability contributions correspondingly to the fitness of the colony.

They can be also viewed as the rates of fecundity and viability, respectively. Herron et al. [26]

have considered the population of Volvocalean green algae in mixed and still environments.

Still environment can be seen as an environment in which viability (i.e., motility) is supposed

to be more important than in a mixed environment. This means that the value of the exponent

β in still environment should be higher than that in mixed environment.

We will now introduce the parameter C as the amount of resources available to the colony.

It would be reasonable to assume that in some cases the amount of available resources is gre-

ater than the amount of resources sufficient for the colony’s well-being (i.e., the environment

does not restrict the colony’s well-being and does not influence its optimal reproductive strat-

egy or motility). Thus, we can represent the relationship between fecundity, viability and
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environmental factors using the following inequality:

f ðB;VÞ � C: ð4Þ

For the sake of simplicity, we assume that the function f has the following linear form:

k1Bþ k2V � C: ð5Þ

Inequality (5), as well as its parameters, has simple biological interpretations. Since C repre-

sents the amount of resources available to the colony and there are only two components of

fitness, fecundity and viability, it is natural to assume that the colony divides the resource C
between these two components. The parameter k1 represents the amount of resources neces-

sary to produce one unit of fecundity and k2 represents the amount of resources necessary to

produce one unit of viability. Obviously, k1 > 0, k2 > 0 and C> 0.

We can now formulate mathematically the fitness optimization problem. Consider a colony

of identical cells. Each cell can contribute to fecundity and viability. For each cell there is an

intrinsic relationship (trade-off) that links fecundity and viability. For all cells this relationship

is the same due to the fact that the cells are identical. Further in this section, we assume that

the trade-off constraints (1) are binding for all cells of the colony. The case of binding trade-off

constraints is accounted for by changing inequalities by equalities (i.e., vi = φ(bi)) in (1). In the

following sections we will show how the solution of our problem changes if the assumption of

binding trade-offs is ruled out. The fitness of the colony can be described by Eq (3). This equa-

tion takes into account the ‘importance’ of each component of the fitness measurement. Also,

there is a composite resource consumed by a colony that affects the colony’s well-being accord-

ing to Inequality (5). The colony’s optimal strategy, (b�,v�), consists of maximizing the fitness

of the colony subject to all restrictions and conditions mentioned above (note that we can

search for b� only because v� can be calculated directly from b� using the trade-off function).

Thus, we obtain the following mathematical programming problem:

W ¼
XN

i¼1

bi

 !a
XN

i¼1

vi

 !b

! maxb;v

vi ¼ φðbiÞ; i ¼ 1; . . . ;N;

k1

XN

i¼1

bi þ k2

XN

i¼1

vi � C;

bi � 0; vi � 0; i ¼ 1; . . . ;N:

: ð6Þ

8
>>>>>>>>>>><

>>>>>>>>>>>:

Our goal here is to find the set of all optimal fitness strategies for a given colony and make

conclusions about its specialization. According to [14], the cell i specializes in soma if and only

if vi = vmax, and the cell i specializes in germ if and only if bi = bmax.

The curvature of trade-off functions is one of the key parameters of functional specializa-

tion. According to Michod et al. [14], this curvature is concave in small-sized colonies and

becomes gradually convex as the size of the colony increases. Initial cost of reproduction influ-

ences the curvature of the trade-off function, making it more ‘convex-like’ [14]. In the next

sub-section we provide general statements characterizing our model, which hold for colonies

of any size. Further we describe how these statements work with different types of trade-off

functions: convex (for large-sized colonies), linear and concave (for small-sized colonies).

General statements. In this and the next sections we assume that the domain of Problem

(6) is nonempty, i.e., we consider an environment, such that the amount of composite res-

ources available in this environment is sufficient for the colony in order to live and reproduce.
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There are three possible cases when looking for the solution of Optimization Problem (6).

Consider the problem of optimization of the fitness function with respect to given trade-off

constraints. After adding to it the resource constraint, we get Problem (6). Two cases are possi-

ble here: (a) the addition of the resource constraint does not change the solution of the prob-

lem under study (we call it Case 1) and (b) this addition changes the solution of the problem

under study. Let us describe in more detail the case (b). Assume that we have no any trade-off

constraint, and the only constraint available is the resource constraint (5) (of course, we also

assume that B> 0 and V> 0). In this case we can find the set O of all optimal strategies of the

colony. After that, we add the trade-off constraints expressed as equalities, and thus get Prob-

lem (6). Obviously, some points of the set O might be unattainable due to the trade-off con-

straints. Let A be the set of points from O that remain attainable after adding these constraints.

Two cases are possible here (we call them Cases 2 and 3 correspondingly). Case 2: the set A is

nonempty. It means that the trade-off constraints influence the set of all optimal strategies

(because they reduce O to A), but do not influence the optimal value of fitness. The only con-

straint that influences the optimal value of fitness is the resource constraint. Case 3: the set A
is empty. It means that the trade-off constraints influence both the set of all optimal strategies

and the optimal value of fitness. Here, both the trade-off and resource constraints have impact

on the optimal value of fitness. Clearly, the addition of the trade-off constraints leads to a dec-

rease in the optimal value of the fitness function. Further we provide a more formal description

of Cases 1–3. The proofs of all our results are presented in Appendices A and B in S1

Appendix.

Case 1. This case implies that the resource constraint does not influence the colony’s well-

being. This means that we have a resource restriction such that an optimal fitness strategy for

the colony without any resource restriction continues to be available to the colony regardless

of environmental constraints.

Case 2. Consider the following set of fecundity values:

A ¼ b 2 RN j0 � bi � bmax
i;BðbÞ ¼

C
k1 1þ b

a

� � and VðbÞ ¼
C

k2 1þ a

b

� �

8
<

:

9
=

;
: ð7Þ

The second case implies that the resource constraint influences the colony’s well-being and

that the set A is not empty. Under this assumption, the set A is the solution of Optimization

Problem (6). In Appendix B in S1 Appendix we prove that the elements of the set A (and only

these elements) represent the solution of Problem (6). Moreover, we can calculate the maxi-

mum fitness W� that the colony can reach (i.e., the optimal fitness that the colony can reach by

choosing any reproductive strategy from the set A):

W� ¼
a

k1

� �a
b

k2

� �b c
aþ b

� �aþb

: ð8Þ

We can conclude that the optimal viability and the optimal fecundity of the colony increase

as the amount of available resources increases. The optimal fecundity of the colony decreases

as the amount of resources necessary to produce one unit of fecundity, i.e., the variable k1,

increases. The optimal viability of the colony decreases as the amount of resources necessary

to produce one unit of viability, i.e., the variable k2, increases. The optimal fecundity of the col-

ony increases and the optimal viability of the colony decreases as the relative ‘importance’ of

fecundity to viability increases.

Thus, the best fitness the colony can get is an increasing function of the amount of available

resources and a decreasing function of the amount of resources necessary to produce one unit
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of fecundity (or one unit of viability). The relationship between the optimal fitness and the

parameters α and β is more complex. It is obtained by taking the following derivative:

@W�

@a
¼W� ln

C
k1

a

aþ b

� �� �

: ð9Þ

So, we can conclude that the optimal fitness is an increasing function of the ‘importance’ of

fecundity if and only if

k1

C
1þ

b

a

� �

< 1: ð10Þ

In other words, the optimal fitness increases as the ‘importance’ of fecundity increases if

and only if the relative ‘importance’ of fecundity is high and the amount of recourses necessary

to produce one unit of fecundity, expressed in terms of all available resources, is low (i.e., it is

not very expensive to produce a unit of fecundity and the ‘importance’ of fecundity is high).

