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Abstract

Motivation

Gene regulatory networks (GRN) can be determined via various experimental techniques,

and also by computational methods, which infer networks from gene expression data. How-

ever, these techniques treat interactions separately such that interdependencies of interac-

tions forming meaningful subnetworks are typically not considered.

Methods

For the investigation of network properties and for the classification of different (sub-)net-

works based on gene expression data, we consider biological network motifs consisting of

three genes and up to three interactions, e.g. the cascade chain (CSC), feed-forward loop

(FFL), and dense-overlapping regulon (DOR). We examine several conventional methods

for the inference of network motifs, which typically consider each interaction individually. In

addition, we propose a new method based on three-way ANOVA (ANalysis Of VAriance)

(3WA) that analyzes entire subnetworks at once. To demonstrate the advantages of such a

more holistic perspective, we compare the ability of 3WA and other methods to detect and

categorize network motifs on large real and artificial datasets.

Results

We find that conventional methods perform much better on artificial data (AUC up to 80%),

than on real E. coli expression datasets (AUC 50% corresponding to random guessing). To

explain this observation, we examine several important properties that differ between data-

sets and analyze predicted motifs in detail. We find that in case of real networks our new

3WA method outperforms (AUC 70% in E. coli) previous methods by exploiting the interde-

pendencies in the full motif structure. Because of important differences between current arti-

ficial datasets and real measurements, the construction and testing of motif detection

methods should focus on real data.
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Vega NM, Prill RJ, et al. (2012) Wisdom of crowds

for robust gene network inference. Nat Methods 9:

796–804. (https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3512113/#SD1) and: Faith JJ, Driscoll

ME, Fusaro VA, Cosgrove EJ, Hayete B, et al.

(2008) Many microbe microarrays database:

uniformly normalized affymetrix compendia with

structured experimental metadata. Nucleic Acids

https://doi.org/10.1371/journal.pone.0201382
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201382&domain=pdf&date_stamp=2018-08-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201382&domain=pdf&date_stamp=2018-08-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201382&domain=pdf&date_stamp=2018-08-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201382&domain=pdf&date_stamp=2018-08-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201382&domain=pdf&date_stamp=2018-08-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201382&domain=pdf&date_stamp=2018-08-06
https://doi.org/10.1371/journal.pone.0201382
https://doi.org/10.1371/journal.pone.0201382
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3512113/#SD1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3512113/#SD1


Introduction

Inference of gene regulatory networks (GRNs) aims to improve our understanding of the cel-

lular responses to local as well as environmental signals. The expression of a target gene (TG)

can be activated or repressed via binding of proteins known as transcription factors (TF) to its

promoter region. In this study, GRNs refer to directed graphs in which edges represent the

regulatory effects of a TF on its TG. Several techniques [1–3] have focused on the inference of

GRNs using transcriptome data. Transcriptome data is one of the main sources to detect regu-

latory interactions, not only because modeling the control of transcription is the main purpose

of GRNs, but also due to the fact that measurements of mRNA levels are more readily available

than other high throughput experiments, e.g. proteomic profiles [4].

Approaches based on measuring pairwise dependencies between TF:TG pairs assume that

an interaction is more likely if the expression of a TG is correlated to the expression of the TF.

Pearson’s correlation (PC; [5]), mutual information (MI; [6]) and two-way ANOVA (analysis

of variance; [7]) have been successfully applied to infer pair-wise interactions. Such methods

cannot distinguish between indirect and direct interactions, as relations defined by correlation

are transitive. The indirect ‘interaction’ between A and C via A! B and B! C can lead to a

substantial correlation between A and C and may thus imply a direct ‘interaction’ A! C,

known as cascade error [8].

This is just one example indicating that testing individual interactions may not be sufficient

to examine complex subnetwork behavior arising from direct and indirect regulatory effects.

Here, we argue that complete subnetworks have to be considered. As a first step in that direc-

tion, we focus on the simplest form of such subnetworks composed of direct and indirect

interactions between two TFs and a TG. Such subnetworks or building blocks appear signifi-

cantly more frequent in networks compared to random networks and are called network

motifs or motifs for short [9, 10] (see below). We propose a novel method based on three-way

ANOVA (3WA) to examine and distinguish such motifs. We demonstrate its advantages by

comparatively evaluating 3WA and previously published methods on both artificial and real

datasets.

Network motifs

Feed-forward loop (FFL), cascade chain (CSC), and dense-overlapping regulon (DOR) are

examples of network motifs (Fig 1). A CSC motif (Fig 1a) (also known as regulator chain; [11])

refers to a chain of two or more regulators, in which one regulator binds to the promoter of

the second regulator, and, the second binds to the promoter of a third regulator, and so on.

Simon et al. [12] showed that in the yeast cell cycle the transcriptional activators functioning at

one phase of the cell cycle regulate the activators required for entry into the next phase of the

cell cycle. The DOR motif (Fig 1b), also known as multi-input motif, is a layer of overlapping

interactions between operons and a group of input TFs. For instance, the fts operon, which

plays essential roles in the regulation of cell division, is regulated by several TFs and forms a

DOR motif [13]. FFL motifs (Fig 1c) are shown to be able to filter short input signals, and also

allow a rapid system shutdown [14].

Several studies [14–16] have analyzed whether there is a relationship between motif struc-

ture and its function, for instance based on the coherence of motifs. In contrast to incoherent

FFL motifs, coherent FFL motifs have the same effect sign (either repression or activation) on

both the direct and indirect regulation branches. Dunlop et al. [17] showed that incoherent

FFL motifs reduce circuit-extrinsic noise, while coherent FFLs amplify such noise.

The behavior and topology of a motif is often defined based on the mRNA expression pat-

tern of the TG and TF-coding genes. This requires a careful consideration of the regulatory
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mechanisms involved. For example, competition, synergy or the cooperation of multiple regu-

lators might lead to complex expression patterns. Also, post-translational regulation of TFs

may modify the binding of a TF to its targets. Hence, not all regulatory effects will be immedi-

ately interpretable on the transcriptional level. In addition, other factors such as environmental

signals as well as regulators outside the motif context [18] affect the expression of TGs and TF-

coding genes and lead to more complex behaviors. Ingram et al. [19] studied the dynamics of

bi-fan motifs in which two TFs jointly regulate two TGs, and showed that the same motif may

exhibit different behaviors depending on the experimental condition.

