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Abstract

Introduction

Pharmacological defatting of rat hepatocytes and hepatoma cell lines suggests that the
same method could be used to ameliorate macrovesicular steatosis in moderate to severely
fatty livers. However there is no data assessing the effects of those drugs on primary human
liver cells. We aimed to determine the effectiveness of a pharmacological cocktail in reduc-
ing the in vitro lipid content of primary human hepatocytes (PHH). In addition we sought to
determine the cytotoxicity of the cocktail towards non-parenchymal liver cells.

Methods

Steatosis was induced in PHH by supplementation with a combination of saturated and
unsaturated free fatty acids. This was followed by addition of a defatting drug cocktail for up
to 48 hours. The same experimental method was used with human intra-hepatic endothelial
cells (HIEC) and human cholangiocytes. MTT assay was used to assess cell viability, triglyc-
eride quantification and oil red O staining were used to determine intracellular lipids content
whilst ketone bodies were measured in the supernatants following experimentation.

Results

Incubation of fat loaded PHH with the drugs over 48 hours reduced the intracellular lipid
area by 54%, from 12.85% t0 5.99% (p = 0.002) (percentage of total oil red O area), and
intracellular triglyceride by 35%, from 28.24 to 18.30 nmol/million of cells (p<0.001). Total
supernatant ketone bodies increased 1.4-fold over 48 hours in the defatted PHH compared
with vehicle controls (p = 0.002). Moreover incubation with the drugs for 48 hours increased
the viability of PHH by 11%, cholangiocytes by 25% whilst having no cytotoxic effects on
HIEC.
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Conclusion

These data demonstrate that pharmacological intervention can significantly decrease intra-
cellular lipid content of PHH, increase fatty acids B-oxidation whilst being non-toxic to PHH,
HIEC or cholangiocytes.

Background

Hepatic steatosis results from the accumulation of triacylglycerol in the cytoplasm of hepa-
tocytes which coalesce to form lipid droplets (LD). Large LDs that cause displacement of the
cell nucleus are termed macrovesicular steatosis. Donor livers with macrovesicular steatosis
are associated with significantly increased risk of early graft dysfunction after liver trans-
plantation [1-4]. Intuitively defatting of steatotic donor livers could potentially improve
both the organ utilisation and patient outcomes after transplantation. Using a static in vitro
rat hepatocyte model where cells were loaded with fat, Nagrath et al. reported a reduction of
35% in the intracellular lipid content over 48 hours by supplementing media with a defat-
ting cocktail consisting of peroxisome proliferator-activated receptor (PPAR)o. ligands
GW7647 and GW501516, pregnane X receptor (PXR) ligand Hypericin, the constitutive
androstane receptor (CAR) ligand Scorparone, the glucagon mimetic cyclic adenosine
monophosphate (cAMP) activator forskolin and the insulin-mimetic adipokine visfatin [5].
Thereafter the defatting cocktail was used in a model of ex-situ normothermic machine per-
fusion (NMP) of a whole steatotic rat liver and a reduction of 50% in the intracellular tri-
glycerides levels was observed within 3 hours [5]. Subsequently the same protocol was
applied to human hepatoma cells (HepG2 cells) by Yarmush et al. and similar findings were
reported [6]. Consistently these studies demonstrate that the defatting cocktail increased
mitochondrial beta-oxidation of fatty acids (FA) as represented by higher production of
ketone bodies and upregulated the transcription of key enzymes involved with the exporta-
tion of intracellular lipids and oxidation of FA in the peroxisome [5, 6].

However, HepG2 cells do not accurately represent the response of primary human hepa-
tocytes (PHH) to drugs or cellular stresses such as hypoxia and hypoxia/reoxygenation [7-
9]. In particular HepG2 cells demonstrate a 90% reduction in cytochrome P450 expression
[10]. Therefore before such defatting strategies can be considered for the use in machine
perfusion of human donor livers, it is imperative that their efficacy and cytotoxicity be
determined in models using human liver cells [11, 12]. In particular the cytotoxicity of the
defatting drugs on other cell types within the liver such as intra-hepatic endothelial cells
(HIEC) and cholangiocytes has not been assessed. The aim of the present study was to
investigate the efficacy of this defatting drug cocktail on steatotic PHH and its cytotoxicity
towards PHH, HIEC and cholangiocytes.