Let us now consider the solutions of our problem, i.e., the set A. It has the following struc-

ture: the set A consists of a number of subsets; each of these subsets is a connected set; any two

of these subsets have no intersection. The model is robust within each optimal subset, and the

colony under study has more opportunities for adaptation because some of its cells can change

slightly their optimal contributions to viability and fecundity without loss in fitness. In all opti-

mal subsets, the levels of fecundity and viability of each cell are located in limited ranges, spe-

cific to each cell. This result reflects the fact that some cells in the colony may lose the potential

ability to achieve, for example, a high level of fecundity, but they do not lose their capacity to

perform a reproductive function. This case corresponds to an intermediate state between

unspecialized colonies and full-specialized multicellular organisms.

Case 3. The third case implies that the resource constraint influences the colony’s well-

being and the set A is empty. Here the mathematical solution becomes more complex and

depends on the parameters of the model (for more details, see Appendix B in S1 Appendix).

Further we show that this case provides the strongest incentives for the emergence of speciali-

zation in small-sized colonies and damages specialized structures in large-sized colonies.

In the next sections we will describe how our model can be applied in the context of different

curvatures of trade-off functions. Moreover, we will present the set of all solutions of our mathe-

matical programming problem using 3-D plots. In these plots we assume that we have three

groups of cells within the colony such that all cells from each group contribute to the same levels

of fecundity and to the same levels of viability (in other words, we have three ‘aggregate’ cells in

the colony). This assumption is used to illustrate our general results graphically.

It is worth noting that our general results presented in this sub-section also hold for non-

additive forms of the viability function. In Appendix B in S1 Appendix we provide a general

proof of these results, which works for both additive and non-additive viability functions.

Moreover, following Michod et al. [14], we can conclude that all theoretical results regarding

the convex form of the viability function presented in this paper hold as well without the

assumption of additivity (for more details see the sub-section Convex trade-off).

Convex trade-off. Assume that the trade-off function φ(b) is strictly convex on its domain.

Case 1. In this case an optimal strategy b� implies that all cells (or all cells but one) should

be specialized. According to the model introduced by Michod et al. [14], with α = β = 1, a half

of the cells should specialize in germ and a half in soma. Thus, our model can be viewed as a

generalization of the model formulated in [14]. In our model, the number of cells specialized

in germ (soma) depends on the ratio (α/β). For the colonies with a high relative importance of

fecundity, the ratio (α/β) is high and, hence, reproductive cells are beneficial. For the colonies
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with a low relative importance of fecundity, the ratio (α/β) is low and, hence, somatic cells are

beneficial. This theoretical observation is supported by the empirical fact that in still environ-

ment (i.e., when viability is more important than fecundity) the number of somatic cells is gen-

erally higher than in mixed environment [26].

This case is illustrated in Fig 1. We will show how the solutions of the problem change in

response to decreasing the ratio α/β. To do so, we assume that all other parameters of our

model are fixed. In Fig 1 (panel a) fecundity is more important than viability, and in Fig 1

(panel b) viability is more important than fecundity. In each panel of Fig 1 the domain of the

corresponding sub-problem of Problem (6) is plotted in the (b1, b2, b3) space and the corre-

sponding solution is depicted. Here each axis represents a reproductive effort of some ‘aggre-

gate’ cells of the colony. Since we are in Case 1, the resource constraint does not influence the

colony’s well-being. Consequently, only the trade-off constraints determine the domain of

Problem (6). In the selected space these constraints form the cube [0, bmax]3. We can see that

in both panels of Fig 1 there exist three optimal strategies and within each of these strategies

the colonies are full-specialized. The difference in the value of the (α/β) ratio leads to the differ-

ence in the number of ‘aggregate’ cells specialized in a specific fitness component. Thus, in Fig

1A with a large value of the ratio (α/β), each optimal strategy implies that two “aggregate” cells

should specialize in germ, and one in soma. On the opposite, in Fig 1B with a small value of

the ratio (α/β), each optimal strategy implies that only one ‘aggregate’ cell should specialize in

germ, and two in soma.

Case 2. Fig 2 illustrates this case. In this case the set A represents the solution of the problem

under study. Clearly, the geometry of A depends on the value of the ratio (α/β). Since we are in

Case 2, the resource constraint defines the domain of Problem (6) along with the trade-off con-

straints. Graphically, it means that the resource constraint truncates the trade-off cube so that

the domain of Problem (6) is a truncated cube whose corners are cut out. The case presented

Fig 1. Evolution of germ and soma in colonies with identical cells: A convex trade-off, a resource constraint and different

‘importances’ of viability and fecundity (Case 1). Here we assume that we have three groups of cells within the colony such that all cells

from each group have the same level of fecundity and the same level of viability (i.e., we have three ‘aggregate’ cells in the colony).

Optimal strategies of the colony are colored in red. The level of specialization in soma and germ depends on the relative ‘importance’ of

fecundity to viability. In both panels, k1 = k2 = 1, α = 1, C = 4 and φ = (b-1)2. In panel (a), β = 0.5. In panel (b), β = 2.

https://doi.org/10.1371/journal.pone.0201446.g001
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in Fig 2 can be derived from the case presented in Fig 1 by reducing the amount of available

resources. Thus, in Fig 2B viability is more important than in Fig 2A. In both cases, the set of

optimal solutions (set A) consists of three disconnected subsets (they are colored in red). The

difference between Fig 2A and 2B is that the optimal contribution of the colony to viability in

Fig 2B is higher than in Fig 2A (i.e., in Fig 2B more cells are predisposed to the soma specializa-

tion than in Fig 2A). It is worth noting that at most one ‘aggregate’ cell can be specialized here.

Case 3. Fig 3 illustrates this case. We will show that Case 3 emerges either in a good environ-

ment and is then characterized by a non-zero level of specialization at the optimum or in a bad

environment and is then characterized by an unspecialized optimal strategy. Since we are in

Case 3, the domain of Problem (6) is still a truncated trade-off cube in the space (b1, b2, b3).

First of all, consider the case presented in Fig 3A. It can be derived from the case presented in

Fig 2B in the following way. Consider the case illustrated in Fig 2B. Suppose that the ‘importance’

of viability increases in a way that the set A becomes empty. In this case, the optimal strategies of

the colony include the points from the set of all available strategies of the resource constraint sur-

face, such that they are the closest to the following set: b 2 RN jBðbÞ ¼ C
k1 1þ

b
að Þ

� �

(this set is de-

picted in Fig 3A; geometrically, it represents a simplex inside the truncated cube; this simplex has

no intersections with the boundary of the truncated cube formed by the resource constraint). On

one hand, this leads to a loss in fitness, but on the other hand, to an increase in specialization. We

can see that there are three optimal strategies here. Each of them requires exactly two ‘aggregate’

cells to specialize in soma. Thus, the level of specialization of the colony increases. This case can

occur during the evolution of Volvocalean green algae, when soma has to evolve first [15]. Hence,

the functional specialization in Volvocalean green algae has the following form: GS (unspecialized

colonies)–GS/S (specialization in soma only)–G/S (fully specialized colonies). Moreover, this case

shows that the evidence that the process of transition goes through the path GS–GS/S can be

explained not only in terms of enhancing the colony size [15]. Consider the following fitness

Fig 2. Evolution of germ and soma in colonies with identical cells: A convex trade-off, a resource constraint and different

‘importances’ of viability and fecundity (Case 2). Here we assume that we have three groups of cells within the colony such that all cells

from each group have the same level of fecundity and the same level of viability (i.e., we have three ‘aggregate’ cells in the colony). Optimal

strategies of the colony are colored in red. The level of specialization in soma and germ within the set A depends on the relative ‘importance’

of fecundity to viability. In both panels, k1 = k2 = 1, α = 1, C = 2.85 and φ = (b-1)2. In panel (a), β = 0.5. In panel (b), β = 2.

https://doi.org/10.1371/journal.pone.0201446.g002
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function, originally studied in [15], which is a special case of the fitness function (3),

W ¼ BVT : ð11Þ

Let us now assume that initially we had a low generation time (T) and a resource constraint

similar to that presented in Fig 2B. Furthermore, we suppose that the structural complexity of

the colony evolves (without changes in its size). It requires colony to reproduce the structure

that becomes more complex and, consequently, can lead to an increase in generation time.