The behavior of a motif is also dependent on the strength of its pairwise interactions, e.g. an

FFL motif with a weak TF:TF interaction might behave like a DOR motif. In a weak interac-

tion, the activity of the regulator has only little effect on the expression of the target. Huang

et al. [9] showed that both in E. coli and S. cerevisiae, in most of the motifs one or more of the

interactions are weak. In addition, several studies confirm that the effect sign of interactions

are important for the behavior of FFL motifs [17, 20–22].

Related work

In this paper, we propose to detect, categorize and examine three basic subnetworks, CSC,

FFL, and DOR using expression data. The ability to distinguish these motifs can for instance

serve to reduce the rate of cascade error, which refers to misinterpretation of direct effects for

indirect effects and vice versa. Cascade error is illustrated in Fig 1.

Fig 1. Three common cases of cascade error. Three common cases of cascade error, i.e misinterpretation of direct

effects for indirect and vice versa, in the inference of CSC, DOR, and FFL motifs. The red arrow represents a false

positive (FP) edge, i.e an edge is inferred when it does not exist in the gold standard, and the dotted arrow shows a false

negative (FN) edge, i.e a true edge has not been inferred. The right side shows for each subnetwork a corresponding

example in the gene regulatory network of E. coli.

https://doi.org/10.1371/journal.pone.0201382.g001
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Several approaches propose to at least partially consider subnetworks with three or more

genes to distinguish direct from indirect effects. A straightforward method is measuring condi-

tional correlation, which is the residual pairwise correlation after conditioning over one or sev-

eral other genes. de la Fuente et al. [23] used first and second order conditional Pearson’s

correlation and first order conditional Spearman’s correlation to distinguish direct from indi-

rect interactions. Watkinson et al. [24] and Luo et al. [25] used three-way mutual information

to measure the joint effect of two TFs on the expression of a TG in addition to their individual

effects. ARACNe [26] and PCA-CMI [27] both begin with a network in which all edges have a

mutual information (MI) higher than a specific threshold. ARACNe removes the edge with the

lowest dependency in all fully connected three-gene structures. In all fully connected 3-gene

structures (e.g. FFLs), the edge with the lowest dependency is removed if its dependency is sub-

stantially lower than that of the two other edges. PCA-CMI, on the other hand, computes

higher order conditional mutual information, i.e it is not limited to the joint effect of only two

TFs, to remove edges between pairs that are not highly dependent when considering one or

several other TFs. In all procedures described above, edges are removed that may or may not

be false positives resulting from indirect interactions. However, it is often unclear whether

these methods are actually able to distinguish CSC and FFL motifs or whether the adaptations

only serve to change a method’s relative preference by unspecifically trading CSC for FFL

motifs or vice versa [28].

Results

The present study focuses on the detection of network motifs consisting of three genes and up

to three interactions. The analysis is performed based on several real datasets and an artificial

dataset.

We propose a novel approach for this task and compare it against published methods.

Before discussing the results on the network motifs we analyze the properties of individual

interactions that are relevant for the more complicated task of motif detection. We used

known pairwise as well as conditional dependence metrics. Conditional dependencies are pri-

marily applied to help distinguishing between direct and indirect interactions.

Differences between real and the artificial datasets

Enrichment of correlation of interacting gene pairs compared to arbitrary pairs. The

performance of inference methods is often dependent on how well interacting pairs can be dis-

tinguished from random pairs based on measuring the dependency between their expression

profiles. PC for instance is frequently used as a measure of dependency within inference

approaches. Therefore, we examine networks in terms of random as well as interacting pairs

(TF:TF or TF:TG) to derive normalized dependency distributions (as binned histograms),

where TG refers to genes that are always targets while TFs can be transcription factors as well

as target genes.

These histograms are shown in Fig 2 for the artificial dataset. We consider two distribu-

tions, (i) of true interactions (TF:TF, TF:TG), and (ii) of random pairs. Distributions of ran-

dom interactions peak at a correlation value of 0.0, which implies that random pairs typically

exhibit no correlation. We then plot the bin-wise difference of these two distributions (i–ii) for

each network in Figs 3 and 4. Positive or negative values of this difference can now be inter-

preted as the enrichment or the depletion, respectively, for observing true interactions at given

PC intervals.

As depicted in Fig 3a, the artificial dataset shows enrichment for correlation values above

0.2 or below -0.2, and depletion for correlation values around zero. Hence, it is very likely that
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interacting gene pairs show higher absolute correlation compared to arbitrary gene pairs, mak-

ing it easy to distinguish them. Consequently, motifs should be distinguishable by comparing

their individual characteristic edges, e.g. DOR motifs can be distinguished from FFL motifs by

comparing their TF:TF pairs, ignoring other interactions involved. It is also very interesting

Fig 2. Correlation of random pairs vs. interacting pairs. Correlation of random pairs vs. interacting pairs. The

distribution of correlation for random pairs (green-solid line) and interacting pairs (TF:TG pairs (blue-solid line), TF:

TF pairs (red-dashed line)) in the artificial dataset were normalized to unit area. The x-axis and y-axis show PC and

probability, respectively.

https://doi.org/10.1371/journal.pone.0201382.g002

Fig 3. Difference histograms for correlations. Difference histograms for correlations. We display the difference between two histograms (i,
e.g. red or blue line, Fig 2) and (ii, e.g. green line, Fig 2) by subtracting (i)–(ii). As the probability of interacting versus non-interacting pairs

with a given correlation might be decreased or increased, difference histograms display positive or negative values, respectively. The plots

compare the difference distribution of TF:TG (solid) and TF:TF (dashed) in the real (b)-(d) and the artificial datasets (a).

https://doi.org/10.1371/journal.pone.0201382.g003
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that in contrast to the real datasets, the distributions for TF:TF and TF:TG pairs are hardly dis-

tinguishable in the artificial data.

By comparing the artificial dataset with real datasets (Fig 3a vs. Fig 3b and 3c), we observe

two main differences. First, the range of enrichment/depletion (ordinate) in the artificial data-

set is much more pronounced in comparison to real datasets, i.e in case of real datasets depen-

dencies between interacting pairs cannot as easily be distinguished from random pairs. In case

of S. cerevisiae, it is even more obvious as the pairs with the highest correlation do not exhibit

an increased chance to represent true interactions. Second, in the real datasets the histograms

for TF:TF pairs and TF:TG pairs show substantially different properties, which cannot be

observed in the artificial dataset. This could indicate that these two types of interactions should

be treated differently.