Methods

Study design

Steatosis was induced in PHH by incubation of cells with FAs. Fatty loaded PHH were then
incubated with a cocktail of defatting agents to test its cytotoxicity and effectiveness in reduc-
ing the intracellular lipid content. HIEC and cholangiocytes were also incubated with the
defatting cocktail for 48 hours to assess the cytotoxicity of the cocktail. Three separate experi-
ments were performed in quadruplicate. Fig 1 shows a schematic view of the study design.
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Fig 1. Study design. Series 1: Isolated primary human hepatocytes (PHH) were left in standard media for 2 days and then received media supplemented with fatty acids.
After 2 days of fat loading the fatty PHH were allocated to the defatting treatment group where the media was supplemented with the defatting cocktail of drugs, and the
control groups, the standard control group and the vehicle control group that received vehicle only. Lean hepatocytes were kept in standard culture conditions throughout
the experimental period. The experimentation period lasted for two days thereafter. Series 2: Human intra-hepatic endothelial cells (HIEC) and cholangiocytes were
immuno-magnetically separated with Dynabeads conjugated with cell-specific monoclonal antibody. The cells were left in culture for 2 days in standard media to reach
confluence and then were allocated to the intervention group that received the defatting cocktail and the control groups, the standard control group and the vehicle control
group that had the media supplemented with the vehicle only. The experimentation period lasts for two days thereafter.

https://doi.org/10.1371/journal.pone.0201419.g001

Source of liver tissues

The human cells were isolated from discarded donor livers. The organs were initially offered,
accepted, and procured with the intention of clinical transplantation. They were then declined
by all UK transplant centres and offered for research by the National Health Service Blood and
Transplant (NHSBT) coordinating office. Specialist nurses in organ donation obtained con-
sent to use donor tissue for research as part of the consent process for standard clinical organ
donation. None of the donor organs were from a vulnerable population and all next of kin pro-
vided written informed consent that was freely given. Ethical approval for the study was
granted by the London-Surrey Borders National Research Ethics Service committee as well as
Loco-Regional and NHSBT Ethics Committees (reference 13/L0O/1928 and 06/Q702/61). Cells
were isolated from three donors after brain stem death declined for transplantation because of
logistics and were preserved by static cold storage in University of Wisconsin preservation
fluid.

PHH cell isolation

A published collagenase perfusion technique was employed for PHH isolation from liver
wedges [13]. Briefly liver was digested and centrifuged to isolate PHH. These cells were resus-
pended and then plated on 24-well plates previously coated with rat tail collagen type 1 ata
density of 3x10° cells/well in Dulbecco’s Modified Eagle’s Medium (DMEM) (Catalogue
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number [CN]:41965-039; Gibco laboratories, Gaithersburg, MD, USA) supplemented with
10% fetal calf serum (FCS) (CN:10270106; Gibco) and 5% glutamine/penicillin/ streptomycin
(GPS) (CN:10378016; Gibco). After 2 hours the cells were washed with Phosphate-buffered
saline (PBS) (CN:10010023; Gibco) and the media changed to our standard medium for PHH
culture, constituted of Arginine-/Glutamine-free Williams E (CN:12551032; Gibco) with 1%
GPS, hydrocortisone (2ug/ml) (H4001; Sigma-Aldrich, St. Louis, MO., USA), insulin (0.124
U/ml) (12643; Sigma-Aldrich) and L-ornithine (400uM) (06503; Sigma-Aldrich), subse-
quently the cells were kept at 37°C in 95% air/ 5% CO,.

In vitro steatosis induction for PHH

The standard media for PHH culture was supplemented with a combination of FAs in order to
promote increases in the intracellular triglyceride levels stocked as LDs, as previously described
[14]. This fatting media consisted of the saturated palmitic acid (P0500; Sigma-Aldrich), poly-
unsaturated omega-6 linoleic acid (L5900; Sigma-Aldrich) and the monounsaturated omega-9
oleic acid (01257; Sigma-Aldrich) all at a final concentration of 0.25mM. This concentration
was determined by performing cytotoxicity titration experiments prior to institution of the full
experimental protocol. A supplement of 5% fatty-acid-free bovine serum albumin weight/vol-
ume (BSA) (A3803; Sigma-Aldrich) was added as a protein carrier. The media was changed
daily and the steatosis induction period was 48 hours. The lean control group was incubated
with standard media only throughout the experimental period.