Therefore, we get the case illustrated in Fig 3A, when soma has to evolve first.

The case presented in Fig 3B can be derived from the case presented in Fig 3A in the follow-

ing way. Let us consider the case illustrated in Fig 3A. We assume that the amount of available

resources C decreases significantly so that the resource constraint becomes so strong that it is

now the only factor that influences the domain of Problem (6). Geometrically, it means that

the truncated cube formed by the intersection of the trade-off and resource constraints is tra-

nsformed into a ball determined by the resource constraint only. In this case, the beneficial

soma-specialized strategies become unreachable to the colony, which becomes unspecialized.

This means that the changes in structural complexity in unspecialized large-sized colonies can

lead to the emergence of soma specialization (Fig 3A) as well as to unspecialized states in the

case of environmental quality degradation (Fig 3B).

Linear trade-off. Let us now assume that the trade-off function φ(b) is linear and has the

following form:

φðbÞ ¼ vmax � gb; where g > 0: ð12Þ

A linear function is the simplest type of trade-off function which can be considered. Due

to its simplicity, there are fewer effects that occur for this curvature of the trade-off func-

tion. For instance, Case 2 discussed in the previous sub-section does not take place here for

most of the parameter values. Moreover, the resource constraint (5) can be represented

Fig 3. Evolution of germ and soma in colonies with identical cells: A convex trade-off, a resource constraint and different

‘importances’ of viability and fecundity (Case 3). Here we assume that we have three groups of cells within the colony such that all cells

from each group have the same level of fecundity and the same level of viability (i.e., we have three ‘aggregate’ cells in the colony). Optimal

strategies of the colony are colored in red. The evolution of structural complexity in unspecialized large-sized colonies can lead to the

emergence of soma specialization (panel (a)) as well as to unspecialized optimal states in the case of environmental quality degradation

(panel (b)). In both panels, k1 = k2 = 1, α = 1 and φ = (b-1)2. In panel (a), β = 4 and C = 2.85. In panel (b), β = 4 and C = 2.5.

https://doi.org/10.1371/journal.pone.0201446.g003
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under the following form

B� signðk1 � k2gÞ �
C � k2Nvmax

jk1 � k2gj
: ð13Þ

Case 1. The colony of cells behaves as a single cell as in [14]. The maximum fitness is

obtained for all strategies b�, 0� bi� � bmax, such that:

Bðb�Þ ¼
Nbmax

1þ b

a

: ð14Þ

The maximum fitness is equal to

W� ¼
N

aþ b

� �aþb

ðabmaxÞ
a
ðbvmaxÞ

b
: ð15Þ

The necessary and sufficient condition for the emergence of this case is the following

C �
a

aþ b
k1Nbmax þ

b

aþ b
k2Nvmax ð16Þ

This inequality suggests that the resource constraint does not influence the colony’s well-

being if and only if the amount of available resources is sufficient to produce some fractions of

the maximal possible values of the colony’s fecundity and viability. These fractions are propor-

tional to the ‘importance’ of fecundity and viability, respectively.

This situation is illustrated in Fig 4A. Since we consider Case 1, the domain of Problem (6)

is the trade-off cube. The solutions of this problem can be found using Eq (14). Geometrically,

Fig 4. Evolution of germ and soma in colonies with identical cells: A linear trade-off, a resource constraint and different

‘importances’ of viability and fecundity. Here we assume that we have three groups of cells within the colony such that all cells from each

group have the same level of fecundity and the same level of viability (i.e., we have three ‘aggregate’ cells in the colony). In panel (a), Case 1

is illustrated. In panel (b), Case 3 is illustrated. With a linear trade-off there is no Case 2 in the model (i.e., it means that the set of

parameters that lead to Case 2 in the space of all possible parameters is a set of measure zero). Optimal strategies of the colony are colored

in red. With a linear trade-off, identical colony behaves as a single cell. In all panels, α = 1, β = 2, k1 = 1, C = 4 and φ = 1-b. In panel (a), k2 =
1. In panel (b), k2 = 2.

https://doi.org/10.1371/journal.pone.0201446.g004
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the solutions are located on the intersection of the trade-off cube and a plane determined

using Eq (14). This intersection forms a simplex inside the cube. Each strategy from this sim-

plex will be optimal. We can see that in this case the specialized states are optimal as well as

unspecialized ones.

Case 3. The colony of cells behaves as if it was a single cell too. The maximum fitness is

obtained for all strategies b�, 0� bi� � bmax, such that:

Bðb�Þ ¼
C � k2Nvmax

k1 � k2g
: ð17Þ

The maximum fitness here is as follows:

W� ¼
C � k2Nvmax

k1 � k2g

� �a k1Nvmax � gC
k1 � k2g

� �b

: ð18Þ

The necessary and sufficient condition for the emergence of this case is the following:

minfk1Nbmax; k2Nvmaxg � C <
a

aþ b
k1Nbmax þ

b

aþ b
k2Nvmax: ð19Þ

It is worth noting that if the left-hand side of this inequality does not hold, the colony has

no possibility to survive. Also, if k1bmax = k2vmax, Inequality (19) does not hold hence Case 3

does not occur here.

Case 3 is illustrated in Fig 4B. In the linear case the resource constraint is represented by a

plane (see Eq 13). This plain cuts out a part of the trade-off cube thereby forming the domain

of Problem (6). Moreover, all the states from the intersection of the trade-off cube, and the

resource plane are optimal. As in Case 1, the colony can be unspecialized in some optimal

states and some level of specialization can occur in the other optimal states. Thus, we can con-

clude that the solution structures of a linear trade-off model do not alter with the changes in

the model’s parameters and that there is no major difference between Cases 1–3 here.

Concave trade-off. Let us assume that the trade-off function φ(b) is strictly concave on its

domain.

Case 1. Here we consider the strategy that implies that each cell in the colony has the same

level of fecundity (i.e., the same level of viability) b�, such that:

dφ
db
ðb�Þ ¼ �

a

b

Vðb�Þ
Bðb�Þ

: ð20Þ

It is easy to show that there is a single point b� satisfying Eq (20), such that 0< b� < bmax.

Moreover, this point represents the single optimal strategy of the colony at hand. Eq (20) can

be rewritten in the following way:

εVBðb�Þ ¼
dVðb�Þ
dBðb�Þ

�
Bðb�Þ
Vðb�Þ

¼ �
a

b
: ð21Þ

The parameter εVB is the elasticity of the group’s viability relative to fecundity. Thus, the

optimal strategy for the colony requires the elasticity of the group to be equal to the relative

‘importance’ of viability to fecundity. This means that at the optimum, in order to increase the

group’s viability by one percent, it is necessary to decrease the group’s fecundity by the relative

‘importance’ of viability to fecundity percent.