Next, we analyzed interacting TF:TF pairs in CSC and FFL motifs as well as non-interacting

TF:TF pairs in DOR motifs, to examine correlation distributions in the context of motifs

(Fig 4). In the artificial dataset, the interacting TF:TF pairs in CSC and FFL are enriched (cor-

relation values above 0.2 or below -0.2) while the non-interacting TF:TF pairs in DOR are not.

This indicates that DOR motifs can be distinguished from CSC and FFL only by comparing

their characteristic edge (Fig 4a). In contrast to the artificial dataset, real datasets exhibit much

less enrichment (Fig 4b and 4c), which is very similar for DORs, across the three interactions.

In contrast to the artificial dataset, we expect that an analysis of individual edges may be

insufficient to distinguish motifs in the real datasets as interacting and non-interacting pairs

are more difficult to separate.

Fig 4. Correlation vs. causal relationships. Shown here are individual difference histograms (compare Fig 3) for DOR, CSC and FFL motifs in real and

the artificial datasets.

https://doi.org/10.1371/journal.pone.0201382.g004
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The sign of interactions. As mentioned in the introduction, the sign of the interactions

(activation/repression) is considered important for understanding the behavior of motifs. In

the following, we analyzed E. coli expression profiles with respect to the type of regulatory

interactions (activation/repression) that we extracted from the annotations within

RegulonDB.

Theoretically, a negative PC should be an indication of a repressing interaction. As depicted

in Fig 5, in the artificial data positive and negative correlations exhibit their corresponding

signs in the PC distribution and their strength (positive/negative shift of PC is similar). In the

E. coli dataset, the distribution of PC generally is shifted to positive values so that strong nega-

tive correlations and, thus, repressing interactions are rarely observed in our expression data.

We also examined the sign of interactions based on the differential expression of a TG in

response to the knockout or overexpression of its regulator. We analyzed the effect of knock-

out of TFs with repressing effects on their TGs. The pair arcA:fnr is an example where fnr is

repressed by its only regulator arcA. In Fig 6, the expression of fnr in four knockout experi-

ments, each with 3 replicates, is shown. Since arcA represses fnr, upregulation of fnr is expected

in response to the knockout of arcA. However, in the first two knockout experiments the

expression log fold changes of fnr is around zero, i.e its expression is not changed compared to

Fig 5. The distribution of Pearson’s correlation based on the sign of interactions. The distribution of PC based on

the sign of interactions (activating or repressing) for the artificial (solid) and real (E. coli) (dashed) datasets is shown.

https://doi.org/10.1371/journal.pone.0201382.g005

Fig 6. The effect of knockout of arcA on its target fnr. Four different knockout experiments of arcA with three

replicates each (abscissa), and the response of its target gene, fnr, to these knockouts is depicted in the form of

expression log fold-change (ordinate).

https://doi.org/10.1371/journal.pone.0201382.g006
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the wild type experiment. In the last two knockout experiments, the expression of fnr is lower

as compared to the wild type condition. Different reasons could result in such a pattern, for

example a more complex regulatory mechanism that regulates the expression of fnr which

might not entirely depend on arcA.

Overall, we conclude that it is very difficult to determine the sign of interactions from

expression data, and that the coherence or incoherence of motifs cannot be analyzed in this

way.

Pairwise versus three-way methods

In this section, we compare the performance of 3WA and current approaches to distinguish

motifs (Fig 7). Simple (i.e pairwise) methods analyze interactions individually, while 3WA and

conditional methods take the entire motif into account. For each pair of motif types in turn

(CSC vs. DOR, CSC vs. FFL and DOR vs. FFL), we analyze how well instances of one motif

type can be recognized and distinguished from the other.

Artificial dataset. As shown in Fig 7, in the artificial dataset all simple approaches (MI,

PC, SP, 2WA) were able to recognize all motifs with good performance. As discussed earlier in

section 2.1.1, in the artificial dataset interacting and non-interacting pairs are in general easy

Fig 7. Comparison of pairwise classification results of CSC, FFL, and DOR motifs across datasets. Pairwise classification results across a range of methods (see text)

in E. coli (M3D), E. coli (D5), artificial (D5), and S. cerevisiae (D5). The ordinate represents the AUROC. Since AUROC = 50% is equivalent to random guessing, values

lower than 50% are not shown.

https://doi.org/10.1371/journal.pone.0201382.g007
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to distinguish (Fig 3a). In particular, DOR has a characteristic edge between the two regulatory

TFs, which can be used independently from other edges to distinguish the DOR from the two

other motifs without considering the other edges. Fig 4a furthermore confirms that the TF:TF

correlation in DOR motifs (where this interaction is absent) is indeed very low and easily dis-

tinguishable from the TF:TF interactions in both other motifs. The conditional dependency

measures (conditional PC, SP and MI) showed a lower performance than their non-

conditional counterparts. 3WA is performing similar to the best available approaches.

Real datasets. E. coli dataset. Our results on E. coli datasets were substantially different

from those obtained for the artificial data. In general, performance of simple approaches as

well as the conditional correlation coefficients were close to random guessing, which can be

explained by the fact that the distribution of dependencies between interacting pairs overlaps

largely with non-interacting pairs (Fig 3b and 3c). In addition, according to Fig 4b and 4c the

distribution of pairwise dependency of TF:TF pairs in DOR motifs is similar to those of CSC

and FFL motifs, i.e non-interacting TF-TF pairs in DOR cannot be distinguished from inter-

acting TF:TF pairs in FFL and CSC simply by comparing individual pairwise dependencies.

In contrast, conditional mutual informaiton was to some extent able to distinguish between

all three motifs in both E. coli datasets (D5 and M3D).

3WA performs substantially better than both simple and conditional approaches. For

example, for the E. coli (D5) dataset, DOR motifs are distinguished from FFL motifs with an

AUROC of 74%.