Defatting medium for PHH

Following steatosis induction the fatting media was removed and cells washed with PBS. Experi-
ments were then performed on 4 distinct groups: (1) the fatty vehicle control group, which received
the cell type specific standard media described above plus the vehicle dimethylsulfoxide (DMSO)
<0.1% v/v (D2438; Sigma-Aldrich) used for drugs dilution, without any drug or fatty acid supple-
ment; (2) the fatty standard control group, which received only the standard culture media; (3) the
defatting treatment group, which had the media supplemented with the combination of defatting
drugs (0.01 mM glucagon mimetic and cAMP activator forskolin [F6886; Sigma-Aldrich], 0.001
mM PPAR o ligand GW7647 [G6793; Sigma-Aldrich], 0.01 mM PXR ligand hypericin [56690;
Sigma-Aldrich], 0.01 mM CAR ligand scoparone [254886; Sigma-Aldrich], 0.001 mM PPAR §
ligand GW501516 [SML1491; Sigma-Aldrich], 0.4 ng/ml adipokine visfatin [SRP4908; Sigma-
Aldrich] and 0.8 mM L-carnitine [C0283; Sigma-Aldrich]); and, (4) lean cells that were kept on
standard media throughout. The defatting mixture of drugs was tested previously in rat hepatocytes
and HepG2 cells [5, 6, 15]. All groups had the media changed and sampled after 24 hours and 48
hours of treatment and the cells harvested for intracellular lipids quantification.

Isolation and culture of primary cholangiocytes and HIEC

HIEC and cholangiocytes were isolated from human liver tissue using Collagenase Type 1A
(C9891; Sigma-Aldrich) digestion for 1 hour at 37°C. The resulting cell suspension was then
sieved through a fine mesh, separated on a 33%/77% Percoll density gradient and cells retrieved
from the interphase. This interphase mixed population of cells were then diluted in PBS, centri-
fuged and further immuno-magnetically separated with Dynabeads conjugated with cell-specific
monoclonal antibody (anti-cluster of differentiation 31 [CD31] to purify HIEC [M0823, mono-
clonal mouse antibody anti-CD31, clone JC70A; Dako, Denmark] or anti-epithelial cell adhesion
molecule [130-080-301, monoclonal mouse antibody, CD326, EpCAM-FITC; Miltenyi Biotec,
Bergisch, Germany] to purify cholangiocytes). The extracted cholangiocytes and HIEC were then
plated on 96-well plates previously coated with rat tail collagen type 1; Cholangiocytes in DMEM
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10% FCS supplemented with 5% GPS and the HIEC in Human Endothelial-Serum Free Media
(CN:11111044; Gibco) supplemented with 10% heat-inactivated human serum (CR100; TCS Bio-
logicals, Buckingham, UK) with 5% GPS. After an interval of 12 hours the media was changed to
our standard specific culture medium. For cholangiocytes it was constituted of DMEM/ HAMS
F-12 nutrient mixture (CN:21331-020; Gibco) 1:1 v/v, 5% GPS, hydrocortisone (0.4 ug/ml), chol-
era toxin (10 ng/ml) (C8052; Sigma-Aldrich), triiodothyronine (T3) (2x10”° mol/L) (T6397;
Sigma-Aldrich), insulin (5 pg/ml), hepatocyte growth factor (10 ng/ml) (CN:100-39; Peprotech,
Rocky Hill, NJ, USA) and epidermal growth factor (10 ng/ml) (CN:100-61; Peprotech). For
HIEC Human Endothelial-Serum Free Media supplemented with 10% heat-inactivated human
serum, vascular endothelial growth factor (10 ng/ml) (CN:100-20C; Peprotech) and hepatocyte
growth factor (10 ng/ml) was used. After isolation the cells were kept in an incubator at 37°C in
an atmosphere of 95% air/ 5% CO,.