Let us now consider Fig 5. The two panels of this figure show how the model’s solution vary

with respect to the changes in the (α/β) ratio. Since we are in Case 1, the domain of Problem 6
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is a trade-off cube. According to Eq (20), the problem’s solution should be located on the main

diagonal of the cube. In panel (a) of Fig 5 fecundity is more important than in panel (b). Thus,

Fig 5A illustrates a case where, at the optimum, cells invest more in fecundity than in Fig 5B.

Case 2. The set A represents the solution of the problem under study. Fig 6 shows how the

solution of the problem varies in response to the changes in the parameters. Consider panel (a)

first. The resource constraint truncates the trade-off cube, thereby forming the domain of

Problem (6). In this case viability is less ‘important’ than fecundity. Also, more resources for

producing one unit of fecundity than for producing one unit of viability are required (due to

this fact the truncated cube is asymmetrical and only one of its corners is cut out). We can see

that the optimal solutions here form a connected set of unspecialized states (set A). Graphi-

cally, this set is located on the intersection of a part of the domain boundary defined by the

resource constraint and the plane that provides the optimum of the fecundity function. The set

A embodies the opportunities for adaptation for the colony at hand. If the relative importance

of fecundity to viability grows (when the amount of available resources decreases slightly), we

have the case shown in Fig 6B, where the specialization occurs. This is an extreme sub-case of

Case 2, where the set A corresponds to a three-point set. The case presented in Fig 6B can be

characterized by the two following properties. On one hand, the fecundity production requires

more resources than the production of viability. On the other hand, fecundity yields signifi-

cantly more benefits than viability. The emergence of specialization here is a consequence of

the trade-off between the production difficulties and the fitness benefits of fecundity.

Case 3. We describe a general principle of finding solutions here: optimal strategies are the

available strategies from the resource constraint surface such they yield the same level of total

fecundity, and this level is the closest one to the total fecundity plane surface for the set A:

b 2 RN jBðbÞ ¼ C
k1 1þ

b
að Þ

� �

, among all available strategies belonging to the resource constraint

Fig 5. Evolution of germ and soma in colonies with identical cells: A concave trade-off, a resource constraint and different

‘importances’ of viability and fecundity (Case 1). Here we assume that we have three groups of cells within the colony such that all

cells from each group have the same level of fecundity and the same level of viability (i.e., we have three ‘aggregate’ cells in the colony).

Optimal strategies of the colony are colored in red. In both panels, the colonies have a unique optimal strategy and the specialization

does not occur. The contribution of the colony to the fitness components depends on the relative importance of fecundity to viability. In

both panels, α = 1, φ = 1-b2, C = 8, k1 = 2 and k2 = 1. In panel (a), β = 0.5. In panel (b), β = 2.

https://doi.org/10.1371/journal.pone.0201446.g005
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surface defined by the equation k1B+k2V = C. Fig 7 illustrates this case and shows that unspe-

cialized states can be optimal as well as strategies with some level of specialization. Here the

Fig 7. Evolution of germ and soma in colonies with identical cells: A concave trade-off, a resource constraint and different

‘importances’ of viability and fecundity (Case 3). Here we assume that we have three groups of cells within the colony such that all cells

from each group have the same level of fecundity and the same level of viability (i.e., we have three ‘aggregate’ cells in the colony). Optimal

strategies of the colony are colored in red. Unspecialized states (panel (a)) can be optimal as well as strategies with some level of specialization

(panel (b)). Significant resource constraint (panel (b)) is one of the main reasons for the emergence of specialization in small-sized colonies.

In both panels, α = 1, φ = 1-b2 and k2 = 1. In panel (a), β = 2, C = 5 and k1 = 2. In panel (b), β = 1, C = 3.12 and k1 = 1.

https://doi.org/10.1371/journal.pone.0201446.g007

Fig 6. Evolution of germ and soma in colonies with identical cells: A concave trade-off, a resource constraint and different

‘importances’ of viability and fecundity (Case 2). Here we assume that we have three groups of cells within the colony such that all cells

from each group have the same level of fecundity and the same level of viability (i.e., we have three ‘aggregate’ cells in the colony). Optimal

strategies of the colony are colored in red. In panel (a) the optimal solutions represent a connected set (set A) of unspecialized states that

provides opportunities for adaptation for the colony at hand. In panel (b), the set A is a three-point set. The trade-off between the production

difficulties and the fitness benefits of one fitness component (panel (b)) is one of the main reasons for the emergence of specialization in

small-sized colonies. In both panels, α = 1, φ = 1-b2, k1 = 2 and k2 = 1. In panel (a), β = 0.5 and C = 5.5, In panel (b), β = 0.25 and C = 5.

https://doi.org/10.1371/journal.pone.0201446.g006
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domain of Problem (6) is an intersection of the trade-off cube and the resource constraint sur-

face. Also, in Fig 7 we show the total fecundity plane of the set A in order to illustrate the gen-

eral principle of finding optimal solutions in this case. The case presented in Fig 7A can be

derived from the case presented in Fig 6A in the following way. Let us consider the case illus-

trated in Fig 6A. We suppose that the ‘importance’ of viability increases in a way that viability

becomes more important than fecundity and the amount of available resources decreases

slightly, as in the case illustrated in Fig 6B. Because the fecundity production requires more

resources than the production of viability, and viability yields more benefits than fecundity,

there is no trade-off between the production complexity and the fitness benefits of fecundity

or viability. It implies that the colony has no incentive to reorganize the optimal structure of its

contributions to the fitness components (i.e., the colony remains unspecialized). In Fig 7B

another way of emergence of specialization is illustrated. Here we have the case where k1 = k2

= 1 and α = β = 1. This means that fecundity and viability have the same contribution to fitness

and require the same amount of resources for production. Also, here we have a very low level

of resources available (geometrically, it means that the resource constraint is so strong that

only the eight corners of the trade-off cube constitute the problem domain). In this case the

specialization occurs in response to a bad environmental quality. In order to survive and

adapt, cells within the colony have to redistribute their efforts in a way that some of them

become specialized.

Optimization model for the colony of cells of different types

The model. In this section we will show how Optimization Problem (6) can be further

generalized. In Problem (6) only identical cells are considered. Here we assume that some cells

of the colony are not equivalent with respect to a given function (viability or fecundity) due to

mutations, a specific developmental program or positional effects. This non-equivalence of

cells can be expressed via the difference in the trade-off functions among cells of the same col-

ony:

vi ¼ φiðbiÞ; for i ¼ 1; . . . ;N: ð22Þ

Thus, each cell of the colony will have its own trade-off function, such that bmax
i 2 Rþ,

bmax
i <1 and φi : ½0; bi

max� ! Rþ [ f0g. As previously, we assume that all functions φi are

continuous on ½0; bmax
i �, twice continuously-differentiable on ð0; bmax

i Þ,
dφi
dbi
< 0 for all

bi 2 ð0; bmax
i Þ, and φiðb

max
i Þ ¼ 0, φið0Þ ¼ vmax

i , vmax
i 2 Rþ and vmax

i <1. We say that two cells

have different types if and only if they have different trade-off functions. Thus, we can formu-

late the fitness optimization problem for the colony of cells of different types by replacing the

trade-off functions of form (1) by those of form (22).

