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Abstract

The accumulation of acquired mitochondrial genome (mtDNA) mutations with aging in

somatic cells has been implicated in mitochondrial dysfunction and linked to age-onset dis-

eases in humans. Here, we asked if somatic mtDNA mutations are also associated with

aging in the mouse. MtDNA integrity in multiple organs and tissues in young and old (2–34

months) wild type (wt) mice was investigated by whole genome sequencing. Remarkably,

no acquired somatic mutations were detected in tested tissues. However, we identified sev-

eral non-synonymous germline mtDNA variants whose heteroplasmy levels (ratio of normal

to mutant mtDNA) increased significantly with aging suggesting clonal expansion of inher-

ited mtDNA mutations. Polg mutator mice, a model for premature aging, exhibited both

germline and somatic mtDNA mutations whose numbers and heteroplasmy levels increased

significantly with age implicating involvement in premature aging. Our results suggest that,

in contrast to humans, acquired somatic mtDNA mutations do not accompany the aging pro-

cess in wt mice.

Introduction

Maternally inherited mammalian mtDNA is typically present at a thousand genomes per cell

compared to only two copies for most nuclear genes [1]. MtDNA encodes 13 proteins essential

for the mitochondrial respiratory chain along with 22 tRNA and 2 rRNA genes required for

intra-mitochondrial synthesis of these proteins [2]. Structural defects in mtDNA can impinge

on a wide spectrum of cellular functions and can appear in all copies of the genome (homo-

plasmy) or coexist with wt mtDNA (heteroplasmy). In the latter case, the percentage of mutant

mtDNA must reach a certain minimum threshold before the resulting bioenergetic deficiency

can affect cellular function and disease symptoms become evident. A combination of close

proximity to reactive oxygen species, lack of protective histones and relatively low genome
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repair fidelity has been associated with age-related accumulation of somatic mtDNA muta-

tions (i.e. point mutations and large rearrangements or deletions) and subsequently to mito-

chondrial dysfunction, degenerative diseases and aging itself [3–12]. In addition to somatic

mutations, germline mtDNA mutations can be inherited from oocytes and become dispersed

during development throughout the body in all or most organs and tissues. Mutations may

also arise during early embryonic development and, depending on the affected progenitor line-

ages, become confined to specific organs or tissues of the body. In contrast, late-onset somatic

mtDNA mutations could persist in a mosaic pattern in a few or just within a single cell [13].

While both clonal expansion of preexisting germline or early embryonic mutations [14–20]

and the time-dependent accumulation of de novo somatic mtDNA mutations [21–23] have

been implicated, their interplay and relative impact on aging remains unclear.

The mouse is a convenient model for investigating molecular mechanisms underlying

mammalian aging. In particular, Polg mutator mice carrying a nuclear gene defect in the

proofreading function of the catalytic subunit of mitochondrial DNA polymerase γ, have been

critical to the successful assessment of mtDNA mutations [24, 25]. Polg mice accumulate high

numbers of random mtDNA point mutations during development and display premature

aging-like phenotypes, such as weight loss, reduced subcutaneous fat, alopecia, osteoporosis

and hearing loss [24, 25]. While both homozygous and heterozygous Polg induce somatic

mtDNA mutations, only homozygous animals display premature aging [21]; the life span of

heterozygous Polg mice is relatively normal [26]. These and other observations argue against

the premise that acquired somatic mtDNA mutations are solely responsible for premature

aging [23]. In addition, the prevalence of somatic mtDNA mutations in wild type (wt) mice

and their implication in normal aging remains uncertain [26–28]. Based on analysis of the

non-coding D-loop region, the frequency of mtDNA mutations is higher in aged mice than in

younger controls [28]. However, it should be noted that mutations in the non-coding region

of mtDNA are not necessarily reflective of the entire genome, and there are indications of a

disparity in the mutation estimates in coding and non-coding mtDNA regions [29]. In Khai-

dakov et al., 2003, the presence of mtDNA point mutations was reported in aging mice, how-

ever, the origin of these defects was not defined [16].

In an effort to resolve these inconsistencies and define the relative contribution of germline

vs. somatic mtDNA defects to the aging process, we examined multiple tissues in wt and Polg
mice by whole mtDNA sequencing. We show that wt mice carry primaryly germline or early

embryonic, but not somatic mutations. We also note that heteroplasmy levels of germline

mutations increase with age in wt mice. In addition, a significant increase in heteroplasmy lev-

els of germline and somatic mtDNA mutations was correlated with premature aging in Polg
mice. These results suggest an important role of germline mtDNA mutations on aging and

define similarities and differences between wt and Polg mice.

Results

Germline, embryonic and somatic mtDNA mutations in wild type mice

To elucidate the origin of mtDNA mutations and determine their relative role in aging, we

examined skin, brain, heart, kidney, liver, lung, and spleen collected from young (2–13

months) and old (18–34 months) wt BDF mice, which were generated by crossing C57BL/6

females with DBA males (Charles River laboratory), and contain the C57BL/6 mitochondrial

background (Fig 1). Miseq-based whole mtDNA sequencing (Illumina) was carried out and

mtDNA mutations detected at the heteroplasmy level� 2% were called and divided subse-

quently into germline, early embryonic or late somatic origins (Fig 1). We also categorized

mtDNA mutations leading to alterations in the protein-coding sequence as non-synonymous,
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Fig 1. Schematic chart of experimental design. Diagram outlining the experimental groups employed to study aging

in the mouse and definition of mtDNA mutations into germline, embryonic and somatic origin. MtDNA samples were

collected from bulk tissues or individual skin fibroblast-derived iPSC clones or clonally expanded skin fibroblasts from

wt mice (2–34 months) and Polg mutator mice (2–9 months). All mtDNA samples were subjected to whole mtDNA

sequencing by Miseq (Illumina).

https://doi.org/10.1371/journal.pone.0201304.g001
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silent substitutions as synonymous, mutations in RNA-coding genes as RNA mutations, and

mutations in the non-coding control region of mtDNA as NCR mutations.