Cholangiocytes and HIEC were cultured for 48 hours to reach confluence. After this period
the culture media was changed and the experimental groups assigned to the various cells. The
intervention group received the standard culture medium supplemented with the defatting
drugs (0.01 mM forskolin, 0.001 mM GW7647, 0.01 mM hypericin, 0.01 mM scoparone, 0.001
mM GW501516, 0.4 ng/ml visfatin and 0.8 mM L-carnitine). The control group was split into
two, one that received vehicle (DMSO <0.1% v/v) and a second one that received only the
standard culture medium.

Cell viability assessment

Cell viability was assessed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay (M5655; Sigma-Aldrich). MTT is initially a yellow-coloured solution which
turns purple formazan after reduction by reductase enzymes found within mitochondria of
viable cells. DMSO is added to dissolve the purple formazan into a coloured solution. The
readout was the difference between the values of the absorbance readings at 570 and 690 nm
on a plate reader. The amount of purple formazan produced by control cells allows compari-
sons between the effects of different treatments. MTT assay was used to assess the cytotoxicity
of the mixture of drugs and of the media supplemented with FAs.

Oil red O staining

Oil Red O staining was employed for quantifying LDs in the cytoplasm of the cells (O0625;
Sigma-Aldrich). Following experimentation cells were fixed with buffered formaldehyde and
the staining was carried out as previously described [16]. Mayer’s haematoxylin was used for
the nuclear counter stain.

For quantification of staining in PHH four high power field (HPF) images from each exper-
iment were selected. Positive areas of staining were calculated by a system of colour differentia-
tion and the result expressed in percentage of the total area of the image using Image], U. S.
National Institutes of Health, Bethesda, Maryland, USA.

Intracellular triglyceride quantification

At the end of the incubation period, cells were washed with PBS and harvested with gentle
scraping. Intracellular lipids were retrieved using the detergent TERGITOL™ Type NP-40
(NP40S; Sigma-Aldrich) followed by lipase incubation to break down triglycerides into FAs
and glycerol. Intracellular triglyceride was measured using a colorimetric assay (ab65336;
Abcam, Cambridge, MA, USA) based on a reaction of glycerol oxidation producing colour.
The concentration of triglycerides was normalised to control and expressed as nmol per mil-
lion of cells.
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Ketone bodies measurement

Ketone bodies were quantified in cell supernatants using a commercially available kit (MAK134;
Sigma-Aldrich) as per the manufacturer’s instructions and detect 3-hydroxybutyric acid (BOH)
and acetoacetic acid (AcAc).

Statistical analysis

Continuous variables were expressed as median/ interquartile range or range and categorical
variables as absolute number/ frequency (%). Comparison between groups was performed
using Mann-Whitney U test or two tailed t-test for continuous variables. The statistical level
of significance was p<0.05. GraphPad Prism version 6.04 for Windows, GraphPad Software,
La Jolla California USA was used for statistical analysis and graph creation.

Results
Induction of steatosis in PHH

Incubation of PHH for 48 hours with media supplemented with the combination of FAs
increased the median intracellular triglyceride concentration approximately 8-fold, from 14.01
(range 13.69-14.02) to 112.64 (111.65-113.30) nmol/million of cells (p<0.001). The PHH oil
red O staining area increased significantly from 1.4% (0.9-1.7) to 21.8% (14.7-32.0) (approxi-
mately 14-fold) (p<0.05). The cellular viability of PHH after 48 hours of incubation with the
media supplemented with FAs using the MTT-assay was 81% (range 76-87%) in comparison
with lean cells kept in the standard media throughout. The results from the steatosis induction
period are in Fig 2.