By solving Problem (6) with different types of trade-offs, we determine how positional

effects, the ‘importance’ of tasks and the resource constraint influence the optimal strategy of

the colony and its incentives to specialization. It is worth noting that the results provided in the

sub-section General statements of the previous section are generic and hold for the optimization

model with different types of cells too (see Appendix B in S1 Appendix for more details). Below,

we describe how these general statements can be illustrated under different curvatures of trade-

off functions which are due to the presence of positional effects. More precisely, we will discuss

Case 1 only for each curvature, because all other cases (except Case 2 for linear trade-offs) pre-

serve all qualitative results and properties of the model presented in the previous section. In

other words, there are some factors that favor the evolution of division of labor. These factors

emerge due to the resource constraint and different ‘importances’ of viability and fecundity (we

described them in the previous section). Here we show only the specific effects of different

Modeling functional specialization of a cell colony under different fecundity and viability rates

PLOS ONE | https://doi.org/10.1371/journal.pone.0201446 August 8, 2018 16 / 27

https://doi.org/10.1371/journal.pone.0201446


trade-off functions (but still with different ‘importances’ of viability and fecundity). Cases 2 and

3 of the current model combine the properties of Cases 2 and 3 of the model presented in the

previous section and those of Case 1 described in the next sub-section.

Convex trade-offs. Let us assume that all trade-off functions are strictly convex on their

domains.

Case 1. In this case an optimal strategy b� implies that all cells, or all cells except one, should

be specialized and that the number of cells specialized in germ (or soma) depends on cells posi-

tional effect and on the ratio (α/β). To show it, we follow the elegant and simple arguments

provided in [14]. Consider an arbitrary strategy b = (b1,. . .,bi,. . .,bj,. . .,bN), where two cells, i
and j, have intermediate fecundities, bi 2 ð0; bmax

i Þ and bj 2 ð0; bmax
j Þ. For any positive real

number ε, such that 0 < ε < minfbi; bj; bmax
i � bi; bmax

j � bjg, we consider two new strategies

b1 = (b1,. . .,bi–ε,. . .,bj+ε,. . .bN) and b2 = (b1,. . .,bi+ε,. . .,bj–ε,. . .bN). We can see that Bα(b) =

Bα(b1) = Bα(b2), and due to the strict convexity of V, we can conclude that 2V(b)<V(b1)+V(b2).
Thus, either Vβ(b)<Vβ(b2) or Vβ(b)<Vβ(b2). It means that either W(b)<W(b1) or W(b)<W
(b2). Therefore, we showed that the strategy b is not optimal. Importantly, we did not specify

the form of V in this proof, but required only the strict convexity of all trade-off functions. It

means that this result holds for non-additive viability functions as well.

This case is illustrated in Fig 8A and 8B. In Fig 8A, viability is more ‘important’ than fecun-

dity and the third ‘aggregate’ cell is more predisposed to fecundity-performing. Therefore, an

optimal strategy for the first and the second “aggregate” cells consists in the soma specializa-

tion, while the third cell should be specialized in germ. If the ‘importance’ of viability decreases

so that fecundity becomes more “important” than viability, then we get the case illustrated in

Fig 8B. Here the third cell remains specialized in germ due to positional effects. The increase

in the ‘importance’ of viability forces the first, or the second, “aggregate” cell to switch its spe-

cialization from viability to fecundity.

Linear trade-offs. Let us assume that all trade-off functions are linear. Thus, they have the

following form:

φiðbiÞ ¼ vi
max � gibi; Where gi > 0; i ¼ 1; . . . ;N: ð23Þ

Case 1. We assume that all parameters γi (i = 1,. . .,N) are different. We call this property

“the assumption of strong differentiation of types”. In this case an optimal strategy b� implies

that all cells, or all cells except one cell, are specialized. Moreover, this optimal strategy is

unique, and the cells that specialize in germ are those with the lowest γi, while the cells that spe-

cialize in soma are those with the highest γi. To show this, we follow the approach provided in

[14]. First of all, we can reformulate Problem (6) with different types of trade-offs, by replacing

the original objective function: W= BαVβ, by the following function: W 0 ¼ B
a
bV . Now we can

consider an equivalent mathematical programming problem, in which for all feasible fecundity

strategies b and b1, we have W(b1)–W(b)>0 if and only if W'(b1)–W'(b)>0. Let us consider an

arbitrary strategy b = (b1,. . .,bi,. . .,bj,. . .,bN), where two cells, i and j, such that γi< γj, have

fecundities, bi 2 ½0; bmax
i Þ and bj 2 ð0; bmax

j �, respectively. Let us now select a real number ε,

such that 0 < ε < minfbj; bmax
i � big. If cell i increases its fecundity, while cell j decreases its

fecundity, by the same amount ε, then the total fecundity of the colony does not change. How-

ever, the viability of the colony increases, and as a result, its fitness increases as well. More for-

mally, we consider a new strategy b1 = (b1,. . .,bi+ε,. . .,bj–ε,. . .,bN). Because B
a
bðbÞ ¼ B

a
bðb1Þ, we

obtain: W 0ðb1Þ � W 0ðbÞ ¼ B
a
bðbÞ � ðgj � giÞ � ε > 0. It means that W(b1)–W(b)>0. Conse-

quently, the strategy b is not optimal. Using similar arguments, we can prove that the solution

of this problem is unique.
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Fig 8. Evolution of germ and soma in colonies with: Positional effects, different curvatures of trade-off functions

and different ‘importances’ of viability and fecundity (Case 1). Here we assume that we have three groups of cells

within the colony such that all cells from each group have the same level of fecundity and the same level of viability

(i.e., we have three ‘aggregate’ cells in the colony). The following 3-D panels are shown. In all panels, α = 1. In panels

(a), (c) and (e), β = 2. In panels (b), (d) and (f), β = 0.5. In panels (a) and (b), φ1 = (b1-2)2, φ2 = (b2-2)2 and φ3 = (b3/
p

3

-
p

3)2. In panels (c) and (d), φ1 = 4-b1, φ2 = 4-b2 and φ3 = 2-b3/3. In panels (e) and (f), φ1 = 4-b1
2, φ2 = 2-b2

2/8 and φ3

= 3-b3
2/3. Optimal strategies of the colony are colored in red.

https://doi.org/10.1371/journal.pone.0201446.g008
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Furthermore, let us assume that there are cells i1,. . .,ik in the colony, such that

gi1
¼ . . . ¼ gik

¼ g. We can reduce this problem to the problem with “the assumption of strong

differentiation of types”, by combining all cells i1,. . .,ik into a single composite cell with fecun-

dity B ¼
Xk

l¼1

bil
and viability V ¼

�
Xk

l¼1

vmax
il

�

� g� B.

This case is illustrated in Fig 8C and 8D). In Fig 8C, viability is more ‘important’ than

fecundity and the third ‘aggregate’ cell is more predisposed to fecundity performing. There-

fore, the optimal strategy for the first and the second “aggregate” cells is to be specialized in

soma, and to be specialized in germ for the third cell. This means that positional effects here

lead the colony to specialization. Without these effects in the linear case, the colony sees no dif-

ference between some unspecialized states and the states where some cells can be specialized

(see the sub-section Linear trade-off in the previous section). If the ‘importance’ of viability

decreases in a way that fecundity becomes more “important” than viability, we get the case

illustrated in Fig 8D. Here we conclude that the third cell should remain specialized in germ

due to positional effects. The first and the second cells behave as if they were one cell. This

example suggests that there is a non-trivial interaction between positional effects and the

‘importance’ of the fitness components. If they act as one, as shown in Fig 8C, the specializa-

tion in the colony occurs. Otherwise, they compensate each other and the specialization occurs

only partially, as shown in Fig 8D.

Case 2. In the sub-section Linear trade-off of the previous section we showed that in the lin-

ear case without positional effects, only Cases 1 and 3 can occur. However, if we introduce

positional effects into the model with linear trade-offs, all three cases (Cases 1 to 3) become

possible.

Concave trade-offs. Let us assume that all trade-off functions are strictly concave on their

domains.