S. cerevisiae dataset. The performance of simple approaches is slightly better than random

guessing (AUROC� 60%) in the S. cerevisiae dataset, i.e. simple approaches perform better

here than in the E. coli dataset, particularly in case of DOR vs. FFL. This might be due to the

fact that in S. cerevisiae, TF:TF pairs show slightly higher correlation in both FFL and CSC

motifs compared to DOR motifs (Fig 4d), which is in contrast to both E. coli datasets (Fig 4b

and 4c). The lowest performance is achieved for the separation of CSC and FFL. One possible

reason is that the correlation distribution of interacting TF:TG pairs overlap largely with that

of non-interacting TF:TG pairs (Fig 3d). The performance of conditional methods in all classi-

fication tasks is almost near random guessing and conditional mutual informaiton is just

slightly better in classifications involving DOR.

3WA has a similar performance to simple approaches, still, its performance in distinguish-

ing CSC from FFL motifs (AUROC = 62%) is higher compared to the performance of all other

approaches.

To summarize, 3WA has a higher performance in real datasets compared to standard

approaches, and its performance is similar to the best other methods in the artificial dataset.

Conditional approaches have a low performance in all real datasets, only conditional mutual

information being slightly better. The performance of the examined existing motif classifica-

tion approaches is satisfactory only in case of the artificial dataset.

Examples of misclassifications and correct classifications

Distinguishing CSC motifs from FFL motifs is quite challenging, since only one edge differs

between them. In turn, a missing interaction in the gold standard of regulatory interactions

can change a FFL motif into a CSC motif, and similarly, a false positive interaction can change

a CSC motif into a FFL. For example, according to interactions annotated in RegulonDB, the

motif (fadR!iclR!aceK) is a CSC motif, i.e. no interaction has been annotated between fadR
and aceK. However, based on our 3WA this motif was categorized FFL with high confidence,

i.e. implying a dependency between the expression profiles of fadR and aceK. Based on Meyer

et al. [29], the expression of the ace operon is under the transcriptional control of both iclR and
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fadR, providing a sufficient explanation of the observed dependency between the expression

profiles of fadR and aceK and suggesting that it could indeed show the behavior of a FFL.

Another reason for misclassification of CSC and FFL motifs are indirect interaction(s)

between non-interacting TF:TG pairs in CSC. For example, the CSC motif

(rutR!gadW!dctR) (Fig 8a) has been categorized by 3WA as FFL with a high confidence

score. According to RegulonDB, rutR forms a second cascade chain with dctR through gadX,

i.e. an indirect interaction, which might result in a strong pairwise dependency between rutR:

dctR. Thus, other network interactions might lead to a behavior different from what the motif

would exhibit in isolation.

The FFL motifs formed by (baeR: TF, cpxR: TF, mdt operon) are examples of correct classi-

fication by 3WA (Fig 8b). According to RegulonDB cpxR does not have any regulator, and

cpxR itself is the only regulator of baeR. In addition, the mdt operon is also only regulated by

these two TFs. Because of that, these motifs seem to be rather isolated and lack a dense connec-

tion to the remaining network. As these FFL motifs are not affected by the input of other TFs,

they have been recognized correctly as FFLs by 3WA.

Discussion

Apart from individual binary interactions, network motifs consisting of just three genes and

up to three interactions, are the simplest pathway building blocks. They may perform distinct

functions, e.g. feed-forward loops (FFL) are considered to act as low-pass filters, removing

Fig 8. Two examples of motifs that are categorized as FFL by 3WA. Two examples of motifs that are categorized as

FFL by 3WA: (a) The three genes of(gadW, rutR, dctR) form a CSC motif which is incorrectly categorized as FFL by

3WA. It might be due to the fact that rutR:dctR form an indirect interaction via gadX. True positive and false positive

interactions are shown with solid and dotted lines respectively. (b) The two TFs baeR and cpxR form several FFL motifs

with themdt operon (baeR: TF, cpxR: TF,mdt operon: TG). According to annotation of RegulonDB, this group of

motifs are isolated in the GRN of E. coli, i.e. 1) the two TFs are not regulated by any other TFs, and 2) the expression of

mdt operon is only regulated by baeR and cpxR.

https://doi.org/10.1371/journal.pone.0201382.g008
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very short signals. Motif function is thought to emerge from the exact topology, rather than

from individual interactions or genes. Thus, the full structure needs to be considered for motif

detection and examination. In contrast, motif detection approaches are often based on binary

dependency measures such as Pearson’s correlation, and, thus, consider each interaction indi-

vidually. In order to examine the interactions of three genes simultaneously, we suggested an

approach based on three-way-ANOVA (3WA) to detect motifs consisting of transcription fac-

tor:target gene (TF:TG) interactions from expression data. Notably, our method can be

extended to larger subnetworks of four (4WA) or five (5WA) gene motifs, of course at

increased computational cost.

We compared the performance of 3WA to several published approaches, e.g. based on

(conditional) Pearson’s correlation or mutual information. On the artificial data, 3WA per-

forms similar to previous approaches. On real data, 3WA outperforms standard approaches by

a large margin. 3WA also outperforms conditional approaches, which aim to discriminate

direct from indirect interactions. There are several reasons why 3WA outperforms conditional

methods in real data. First, TF:TG and TF:TF interactions have different properties and might

show different levels of dependency. While 3WA takes this difference into account, condi-

tional methods treat all interactions as if they are of the same type. Here, 3WA decomposes the

data into 8 sum of squares, that enables a flexible modeling and, thereby, a more accurate inter-

rogation of the motif-specific properties. Second, conditional approaches treat the replicates of

the same experiment as individual measurements. In contrast, ANOVA uses the replicates to

increase motif-specific signal to noise ratio. Thereby, 3WA is capable to detect weaker signals

in real data in comparison to other approaches. However, it should be taken into account that

ANOVA cannot be applied if replicates are not available or the data is not approximately nor-

mally distributed. Indeed, the distribution of log-fold change expression data used here is close

to normal and it has been shown previously that in such cases ANOVA yields the best results

among a range of methods [30].

Furthermore, the discrepancy between the performance of tools on real and simulated data

can be explained partially by the fact that most standard approaches were devised, trained and

tested primarily on simulated data (e.g. [23]). However, there are several important properties

that differ between real and artificial datasets.

First, the detection of individual interactions is much simpler in artificial datasets as TFs

and TGs show much stronger correlation for true artificial interactions as compared to other

gene pairs. In the artificial data this enables the detection of motifs by simply testing each inter-

action individually. In contrast, in real data, correlation distributions of true and false interac-

tions overlap substantially so that interactions are more difficult to detect. No increased

correlation can be detected in TF:TF interactions that are particularly important in network

motifs, so that more sensitive methods are required.