Defatting of PHH

Oil red O analysis. Digital analysis of oil red O staining of cytoplasmic LDs demonstrated
that the combination of drugs lead to a decrease from 28% [20.27%(14.67-32.03%) to 14.77%
(11.70-22.05%), p = 0.315] in median positive area of oil red O staining within 24 hours of treat-
ment and 54% within 48 hours [12.85% (11.07-15.80%) to 5.99% (4.24-8.61%), p = 0.002] com-
pared to the fatty vehicle control hepatocytes alone (Fig 3). The positive area of oil red O was
comparable between the fatty vehicle control cells and the fatty standard control cells after 24
hours [20.27%(14.67-32.03) vs. 19.98%(15.03-31.70), p>0.999] and 48 hours of treatment
(12.85% (11.07-15.80%) vs. 13.04% (12.01-16.02), p>0.999]. The same pattern was seen for the
other parameters analysed therefore comparisons with the defatting group were made using the
fatty vehicle control group. In addition to the decrease in the total area of cytoplasmic LDs
(expressed as percentage oil red O positive area) in the defatting group, it morphologically
appeared to switch from a macrovesicular to a microvesicular appearance (Fig 3).

Intracellular triglyceride quantification. Treatment with the defatting cocktail decreased
the median concentration of intracellular triglycerides by 32%, from 30.51 nmol/million of cells
(range 30.18-31.50) in the fatty vehicle control group to 20.61 nmol/million of cells (range
20.28-21.60) in the defatting group within 24 hours, p = 0.012. After 48 hours it reduced 35%,
from 28.24 nmol/million of cells (range 26.88-29.24) to 18.30 nmol/million of cells (range
18.30-18.96) (p<0.001). Intracellular triglyceride concentration reduced over time once the
cells were removed from the fatting media by approximately 5-fold within 24 hours (Fig 3).
There was no difference between intracellular triglycerides levels of the fatty control vehicle
alone and the fatty standard control group (p>0.999).

Fatty acids B-oxidation induction. The defatting cocktail induced a median increase in the
release of total ketone bodies in the supernatant of PHH of 1.22-fold (range 1.02-1.26) (p = 0.070)
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Fig 2. Results of fat loading of primary human hepatocytes. Panel A: The supplementation of the media with the combination
of fatty acids resulted in a cell viability rate of 81% after 48 hours of incubation. Panel B: Oil red O staining image of PHH at the
end of the fat loading period. There is predominance of large lipid droplets displacing the nucleus of the cells to the periphery
(black arrow). Panel C: At the end of 48 hours of fatting load there was a significant increase of 14-fold of the positive area of oil
red O. Panel D: Intracellular triglycerides increased 8-fold within 48 hours of incubation with fatty acids. Data report the median
of three separate experiments performed in quadruplicate and errors bars the interquartile range. Comparisons performed using
two-tailed t-test. * = p<0.05.

https://doi.org/10.1371/journal.pone.0201419.9002

after 24 hours of treatment and 1.40-fold within 48 hours (range 1.31-1.52) (p = 0.002) (Fig 4)
when compared to the fatty vehicle control group alone at each respective time point. The release
of total ketone bodies in the supernatant was similar between both control groups.

Impact of the defatting cocktail on cell viability

Effects on PHH. After 48 hours of treatment with the defatting cocktail MTT assay showed
an increase in the viability of PHH of 11% (6-15%) in comparison with the fatty vehicle control
cells (p = 0.048). Cellular viability was similar between the control groups. Phase contrast light
microscopy suggested that the defatted hepatocytes were more adherent and spread on the wells
in comparison with the fatty vehicle control cells which continued to die (Fig 5).

Effects of the defatting cocktail on other liver cell types. Incubation of cholangiocytes
and HIEC with the defatting cocktail was not cytotoxic. There was no difference in viability bet-
ween HIEC in the treated group and the vehicle control group after 48 hours of incubation (100%
[97-101] vs. 100% [90-113], p>0.999). For cholangiocytes the supplementation of the media with
those drugs improved cellular viability in 25% although the difference did not reach statistical sig-
nificance (125% [75-166%] vs. 100% [57-116], p = 0.413). Detailed data is presented in Fig 5.

Discussion

Defatting of steatotic rat livers using a cocktail of drugs in a model of ex-situ normothermic
machine perfusion was shown to be feasible and a potentially promising translational approach
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to improve the utilisation of steatotic donor livers for transplantation [2]. However before con-
sidering the translational application of such interventions to whole human donor livers, the
efficacy and cytotoxicity of these agents to human liver cells needed to be evaluated since there
is inherent variability in responses to drugs between species and different cell lines [7-9]. Our
study demonstrates for the first time using PHH that the defatting cocktail was able to reduce
its lipid content in vitro enhancing beta-oxidation of FAs. Moreover we have shown that the
drugs were not toxic to PHH, HIEC or cholangiocytes. The latter being crucial in the clinical
setting where these cells are targets in ischaemia-reperfusion injury and ischaemic cholangiopa-
thy [17, 18].