Case 1. We consider the strategy implying that each cell in the colony has the level of fecun-

dity bi�, such that:

dφi

dbi
ðbi�Þ ¼ �

a

b

Vðb�Þ
Bðb�Þ

; i ¼ 1; . . . ;N: ð24Þ

If there exists a point b�, satisfying Eq (24), such that 0< bi� < bimax for all i = 1,. . ., N, then

this point represents the unique optimal strategy of the colony under study, i.e., all cells in the

colony remain unspecialized. However, the case when no points satisfy Eq (24), such that 0<

bi� < bimax for all i = 1. . .N, can also occur. This case occurs when the relative ‘importance’ of

viability to fecundity is high (low) enough or when the differentiation of types is strong. In

these cases some cells of the colony should be specialized, whereas the other cells should have

the level of fecundity bi� satisfying the condition similar to that of Eq (24) (see Appendix A in

S1 Appendix). Note also, that high (low) relative ‘importance’ of viability to fecundity can

pushes the colony to specialization only in the presence of positional effects, because without

these effects (see the sub-section Concave trade-off in the previous section) the concave curva-

tures of trade-off functions do not lead to specialization in the colony. This case is shown in

Fig 8E, where there is no specialization at the optimum. Then, we can also assume that the

‘importance’ of viability decreases in a way that viability becomes less “important” than fecun-

dity (see Fig 8F). The optimal strategy for the second cell in this figure is to specialize in germ.

On one hand, the second cell is predisposed to specialization in germ due to positional effects.

On the other hand, this predisposition by itself has no impact on specialization in the colony

(see Fig 8E). Fig 8F accounts for the case when the change in the relative ‘importance’ of viabil-

ity to fecundity, combined with the presence of positional effects, causes the emergence of
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specialization. Consequently, we can say that positional effects influence the development of

specialization in the colony directly (through predispositions of some cells to some tasks) or

indirectly (through a high or low relative ‘importance’ of viability to fecundity supported by

the presence of positional effects). In other words, positional effects and mutations in small-

sized colonies can lead to the emergence of specialization without changes in size and/or in

resource restrictions. Moreover, together with positional effects, the increase in the generation

time or changes in the environment (from mixed to still) can lead to the emergence of soma

specialization without changes in the size of the colony. Hence, we have shown that the GS–

GS/S transition process during the evolution of Volvocalean green algae can be explained not

only in terms of enhancing the colony size. Obviously, the size of the colony and the corre-

sponding initial costs of reproduction are essential, but they are not the only factors causing

the emergence of specialization.

Generalization of the original model: Considering inequalities in trade-offs

Here we consider Problem 6 with different types of trade-offs, assuming that the trade-off rela-

tionships have the form (1), i.e., they are represented by inequalities. First of all, we need to

point out that this problem has a nonempty domain, because the point (b,v) = (0,0) belongs to

its domain for all possible values of parameters in the resource constraint. Further, we provide

general results to describe the solutions of this problem and compare them to the results from

the sub-section General statements of the previous section, where the trade-off relationships

were represented by equalities. Here we also have three possible cases which are as follows:

Case 1’. Consider Problem (6) with different types of trade-offs represented by inequalities.

First, we assume that there is no any resource constraint in the model, and identify the set of

optimal strategies of the colony, {(b�, v�)}. These optimal strategies require the binding of all

trade-off constraints. Let us now add the resource constraint to the model. Case 1’ requires

that at least one strategy from {(b�, v�)} would remain optimal. This case corresponds to the

situation in which the resource constraint does not influence the colony’s well-being. In other

words, Case 1’ occurs in environments of good quality.

Case 2’. This case implies that the resource constraint influences the colony’s well-being.

Consider the following set of strategies:

A0 ¼ ðb; vÞ 2 R2N jbi � 0; 0 � vi � φiðbiÞ;
XN

i¼1

bi ¼
C

k1 1þ b

a

� � and
XN

i¼1

vi ¼
C

k2 1þ a

b

� �

8
<

:

9
=

;
:ð25Þ

Case 2’ assumes that the set A’ is not empty. This set includes the solutions of Problem (6)

with different types of trade-offs represented by inequalities and the binding resource con-

straint. The set A’ is similar to the set A described in the sub-section General statements of the

previous section. In Appendix C in S1 Appendix we show that the elements of A’ (and only

these elements) are the solutions of Problem (6) with different types of trade-offs represented

by inequalities. The maximum fitness that the colony can reach (i.e., the optimal fitness that

the colony can reach by choosing any strategy from A’) can be calculated using Eq (8).

Case 3’. This case implies that the resource constraint influences the colony’s well-being

and that the set A’ is empty. Here, the mathematical solution becomes more complex and

depends on the parameters of the model (see Appendix C in S1 Appendix). If all trade-off

functions are concave or linear, then the set of optimal strategies can be found as follows. We

should find strategies that maximize or minimize (depending of the model’s parameters) the

total fecundity of the colony subject to all trade-off constraints and under the assumption that
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all available resources are consumed by the colony (i.e., subject to the resource constraint,

assuming that this constraint is binding).

Let us now consider Problem (6) with different types of trade-off functions (i.e., Original
problem). We wonder how the solutions of Original problem change after replacing equalities

by inequalities in trade-offs (after these changes we get Problem (6) with different types of

trade-off functions and trade-offs inequalities, i.e., Modified problem).

- First, we assume that initially we had Case 1. The change of equalities by inequalities in the

trade-off constraints does not change the problem’s solutions. After this change, we get

Case 1’ in Modified problem. Indeed, assume that the strategy (b�,v�) is a solution of Origi-

nal problem. This strategy remains feasible in the corresponding Modified problem. Let us

now consider the strategy (b,v) in Modified problem, such that there exists a subset of cells,

M, in the colony, such that for any cell i of M, we have: vi< φi(bi). The strategy (b,v) is not

optimal. To prove this statement, we consider a strategy (b1,v1), such that bi = bi1 for each

cell i of the colony, and vi = vi1 for each cell i that is not in M, and vi1 = φi(bi) for each cell i
in M. We can see that B(b,v) = B(b1,v1) and V(b,v)< V(b1,v1), and so W(b, v)<W(b1, v1). If

the strategy (b1,v1) is in the domain of Modified problem, the statement is proved. If not,

we have to prove that W(b1,v1)�W(b�,v�). Indeed, let us consider the strategy (b�,v�)–a

solution of Original problem in Case 1. It means that (b�,v�) is a solution of Original prob-

lem in the absence of the resource constraint. Because (b1,v1) belongs to the domain of this

problem, we can conclude that W(b1, v1)�W(b�, v�). Taking into account that the strategy

(b�,v�) is feasible in Modified problem, we can also conclude that (b,v) is not optimal.

Therefore, the solution of Modified problem belongs to the domain of Original problem.

Furthermore, the domain of Original problem is a subset of the domain of Modified prob-

lem. Thus, we conclude that (b�,v�) is a solution of Modified problem in Case 1’.

- Second, we assume that initially we had Case 2. Thus, the set A represents the solution of

Original problem. After changing the trade-off constraints (from equalities to inequalities),

all points of the set A becomes points of the set A’. It means that we get Case 2’ in Modified

problem and all solutions of Original problem become solutions of Modified problem.

More precisely, the set A’ of all solutions of Modified problem contains all strategies from A
as well as possible additional solutions, (b�,v�), for which some trade-off constraints are not

binding.