The difficulty in distinguishing true and false interaction partially explains our findings that

testing single interactions is not sufficient. This might be due to the fact that TFs are subject to

post-transcriptional regulation [31] in addition to transcriptional regulation. Post-transcrip-

tional regulation is not visible on the mRNA expression level. 3WA achieves a useful perfor-

mance by taking all possible co-dependencies between three genes (including three-way

dependencies) into account simultaneously and may thereby somewhat compensate the lack

of post-transcriptional information.

Second, on real data, we identified another obstacle for motif detection. While positive cor-

relations between interacting genes (indicating activation) are found frequently, strong nega-

tive correlations (indicating repression) are virtually absent. This lack of negative correlations

has been ascribed to the fact that interactions involving repression show less consistency in

measurements [30, 32]. It is thus especially difficult to detect motifs that involve repressing
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interactions. Examples for important motifs reported to involve repressing interactions are for

instance the Lac system (CRP:TF, Lacl:TF, lacZYA:TG), Maltose utilization (CRP:TF,mall:TF,

malXY:TG), and Methionine biosynthesis (metJ:TF, metR:TF, metA:TG) [33]. In addition,

community wide assessments demnonstrated that network inference approaches are unable to

infer the direction of regulatory relationships based on gene expression data alone [28]. The

ANOVA based technique presented here is also not able to infer directions. However, in most

regulatory relationships only one of the two partners is a TF such that regulation is obviously

directed from the TF to the TG. We cannot resolve cases of interactions between two TFs,

which correspondingly reduces our reported performance.

Besides evaluating the performance, we also examined motifs that were misclassified by

3WA. Such misclassifications might be linked to motifs showing atypical or unexpected behav-

ior. We hypothesize that unexpected behavior might be due to one of the following three

causes. First, not all gold-standard network motifs are correct due to incomplete or incorrect

interactions in experimentally derived networks. A second reason for misclassifications might

be that edges are weak, e.g. that the direct effect of the TF on the TG in a FFL motif is small.

Here, an FFL motif might actually rather appear as a CSC motif. Finally, densely connected

motifs might also exhibit a behavior different from isolated motifs if they are affected by strong

inputs from the network [19, 34]. We therefore examined cases of misclassification in which

strong deviations from the expected behavior of a motif are observed, i.e. misclassifications in

which 3WA exhibited very high confidence values. In several such cases we presented litera-

ture evidence suggesting that the behavior of the motif as predicted by 3WA might be correct.

We conclude that an analysis of seemingly misclassified motifs can provide important hints on

motif behavior and even about potential gold standard errors.

We have presented an approach that successfully detected and discriminated different types

of network motifs. While we demonstrated an increased performance in comparison to previ-

ous approaches, there are several aspects that generally limit the ability of methods to detect

motifs. As we demonstrated the importance to treat subnetworks as a whole, a first obvious

improvement is to consider larger subnetworks containing more than 3 genes and interac-

tions. Second, the incorporation of additional details on the interactions could lead to

improvements, for instance by considering the sign (repression/activation) and the strength of

interactions. Third, the temporal dynamics of interactions could be analyzed, perhaps by a

dedicated treatment of time-series data. Finally, focusing the analysis on expression data alone

is another limitation. The activity of the respective proteins is difficult to assess without knowl-

edge of their concentration, the activation status and the localization. Transcriptome data is

just an approximation for protein activity. While many other datatypes useful for inference

such as TF binding sites, open chromatin, DNase hypersensitive sites (DHS; [35]), and ChIP--

Seq (Chromatin ImmunoPrecipitation; [36]) are now available, they have not yet been system-

atically exploited for motif inference. Once the use of these data types in inference has been

established, they can be incorporated into our proposed scenario.

As artificial datasets do not sufficiently emulate the properties of real data, we find that

great care is required if subnetwork detection and interpretation approaches are developed

and optimized primarily on artificial data. Despite the involved uncertainties (e.g. incomplete-

ness of current gold standards, measurement errors, etc.), it might still be the best strategy to

focus algorithm development efforts on real data.

Materials and methods

Data sources. In this study we used three datasets from the DREAM5 (D5) competition [28]

and one additional dataset from the M3D database [37] (Table 1). DREAM5 was a blinded
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GRN inference challenge in which the participants inferred the underlying network using the

microarray expression data. The data consists of expression profiles of genes measured in dif-

ferent experimental conditions such as drug, environmental and gene perturbations, or a com-

bination of them. For experiments that were provided as time course measurements, we

considered each time-point as a separate condition. Details regarding the datasets and the pre-

processing procedure (e.g. computation of fold changes) can be found in Table 1 and Küffner

et al. [7].

Gold standard of network motifs. True motifs were extracted from available gold standards

of TF:TG interactions. In case of E. coli, we used RegulonDB [38, 39]. The regulatory network

of S. cerevisiae was automatically derived by genome-wide chromatin immunoprecipitation

data post-processed by conservation-based motif discovery algorithms [40]. In case of

DREAM5 artificial data, an artificial regulatory network was used by the challenge organizers

to simulate the expression profiles. Usually, as not all regulatory mechanisms (like post-tran-

scriptional events) and their precise parameters are implemented in simulators, the artificial

data often cannot reflect the reality of the cell. On the other hand, the gold standard of real

datasets is also not free from errors, i.e several true interactions are missing and false positives

are introduced due to noise in experimental measurements.

Detection of dependencies using ANOVA

Analysis of Variance. ANOVA is a technique to evaluate combinations of several independent

variables or factors and to identify those that have a significant effect on the value of a response

variable. Generally, the gene expression (response variable) varies in response to experimental

conditions (C) as factor. A factor has different “groups” or “levels”, e.g. sets of replicated mea-

surements representing knock-outs, over-expressions, or chemical treatments. The one way

ANOVA (1WA) and t-test both test the null hypothesis that the population means across sev-

eral groups of a single factor are equal (only two groups in case of the t-test). For instance,

1WA is often employed to test for the significance of differential gene expression across

conditions, with μrc being the gene expression of r-th replicate, r� |R|, of the c-th experimental

condition, c� |C|. |R| and |C| are the number of replicates and experimental conditions,

respectively.

To test the null hypothesis (i.e. no differential expression), two variances, i.e. “between-

group variance” and “within-group variance”, are computed. The “between-group variance”

or “explained variance” is the variance of group means (�y :c) from total mean (�y ::). The “within-

group variance” represents the variance between replicates of the same group, and is consid-

ered to quantify measurement error. Formulas for 2WA are given in [41].