Steatosis is a frequent reason for livers being deemed non transplantable [19]. This is
because these organs are more susceptible to ischaemic injury during cold preservation and
thereafter are at a high risk of graft dysfunction after transplantation [1-4, 20, 21]. Current
strategies for transplantation of steatotic deceased donor livers rely mainly on the prevention
of additional risk factors, such as limiting cold ischaemic times, using low risk donors and
selecting low risk recipients [22]. An intervention which may decrease post-transplant compli-
cations for such livers has been described in the context of living donation. Living donors that
had their diet supplemented with Q-3 FAs one month before organ procurement appears to be
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treatment showed an increase in cell culture supernatant levels of total ketone bodies of 1.22-fold over 24 hours and
1.40-fold over 48 hours. Data reports the median of three separate experiments performed in quadruplicate and errors
bars the interquartile range. Comparisons performed using two-tailed t-test. * = p<0.05.
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associated with fewer post-operative complications. Although this approach shows promise, it
is not applicable in the context of deceased donor organs [22, 23].

Nagrath et al. 2009 tested a cocktail of drugs in an in-vitro model of steatotic rat hepatocytes
and showed a decrease in the intracellular triglyceride levels of 31% within 48 hours [5]. This
cocktail was tested then by Yarmush et al. 2016 in an in vitro model of hepatoblastoma cells
(HepG2) loaded with lipids via FAs supplementation. The combination of drugs promoted a
reduction of 83% in intracellular triglycerides within 48 hours of treatment under hyperoxic
conditions [6]. We have employed the same cocktail of drugs in our experiments and in PHH
we found a reduction of 35% over the same time period. This reduction was more significant
considering the positive area occupied by LDs (54%). Our data suggests that this finding is likely
to be related to the reported decrease in size of the LDs gaining appearance of microvesicular
steatosis. This decrease in macrovesicular steatosis was associated with a continuous increase in
the production of ketone bodies with the defatting cocktail in comparison with fatty control
cells further than 24 hours, a product of incomplete oxidation of FAs in the mitochondria.

The defatting cocktail consists of: nuclear ligands for peroxisome proliferator-activated
receptors (PPAR o- ligand GW7647; and, PPAR §- ligand GW501516) to stimulate the
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Fig 5. Assessment of the cytotoxicity of the defatting cocktail to human cells of the liver via MTT assay. Panel A: the toxicity of the defatting cocktail was tested in
primary human hepatocytes and results showed a significant improvement of 11% in viability of the defatting treatment group compared with the fatty vehicle control
group. Panel B: Treatment of human intra-hepatic endothelial cells (HIEC) with the drugs had no effect on cell viability compared with the control groups. Panel C:
treatment of cholangiocytes with the defatting cocktail did not demonstrate any cytotoxic effect to the cells and indicated a slight improvement in viability compared to the
control groups. Panels D and E: Phase contrast microscopy showing representative images of HIEC (Panel D) and cholangiocytes (Panel E) at different time points. No
gross modifications in cell integrity were observed in either cell type which was consistent and supportive of the MTT data. Data report the median of three separate
experiments performed in quadruplicate and errors bars the interquartile range. Comparisons performed using two-tailed t-test. * = p<0.05.
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transcription of lipid oxidation/exportation factors [24]; an insulin-mimetic adipokine visfatin
associated with lowering triglyceride levels in the liver [25]; forskolin a glucagon mimetic mole-
cule known to stimulate cyclic AMP-driven B-oxidation of lipids and ketogenesis [26]; pregnane
X Receptor (PXR) ligand hypericin that is reported to improve the transcription of the cyto-
chrome P450 (CYP) 3A4 monooxygenase which can increase metabolism of a range of drugs in
hepatocytes [27]; constitutive androstane receptor (CAR) ligand scoparone (6,7-dimethoxycou-
marin) that acts to promote transcription of beta-oxidation enzymes, such as carnitine palmi-
toyltransferase 1 [28], and finally a supplement of L-carnitine, fundamental in the transport of
FAs across the inner mitochondrial membrane [29].