- Third, we assume that initially we had Case 3. It means that the resource constraint matters

and the set A is empty. As mentioned above, after changing the trade-off constraints (from

“=“ to “�”), all points of A becomes points of A’. Even though the set A is empty, the set A’

can be nonempty. It leads to two different cases. The first case implies that the set A’ is non-

empty, and we get Case 2’ of Modified problem. Here all optimal strategies require the exis-

tence of at least one cell in the colony, such that viability of this cell is smaller than the

maximal possible viability that this cell can attain for a fixed level of fecundity (under the

assumption that the only constraint that matters is the trade-off constraint). The second

case implies that the set A’ is empty. It means that we get Case 3’ of Modified problem.

To complete our analysis, we consider the case of an empty domain in Original problem

(denoted here as Case 0). Assume that we have an environment, such that the domain in Origi-

nal problem is empty. After changing the trade-off constraints (from equalities to inequalities),

we get Modified problem. In this case, we state that we get Case 2 in Modified problem. To

prove this statement, we need to show that the set A’ in Modified problem is non-empty.

Because we are in Case 0 in Original problem, k1

XN

i¼1

bmax
i > C � k1 �

a�C
k1ðaþbÞ

, and thus
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XN

i¼1

bmax
i > a�C

k1ðaþbÞ
. Therefore, there exists b from RN, such that 0 � bi � bmax

i for all i and

XN

i¼1

bi ¼
a�C

k1ðaþbÞ
. Because we are in Case 0, we have k1

XN

i¼1

bi þ k2

XN

i¼1

φiðbiÞ > C. Because

XN

i¼1

bi ¼
a�C

k1ðaþbÞ
and k1 �

a�C
k1ðaþbÞ

þ k2 �
b�C

k2ðaþbÞ
¼ C, we get:

XN

i¼1

φiðbiÞ >
b�C

k2ðaþbÞ
. Therefore, there

exists v from RN such that 0�vi�φi(bi) for all i and
XN

i¼1

vi ¼
b�C

k2ðaþbÞ
. It means that the point (b,

v) is in A’. Thus, we are in Case 2 of Modified problem.

Case 0 can occur here only with equalities in the trade-off relationships. This case arises with

a very low level of available resources and implies that the colony has no feasible strategies. In

other words, if the environment is very poor, the colony dies in this environment. It looks rea-

sonable from a biological point of view, that there exists a certain resource threshold, C#, such

that if the amount of resources available to the colony becomes smaller than C#, then the colony

dies. In our opinion, the existence of Case 0 is an advantage of the model with trade-offs in the

form of equalities. Conversely, for each positive value of C, there is a feasible strategy for the col-

ony in the model with trade-offs in the form of inequalities. Of course, the fitness of the colony

tends to zero as the quality of environmental conditions tends to zero. So, formally, the colony

has a feasible strategy and a positive, but a very low, fitness even though the amount of available

resources is close to zero, i.e., the colony can survive in such an environment. Therefore, we

should artificially introduce the threshold value of fitness, W#, into the model with trade-offs in

the form of inequalities, such that the colony dies in an environment in which the highest

attainable fitness is smaller than W#. Thus, we showed that the replacement of the trade-off

functions vi = φi(bi) by vi< φi(bi) leads to a different analysis in Cases 3 and 0. It is worth noting

that these results hold as well for non-additive forms of the viability function.

In addition, we will show that for Problem (6) with different types of trade-offs represented

by inequalities, there is a direct link between the quality of the environment and the Case of

solution obtained for this environment. Precisely, Case 1’ occurs with large values of C, Case 2’

with small values of C, and Case 3’, if any, with intermediate values of C. This conclusion

stems from the two following observations:

- Let us consider Problem (6) with different types of trade-offs represented by inequalities, but

without the resource constraint. We will determine the set S of all solutions of this problem.

This set is compact, so we can identify the minimal possible value, C�, of С, such that there

exists a solution (b�,v�) in S satisfying the following inequality: k1

XN

i¼1

b�i þ k2

XN

i¼1

v�i � C�.

Let us now consider Problem (6) with different types of trade-offs represented by inequali-

ties and the resource constraint. For all C�C�, Case 1’ should occur here.

- Let us assume that there exists a level of available resources, C�� > 0, such that the set A’(C��)
is nonempty. It means that Case 2’ occurs in Problem (6) with different types of trade-offs

represented by inequalities when C�� is the amount of available resources. Let (b��,v��) be a

solution belonging to A’(C��). We need to show that for all positive C< C��, Case 2’ occurs

in the considered version of Problem (6). In other words, we have to prove that A’(C) is

nonempty for all positive C< C��. First of all, that each value of σ, such that 0� σ� C��,
can be represented as σ = λC��, where 0� λ� 1. We need to show that the strategy (λb��,
λv��) belongs to A’(σ). Indeed, λbi�� � 0 and λvi�� � 0 for all cells of a given colony, and
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XN

i¼1

lbi
�� ¼

as

k1ðaþ bÞ
and

XN

i¼1

lv��i ¼
bs

k2ðaþ bÞ
. Moreover, for all cells of the colony we

also have: lvi�� � vi�� � φiðb
��
i Þ � φiðlbi

��Þ; where the last inequality results from the

assumption of a strictly decreasing form of trade-off functions. Thus, we showed that for

the trade-off relationships of the form vi� φi(bi), Case 3’ takes place in environments of

intermediate quality, Case 1’ in environments of good quality, and Case 2’ in environments

of bad quality. In general, this is not true for the trade-off relationships of the form vi =

φi(bi). Here, Case 1 takes place in environments of good quality too, and Case 0 in environ-

ments of bad quality, but the situation with Cases 2 and 3 is more sophisticated. To show

this, we consider the following numerical example which involves three cells with the fol-

lowing trade-off functions: v1 = 6 – 3b1
2, v2 = 4 –b2

2 and v3 = 5 – 2b3
2. These trade-off func-

tions are concave because we consider a small-sized colony. Let α = β = 1, k1 = 2 and k2 = 3.

We will vary the level of available resources, C, in order to determine the Case of solution

corresponding to it. First of all, assume that all trade-off relationships have the form of

inequalities. For all values of C that are larger than C1 (C1� 36.055), Case 1’ takes place, so

all cells are unspecialized. For all values of C that are smaller than C1 and larger than C2 (C2

� 18.3), Case 3’ takes place. Here, the solution of the problem is a single point. Moreover,

for all values of C that are smaller than C3 (C3� 30.3) and larger than C2, the optimal strat-

egy implies that the second cell specializes in reproductive function. For all values of C that

are slightly larger than C2, the optimal strategy implies that b3
� � b3

max, i.e., we can say that

at the optimum, cells 2 and 3 should specialize in reproductive function, while cell 1

remains unspecialized. For all positive values of C that are smaller than C2, Case 2’ takes

place and the solution represents a set of states. Furthermore, the decrease in the value of C
directs the colony to unspecialized states. Thus, this example confirms that Case 3’ takes

place in environments of intermediate quality, Case 1’ in environments of good quality and

Case 2’ in environments of bad quality when trade-offs are represented by inequalities.

Now we replace now inequalities by equalities in trade-offs. Following our theory, for all

values of C that are larger than C1, Case 1 takes place and for all values of C that are smaller

than C1 and larger than C2, Case 3 takes place. Moreover, for these values of C, the solution

does not change. However, for the values of C that are smaller than C2, some changes occur.

Precisely, for all values of C that are smaller than C2 and larger than C4 (C4� 16.5), Case 2

with unspecialized optimal states takes place, but for all values of C that are smaller than C4

and larger than C5 (C5� 9.9), Case 3 occurs again. In the latter situation, cells 1 and 3 spe-

cialize in germ, while cell 2 remains unspecialized. For all values of C that are smaller than

C5, Case 0 takes place. It means that the amount of resources available to the colony is

smaller than the amount of resources sufficient for the colony’s existence.