Table 1. DREAM5 (D5) and M3D datasets used in this study.

Dataset # TF # Genes # TF pert. # Genes pert. # Chips # Interactions

Artificial (D5) 195 1643 38 38 805 4012

E. coli (D5) 334 4511 20 43 805 2066

E. coli (M3D) 167 4297 17 67 907 2066

S. cerevisiae (D5) 112 6777 7 12 904 3742

The dataset contain a large number of gene expression measurements (chips) for thousands of genes (# Genes) and hundreds of TFs (# TFs). Measurements are also

done for a number of gene-specific perturbations (# TFs pert. and # Genes pert.). The number of annotated gene regulatory interactions in the respective underlying

networks is shown with # Interactions. All data was used as provided by the original sources and publications (see text).

https://doi.org/10.1371/journal.pone.0201382.t001
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In case of 1WA, these deviations can be written as:

SST ¼
XjRj

r¼1

XjCj

c¼1

ðyrc � �y ::Þ
2
¼ jRj

XjCj

c¼1

ð�y :c � �y ::Þ
2
þ
XjRj

r¼1

XjCj

c¼1

ðyrc � �y :cÞ
2
; ð1Þ

where SST is defined as the sum of squared (SS) deviations of all replicates from overall mean.

SST can thus be expressed as the sum of two sum of squares:

SST ¼ SSC þ SSerror; ð2Þ

More generally, an N-way ANOVA tests the effect of N factors, as well as the joint effect of

combinations of k� N factors on the response variable. For example, 1WA decomposes the

SST into two terms, namely the SSwithin and SSerror. Consequently, 1WA, 2WA, 3WA,. . ., NWA

partition the SST into 2, 4, 8,. . ., 2N SS terms, respectively (see Fig 9).

The variance is computed by dividing SS terms by the respective degree of freedom (df; the

number of data points minus 1). An F-value is computed by weighting the explained variance

against the error variance. F-values follow the F-statistics, which can be used to express the sta-

tistical significance of the involved factors as p-values. For instance, to estimate the significance

of differential expression across conditions we compute FC by:

FC ¼
Varianceerror
Variancewithin

¼
SSerror=dferror
SSwithin=dfwithin

; ð3Þ

To test a putative interaction between the gene pair TFX: TGZ, where TFX and TGZ are the

transcription factor (TF) and the target gene (TG), respectively, we previously used 2WA [7]

with two factors, C (conditions) and A (genes), i.e. the data is structured into a three dimen-

sional matrix of genes (here always two, the TF and the TG), the experimental conditions, and

the corresponding replicates. Here, A and C describe the effects on the expression measure-

ments derived from the genes and conditions, respectively. Thus, SSA and SSC quantify the var-

iance in the expression profiles across C and A respectively. Z2
C computes the degree of

dependency between TFX and TGZ

Z2

C ¼
SSC
SST

; FZ ¼
VC

VT
; ð4Þ

which is proportional to the fraction of the total variance that is explained by the differential

expression across experimental conditions. Z2
C is a measure of dependency that, in contrast to

for example Pearson’s correlation, is non-parametric, and non-linear (see [7] for details). To

infer the GRN, candidate TF:TG interactions are ranked in descending order of Z2
C.

Analysis of three-gene motifs using 3way-ANOVA. This paper focuses on the analysis of

three-gene motifs with two TFs TFX and TFY and the target gene TGZ. In a three gene struc-

ture, the number of possible interactions is increased from one in the pairwise scenario to

three (TFX:TFY, TFX:TGZ, TFY:TGZ). We therefore propose to extend 2WA to 3way-ANOVA

(3WA) to measure the strength of dependencies in a three-gene structure. The 3 dimensions

of 3WA are A, B, and Cwhich model the TFs TFX and TFY and conditions, respectively. This

allows us to extend the model from the effect of a single TF and the conditions C on the expres-

sion of TGZ (2WA), to the individual as well as joint effects of two TFs and C on TGZ (3WA).

See Fig 9 for a detailed descriptions of the N-way ANOVA (NWA, for N = 1, 2 and 3) design,

including the corresponding data matrices.

In 3WA, we compute 8 SS terms. Like in the applications of ANOVA mentioned above,

3WA aims to model the expression of target gene TGZ. We normalize the SS terms by dividing
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them by SST, to obtain a ratio in the range [0‥1], and, thus, to make them comparable across

motifs. In the following we briefly describe the intuition behind these terms, and their signifi-

cance for motif analysis. SSA(SSB) measures the independence of the expression of TFX(TFY)

from the expression of remaining genes. As shown by Eq 4, SS terms do not only capture the

variance, and, thus, the independence of expression, but can also express dependency. The

sum of normalized terms is 1. Correspondingly, if SSAC explains an increased part of the vari-

ance, less variance can be attributed to the relationship between TFY and TGZ. This in turn

implies an increased dependency between TFY and TGZ. The same can be concluded for SSBC,

i.e. it models the dependency between TFX and TGZ. A high SSC means that the total variance

in the conditions is high, and, thus, the variance between the three genes is low, indicating that

they are highly dependent. To exemplify, in case of 3way ANOVA, SSA and SSAC can be

Fig 9. The design of N-way ANOVA (NWA) illustrated for N = 1,2 and 3. The design of N-way ANOVA (NWA) illustrated for N = 1,2 and 3.

Generally, ANOVA models experimental observations μ as responses to N involved factors. For example, 3WA models the response to three factors A,

B, and C in form of μr,a,b,c, where a, b, and c are indices of the factors A, B, and C, respectively. The first index, i.e. r, refers to the experimental replicates.

Here, A and B have exactly two levels (a = 1 or 0, and b = 1 or 0), and C has as many levels as experimental conditions (c = 0, 1,. . .). Correspondingly,

for lower dimensions, i.e. 2WA and 1WA, respective indices are skipped, i.e. we have μr,a,c for 2WA and μr,c for 1WA. N-way ANOVA then has N + 1

dimensions, where the extra dimension represents the experimental replicates. Thus, each field (blue square) represents a set of replicate measurements.