In brief, forskolin activating glucagon membrane receptors can stimulate the adenosine
monophosphate (cAMP)-protein kinase A pathway that regulates the trafficking of cyto-
plasmic lipases to the surface of LDs [30, 31]. The glycerol and FAs released from the break-
down of LDs could potentially not only serve as substrates for the cell metabolism but also as
ligands to nuclear receptor (peroxisome proliferator receptor [PPAR] and liver X receptors
[LXR]) increasing the transcription of enzymes involved in the catabolism of FAs in the mito-
chondria and peroxisome [32, 33]. The other drugs (GW7647, GW501516, hypericin, scorpar-
one) also act as ligands to other nuclear receptors (pregnane X receptors and androstane
receptors) boosting the transcription of key enzymes in lipid metabolism [34, 35]. Cytosolic
fatty acid reacts with ATP generating fatty acyl-CoA. Acyl-CoA in turn reacts with apolipopro-
tein B to generate lipoproteins to be exported from the cell and/or reacts with the hydroxyl
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group of carnitine via carnitine palmitoyltransferase 1. Acyl-carnitine is transported inside the
mitochondria by a Carnitine-acyl-CoA transferase and a carnitine is transferred outside. Acyl-
CoA is processed by B-oxidation then allowing ketogenesis or complete oxidation via the
Krebs cycle and the electron transport chain with the production of adenosine triphosphate
(ATP) [36]. Therefore acting through different pathways this combination of drugs accelerates
the process of intracellular triglycerides exportation and improves mitochondrial oxidation of
FAs [5, 37]. Hence the defatting cocktail not only reduces intracellular LD content but it also
serves to enhance lipid metabolism and potentially increase intracellular ATP. This increased
ATP content can potentially improve the poor outcome of steatotic livers during either
machine perfusion or after clinical transplantation as loss of energy reserves is an important
reason for graft dysfunction [38].

As already stated, experiments testing the defatting cocktail with rat hepatocytes and
HepG2 cells do not wholly reflect the responses of PHH. For example, the expression of
enzymes involved in drug metabolism as cytochrome P450 is variable between these cells and
PHH [7, 10]. Consequently such experiments although informative, may underestimate the
real cytotoxicity or metabolic effect of therapeutic interventions in human livers [7, 8, 10, 39].
Therefore PHH remain the choice of cells for the study of cytotoxicity and the resultant meta-
bolic effect of drugs in human livers [11, 12, 39].

The present study to the best of our knowledge is the first to examine the cytotoxicity and
metabolic effect of a combination of drugs intending to promote defatting of fat loaded PHH
in an in vitro model. It was shown that the defatting cocktail effectively decreased the lipid con-
tent of PHH in vitro, improving cellular viability and mitochondrial oxidation of FAs. No less
importantly, we have tested the cytotoxicity of the drugs to HIEC and cholangiocytes. The
information that the drugs are not toxic to these cells is an important and reassuring step
before moving towards translational experiments for the delivery of the defatting cocktail to
whole human donor livers during extra-corporeal normothermic machine perfusion.

Despite the experimental evidence discussed, defatting of human livers remains challenging
and under researched. One limitation of our study is that we have not explored what could be
the impact of flow and the effect of ischaemia-reperfusion on the defatting process of PHH. It
was suggested recently in the literature by Yarmush et al. 2017 that cultured HepG2 cells can
have the time for defatting shortened from 48 hours to 4-6 hours when submitted to condi-
tions of flow using this cocktail of drugs [37]. In addition machine perfusion and/or clinical
transplantation of livers will involve a period of ischaemia and this may have an effect upon
defatting [38].

Conclusion

Using an in vitro model of PHH, our study demonstrates for the first time that pharmacologi-
cal interventions can be used to lower intracellular triglycerides stores and promote higher
rate of FAs mitochondrial B-oxidation. Additionally the drugs were shown to be not toxic to
PHH, HIEC and cholangiocytes. Hence, the present study supports future translational experi-
ments involving the described defatting cocktail in steatotic human livers.
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