In this example, considering trade-offs in the form of inequalities, specialization occurs when

the resource constraint influences the colony’s well-being, but the amount of available resources

is rather high. For trade-offs in the form of equalities, specialization occurs when the resource

constraint influences the colony’s well-being, whereas the amount of available resources can be

rather high or rather small, but sufficient for the colony’s survival. This case arises because the

resource constraint prohibits the second cell from being specialized in germ. Thus, the second

cell remains unspecialized. Moreover, in this example fecundity is ‘cheaper’ than viability. Conse-

quently, the first and the third cells should be specialized in germ. If we replace trade-offs in the

form of equalities by those in the form of inequalities, each cell would have the opportunity to

reduce its viability when its fecundity is fixed. Thus, in this case, the colony will be able to choose

strategies that yield better fitness, and the unspecialized strategy becomes optimal.
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Discussion

We have presented and analyzed a new general mathematical model for studying the emergence

of germ-soma specialization. We have examined how the division of labor in a cell colony depends

on the shape of trade-off functions, a resource constraint and different fecundity and viability

rates. Thus, here we have generalized the popular fitness model introduced by Michod et al. [14].

We have described the set of all possible solutions of the formulated mathematical programming

problem and have depicted some interesting examples of optimal solutions found using our fitness

function. We have shown that the changes in structural complexity in unspecialized large-sized

colonies can lead to the emergence of specialization as well as to unspecialized optimal states in

the case of environmental quality degradation (i.e., the lack of available environmental resources).

This means that the process of functional specialization of Volvocalean green algae (GS–GS/S) can

be explained not only in terms of increasing the colony size [15]. Moreover, we argue that signifi-

cant resource restrictions and a trade-off between the production difficulties and the fitness bene-

fits of fecundity can cause the emergence of specialization in small-sized colonies. We have also

considered the case of different trade-off functions for different cells of the colony. Thus, we have

assumed that some cells of the colony may not be equivalent with respect to viability or fecundity.

We have explored several factors that can lead to the emergence of this non-equivalence, such as

mutations, a specific developmental program, and positional effects. We have shown that posi-

tional effects and mutations in small-sized colonies can lead to the emergence of soma specializa-

tion without changes in size or in resource restrictions.

To conclude, we have described some cases in which the colony specialization can emerge.

The existence of these cases is supported by a variety of experimental work [13], [26] and [27],

but it would be certainly reasonable to provide more detailed quantitative analysis for testing

the predictions of our models. Thus, it would be interesting to test our model in practice. One

possible test of our model is to evolve Volvocalean green algae (small-sized and large-sized col-

onies) under different resource constraints and environmental conditions. Moreover, in this

kind of experiment we should keep in mind that the generation time, or the time for growth,

can change during the evolutionary process, and take it into account in the model. It is worth

noting that different positional effects can occur during the experiment. Consequently, we

should divide cells into different relevant groups. Such a division will allow testing the model

with different types of cells.

Another interesting issue is the model’s specification. In particular, this issue concerns the

form of trade-off relationships. We have considered two versions of our model: with trade-offs of

the form vi = φi(bi) and those of the form vi� φi (bi). In the previous section, we have described

all possible situations where the solutions of the related problems have the same structure, or

even coincide, as well as where they have different structures. We have discussed different special-

ization effects that can take place in different instances of our model. Clearly, focusing on a spe-

cific type of organisms would allow a better understanding of the true specialization effects and,

consequently, would indicate the best way of modeling the trade-off constraints. Moreover, it is

worth noting that clarifying the best way of modeling the environmental impact is an essential

issue as well. Here, we have considered the resource constraint of the form (5). However, some

questions concerning the parameters of this constraint remain open. For example, should the

cost, in terms of resources necessary to produce a unit of fecundity or a unit of viability, depend

on the size of the colony, i.e., should the parameters k1 and k2 be functions of N? Or, should the

cost, in terms of resources necessary to produce a unit of fecundity, be the same when this fecun-

dity is produced by a single germ cell or two generalist cells, i.e., should the parameter k1 be a

function of B and V? Or, should the quantity of resources necessary to produce a unit of viability

depend on positional effects, i.e., should the parameter k2 be a function of the variables v1,..,vN?
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There are also some interesting questions concerning the best way of modeling the effect of a lim-

iting environment. For example, instead of the resource constraint of the form (5), one could con-

sider a parameterized family of trade-off functions, such that vi = φi(bi,C) (see for example [14] or

[32]). Such a model would be different from that described in our paper, though possibly, some

equivalence between the two models could be found at some optimal states. One important ad-

vantage of the resource constraint of the form (5) is that all parameters of this constraint can be

measured directly. In the case of a parameterized family, vi = φi(bi,C), the parameter estimation

process seems to be much more complicated.

Another important issue is the robustness of our model. On one hand, our model is robust

because its qualitative results do not depend on the specific form of trade-off functions. They

depend only on the curvature of these functions (i.e., convex, linear or concave), which is deter-

mined by the size of the colony. On the other hand, we have mentioned that the assumption of

additivity is rather questionable for the viability function. We have shown that in many instances

of our model the property of additivity is not necessary for the viability functions. However,

some of our results are based on the additivity assumption. It would be interesting to investigate

how these results would change in the case of a non-additive form of the viability function. For

example in this work, as well as in the studies of Michod et al. and Solari et al. [14–15], it is ass-

umed that all cells of the colony have trade-offs with the same type of curvature. It would be also

interesting to analyze the case where some cells of the colony have convex trade-offs and the

other have concave trade-offs. According to a recent study of Leslie et al. [33], it is natural to

assume that such a case can occur in an intermediate-sized colony in which we have cell genera-

tion times such that the colony’s trade-off functions are linear, on average, but due to within-col-

ony variation some of them can be slightly convex or concave. Moreover, some cells can have

neither convex nor concave trade-off functions that correspond to intermediate initial costs of

reproduction [14]. It is clear that in such a situation Case 2 described here does not change, but

the analysis of Cases 1 and 3 becomes more complicated because some additional parameters,

including the numbers of “convex” and “concave” cells in the colony, will be added to the model.

An extensive additional analysis would be required to find optimal specialization patterns in

these instances. If both convex and concave trade-offs are allowed in the model, Case 1 of this

model should represent a kind of average between Case 1 in the strictly convex and Case 1 in the

strictly concave trade-off models in terms of the number of specialized cells in the colony. Also,

we can anticipate that the general principle of finding solutions in Case 3 with concave and linear

trade-offs would not change here: the optimal reproductive strategies would be the available

strategies from the resource surface such that they have the same total fecundity and the value of

this total fecundity is the closest one (among all available strategies from the resource surface) to

the unavailable total fecundity calculated according to Eq (7). Nevertheless, the detailed structure

and the geometry of these solutions seem to be much more diverse and complex than the solu-

tion structure of Case 3 presented in this paper.

Another challenging question is the investigation of the role of positional effects in our

model. We can incorporate into the model the information about the form of the colony (e.g.,

sphere or line) and consider the impact of positional effects in each case. Such a development

will enable us to gain more insight into the structure and properties of trade-off functions.

It is worth noting that the proposed model can be generalized to address a number of rele-

vant biological issues, including the evolution of specialized enzymes or the emergence of

complex organs. Importantly, the presented fitness model is of a general nature and could be

also applied to address a number of parallel issues in different fields, such as economics, where

fitness could be associated with the production volume, or education, where fitness could be

associated with the effectiveness of the process of education, or health care, where fitness could

be associated with life expectancy or life quality.
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