Then, a one-way ANOVA (1WA) tests if μ exhibits significant differences across conditions (index c), and has often been applied to test for differential

gene expression. 2WA has been successfully applied to network inference as it furthermore tests for the dependence of a TF (index a = 1) and a TG

(index a = 0). 3WA models μr,a,b,c and, thus, tests for the dependence and independence of three factors. These factors model the influences of two

transcription factors TFX (index a) and TFY (index b) in addition to the experimental conditions. Consequently, μ.,0,0,0, μ.,1,0,0 and μ., 0,1,0 represent the

mean of the replicate measurements of TGZ, TFX and TFY in condition c = 0, respectively. The common activity of TFX and TFY is imputed as geometric

mean. The total sum of squares (SST) is composed of 2N sums of squares (SS) which represent influences of individual and combined factors (bottom of

Figure).

https://doi.org/10.1371/journal.pone.0201382.g009
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computed as follows:

SSA ¼ jRjjBjjCj
X

a2A

ð�y :a:: � �y ...:Þ
2
; ð5Þ

SSAC ¼ jRjjBj
X

a2A

X

c2C

ð�y :a:c � ð�y ...: þ ð�y :::c � �y ...:Þ þ ð�y :a:: � �y ...:ÞÞÞ
2
; ð6Þ

where, yrabc is the response in replicate r, level a of factor A, level b of factor B, and level c of fac-

tor C. �y ...: is the overall mean, and �y :a:: is the mean of the response of factor A in level a across

all other factors and replicates.

High SSAB indicates that in a subset of conditions the expression pattern of A and B are dif-

ferent. Finally, SSerror and SSABC refer to unexplained variance, and, thus, represent error in the

model. To the best of our knowledge, these last three terms have no positive evidence for motif

detection.

In Fig 10, we illustrate in a toy example (see for the toy model) the terms suitable to differ-

entiate between the behavior (independencies and dependencies) of FFL and CSC motifs and

are thus used to examine their behavior in the following. For sake of simplicity, in the toy data-

set motifs are assumed to be independent of the whole network, while in reality, environmen-

tal signals as well as local signals from the network itself, e.g. the regulatory effect of other TFs,

affect the expression of genes in the motif. See Results for a description on how these terms are

used to distinguish motifs on actual data.

Fig 10. Sum of squares terms (SS) in a three way ANOVA and their meaning for network motif detection. FFL and

CSC motifs are shown in red and green, respectively. TFX, and TFY are the TFs and TGZ is the regulated target gene.

Here, we show how SS terms can be used to distinguish FFL and CSC motifs and compare an artificial dataset and an

E.coli dataset. In the artificial data, SSBC is higher compared to SSAC in CSC motifs, assuming that the interaction

between TFY and TGZ is absent in the CSC motif. In case of FFL, due to the edge between both TFX: TGZ and TFY: TGZ
pairs, we expect SSAC � SSBC. In CSC motifs, SSB is higher than SSA, because TFY itself is regulated independently while

TFX depends on TFY. See Methods for a description of the various SS terms and their meaning.

https://doi.org/10.1371/journal.pone.0201382.g010
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In summary, 3WA considers all the three genes and their putative (in)dependencies at the

same time. 3WA can be considered in form of a function which takes three arguments of the

type of expression profile of genes. For example, in function 3WA(X,Y,Z), X, Y, and Z are

the expression profiles of the corresponding genes, typically X and Y being the transcription

factors and Z being the target gene. See section 4.1.2 for the exact detail on how this function is

used in a dataset-specific manner. In the context of distinguishing motifs with 3 genes, this fea-

ture of 3WA is in contrast to pairwise dependency coefficients (see Section 4.2) that analyze

one interaction at a time and thus neglect the potential combinatorial influence of two TFs on

the regulation of the expression of the TG.

Toy model. We created four toy datasets with three genes each. The first dataset repre-

sents a case where all three genes are highly correlated. The remaining three datasets were

designed to exhibit characteristics of the three motifs of CSC, DOR and FFL, respectively. We

used the toy data as shown in Fig 11 to examine the sum of squares (SS) terms resulting from

a 3Way-ANOVA. Our observations and their comparison with E. coli dataset are shown in

Fig 10. For instance, while in a DOR both TFs need to be active in order to turn on a TG, the

TG in a CSC motif is more dependent on its immediate TF (red) than on the indirect second

TF. Thus, we artificially designed the datasets to represent properties we expected to emerge

from the motifs rather than properties of real datasets.

Modeling of motifs via combinations of sum of square terms. According to Fig 10, the

toy dataset shows different behavior compared to E. coli dataset (see Section 2.1 for a compari-

son between characteristics of real and artificial datasets). Hence, we suggest to use different

set of SS terms to classify motifs across datasets, and consequently, the combination of SS

terms to classify motifs via 3way ANOVA should be carefully designed for new datasets. In

particular, as artificial data, E. coli data and S. cerevisiae data are different (see Results), differ-

ent combinations of SS terms need to be exploited to optimally detect motifs. Here we used

three-fold cross-validation to determine the set of terms in order to avoid over-fitting. The set

of terms used for pairwise classification of motifs across datasets are shown in Table 2.

Fig 11. Four toy datasets for three genes each to simulate the expression pattern of network motifs. Four toy datasets for

three genes each to simulate the expression pattern of network motifs. (a) A dataset where all three genes are highly

correlated. (b-d) Three datasets which are designed to exhibit characteristics of the three motifs of CSC, DOR and FFL,

respectively.

https://doi.org/10.1371/journal.pone.0201382.g011
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Basic approaches

Pairwise dependency coefficients. Pairwise dependency coefficients have been widely used to

infer GRNs. For the inference of GRNs, gene pairs are ranked based on the dependency

between their expression profiles, so that interactions with higher dependency are considered

to be more confident. One of these dependency measures is 2WA, which we used to infer arti-

ficial and real networks of the DREAM5 challenge [7]. Pearson’s correlation (PC), Spearman’s

correlation (SP), and mutual information (MI) are other examples of pairwise dependency

measures [5, 6]. Among these measures, PC is limited to measuring linear dependencies. SP is

similar to PC, but uses the ranks instead of the values. MI measures the amount of information

shared among a number of variables. The MI between variables X and Y is computed as fol-

lows:

IðX;YÞ ¼ HðX;YÞ � HðYjXÞ � HðXjYÞ; ð7Þ

where H denotes the entropy, and H(X, Y) is the joint entropy between X and Y and measures

the actual amount of information in X and Y. H(X|Y) is the amount of information in X, if Y is

known, i.e. the amount of information in X which is independent of Y. Hence, I(X, Y) repre-

sents the amount of redundant (shared) information between X and Y.

To distinguish three-gene motifs based on pairwise dependency coefficients, we rank motifs

by comparing the pairwise dependency of their discriminating edge(s) (Fig 12). For example,

to distinguish CSC from FFL, motifs are ranked according to the pairwise dependency of inter-

acting TF:TG pairs in FFL, and the non-interacting TF:TG pair in CSC. Assuming relative

independence of both motifs from other regulating signals, we expect that both TF:TG edges

in FFL show stronger dependency compared to the non-interacting TF:TG pair in CSC. How-

ever, in a CSC motif the pair TFY: TGZ might be highly correlated due to the indirect interac-

tion through TFX, making it hard to be distinguished from a FFL motif (Fig 12b).

Conditional dependency coefficients. Conditional dependency coefficients measure the

dependency between two variables (here, between the expression profiles of a TF:TG pair)

conditioning on one or more other variables (other TFs). Conditioning means to reduce the

dependency by the amount that is due to the other variables. For example, in a CSC motif

(Fig 1) conditional dependency coefficients can be used to measure the correlation of the

pair TFX:TFY, after conditioning over GZ. Pearson’s correlation or Spearman’s correlation of

TFX:TFY pair conditioned on TGZ are computed as follows

rGXGY jGZ ¼
rTFXTFY � rTGZTFY rTGZTFXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � r2

TGZTFY
Þð1 � r2

TGZTFX
Þ

q ; ð8Þ

where r‥ is the pairwise correlation, and rGXGY jGZ is the correlation between parts of TFX and

Table 2. The set of terms used for pairwise classification of motifs across datasets.

Dataset DOR vs. CSC CSC vs. FFL FFL vs. DOR

in silico (D5) SSac,
3WA(TFX,TFY,TGZ)

SSbc,
3WA(TFX,TFY,TGZ) using weights (see [7])

SSc/(SSac � SSbc),
3WA(TFX,TFY,TGZ)

E. coli (D5) 1/SSac,
3WA(TFY,TGZ,TFX)

SSc � SSbc/SSac,
3WA(TFX,TGZ,TFY)

SSac/SSbc,
3WA(TFY,TGZ,TFX)

E. coli (M3D) 1/SSac,
3WA(TFY,TGZ,TFX)

SSc � SSbc/SSac,
3WA(TFX,TGZ,TFY)

SSac/SSbc,
3WA(TFY,TGZ,TFX)

S. cerevisiae (D5) SSa � SSac/SSab,
3WA(TFX,TFY,TGZ) using weights (see [7])

SSb/SSab,
3WA(TFX,TGZ,TFY) using weights (see [7])

SSab � SSbc/(SSb � SSac),
3WA(TFX,TGZ,TFY)

https://doi.org/10.1371/journal.pone.0201382.t002
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TFY that are uncorrelated with TGZ. High rTFXTFY jTGZ values can be an indication of a direct

interaction rather than an indirect.

Conditional mutual information is not only dependent on the pairwise dependency

between the three variables, but also on the independence of X, and the overall dependency

between the three variables.

HðY;XjZÞ ¼ HðX;ZÞ þHðY;ZÞ � HðZÞ � HðX;Y;ZÞ; ð9Þ

where H(X, Z), H(Y, Z), H(X, Y, Z) are joint entropies, and H(X, Y|Z) is the amount of infor-

mation in Y and X after variable Z is known.

Evaluation of results

We considered the problem of motif inference as three classification problems, in each we dis-

tinguished a pair of motifs (two-class problem). To evaluate the performance of each classifica-

tion, we ranked the predictions by decreasing score and computed the area under the ROC

curve (AUROC) and the area under the precision recall curve (AUPR). The AUROC estimates

the probability that a predictor will rank a randomly chosen positive instance higher than a

randomly chosen negative one. Sensitivity, also known as recall, estimates the probability that

the label of a positive sample is correctly identified. Precision measures the percentage of true

Fig 12. Using pairwise dependency coefficients for pairwise distinguishing of motifs. Using pairwise dependency coefficients

(CC) for pairwise distinguishing of motifs. CC(TFX, TFY) shows the pairwise dependency between TFX and GY. The criteria to

distinguish pairs of motifs using CC is shown for each case separately.

https://doi.org/10.1371/journal.pone.0201382.g012
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positives (TPs) that are correctly predicted. Since AUROC = 50% corresponds to random

guessing, only values between 50% and 100% are shown.

Applicability of ANOVA

ANOVA, typically applied to detect statistically significant differences between means of

groups of data values, rests on two basic assumptions. The first assumption is that the values

are normally distributed and second, that the groups have the same variance. Indeed, as we

showed previously [30], the distributions of the four underlying sets of data used in this work

are appoximately normal (Fig A in S1 File) and that then ANOVA based techniques are appro-

priate. We thus consider the first assumption to hold.

The second assumption is related to the fact that the F statistic used by ANOVA to assess

significance may under/overestimate significance levels when smaller/larger groups (respec-

tively) exhibit larger variance within the dataset. In such cases, the F-statistics might result in

biased probability estimates. We performed Levenes test in order to test for the second

assumption of homogeneity of variance. Here, we use the same partitioning of samples into

groups that was used in 3WA itself (compare Fig 9). Indeed we find that the variance is not

homogeneous between samples and that probability estimates derived from the the F-statistics

may be biased.

However, we argue that deviations from the assumption of homogeneity of variance will

have only limited influence on the results of this study. First, the number of samples that we

use in the ANOVA is very high (between 800-900 samples) such that even small differences in

variance may result in significant Levene’s test p-values. We find that the actual differences in

variance are rather small. Fig B in S1 File shows the data distribution for the motifs with most

and least significant Levenes test p-value.

Furthermore, our method aims to assess and prioritize motifs based on their relative rank,

based on ratios of sum of squares (referred to as eta-squared). It does not rely on the levels of

significance of differences between the group means.

Finally, we employ the same paritioning of samples into groups for each of the tested motifs

such that biases from heterogeneous variance likely affect each motif in a similar way and will

have little influence on the overall ranking of motifs.

Supporting information

S1 File. ANOVA Results- Supplementary results assessing the applicability of ANOVA.

(PDF)
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