Among five young wt mice examined, four did not have any detectable mutations in either

tested tissues or organs (S1 Table). One mouse (10 months) in this group showed two hetero-

plasmic mutations in skin but absent in brain, heart, kidney, liver, lung or spleen samples. We

speculate that these mutations likely impact protein synthesis or mitochondrial complex I

activity as one affected an rRNA gene (mt2080G>A) with 95% heteroplasmy and the other

was non-synonymous (mt3366G>A) in the ND1 gene (mt-Nd1) at 25% heteroplasmy. We rea-

soned that late acquired somatic mtDNA mutations could be present in individual cells, with

each cell harboring a unique mutation not shared with other cells. Thus, screening bulk tissues

containing mtDNA from a million cells may not be sensitive enough to reveal somatic

mtDNA mutations in individual cells [13]. Therefore, we established primary cultures of skin

fibroblasts (SF), sub-cloned single fibroblast progenies and analyzed individually a minimum

of 10 clones per mouse. In selected mice, we also derived 10 iPSC clones from each SF sample

to increase sample size and analyzed mutations in each individual iPSC line (S2 Table). Again,

no mutations were detected in individual SF or iPSC clones from the four young wt mice,

whereas, we confirmed 2 mutations (2080 G>A and 3366 G>A), found in the bulk skin sam-

ple from the fifth animal (10 month old male in S1 Table), in individual SF and iPSC clones.

We also detected an additional mutation (15264 G>A) in two SF clones from this animal (S1

and S2 Tables). As expected, heteroplasmy levels varied among different clones (S2 Table).

Since variants were shared among individual skin cells, these mutations probably occurred

during early embryonic development in skin progenitor cells and, thus, were of early embry-

onic origin (S1 Table) [30]. However, we cannot exclude the possibility that these mutations

were inherited but selectively distributed to some tissues.

In the old wt group, six of eight mice carried mtDNA mutations, while the remaining two

were free of any detectable mutations in all tested tissues (S1 Table). Among a total of 13 muta-

tions, seven were present only in skin or spleen, suggesting an early embryonic origin. The

remaining six mutations were present in multiple organs of the same animal (S1 Table) and

identified as germline origin, since inherited mutations originating from an oocyte are likely

to be distributed (shared) to most or all organs and tissues of the animal [31]. Detailed analysis

showed that 11/13 (85%) of these variants were non-synonymous point mutations or inser-

tion/deletions in protein-coding or RNA-coding genes (S1 Table). All mutations with hetero-

plasmy levels >8% were confirmed by Sanger sequencing.

We also screened individual SF and iPSC clones from wt old mice and corroborated the

presence of embryonic origin skin mutations in either multiple or all clones (S1 and S2

Tables). In addition, we detected two new early embryonic mutations in multiple SF clones

from the two wt old mice (31 and 34 month old males in S2 Table), but not in iPS cells from

same SF, suggesting that some mutations could be lost during reprogramming through a

genetic bottleneck [32]. However, no somatic mutations were detected in either individual SF

or iPSC clones suggesting that wt mice predominantly carry either germline or early embry-

onic mtDNA mutations. Unlike humans [13] late acquired somatic mtDNA mutations were

not detected in mouse skin tissues suggesting different genetic mechanisms of aging.

Analysis of mtDNA mutations in young vs. old wild type mice

To further define age-related changes in mtDNA stability, we compared the average number

and heteroplasmy levels of each mutation type in wt mice. On average 0.9±0.1germline muta-

tions per tissue were detected in old wt mice while no germline variants were found in young

animals (P < 0.05, Student’s t-test, Fig 2A and Table 1). In this case, mutations that did exist
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Fig 2. Characterization of mtDNA mutations in wild type mice with aging. (A) Quantification of mtDNA

mutations (mean ± SEM; asterisk, P< 0.05, Student’s t-test) for different mutation types in young wt mice at age 2–13

months (green bars; n = 31) and old mice at age 18–34 months (orange bars; n = 44). Somatic mutations were

undetectable in wt mice. Asterisk represents a significant increase in number of germline mutations with age. (B)

Mean heteroplasmy levels of non-synonymous germline and early embryonic mutations as a function of age. Error

bars, mean ± SEM. Asterisk represents a significant increase in the mean heteroplasmy levels of non-synonymous

germline mutations in old wt mice compared to the young group (P< 0.05, Student’s t-test). (C) Pie chart showing

gene distribution of non-synonymous germline mutations in protein-coding and RNA coding genes in old wt mice.

(D) Bar graphs showing mean heteroplasmy levels for non-synonymous germline mutations in protein-coding and

RNA-coding genes in old wt mice. (E) Heteroplasmy of non-synonymous mutations in protein-coding and RNA-

coding genes of early embryonic origin. (F) Pie chart showing relative proportion of mutation types in young and old

wt mice. (G) Mitochondrial OXPHOS complex I activity in iPS cells carrying non-synonymous mutations in protein-

coding genes and in age-matched control ESCs or iPS cells. The complex I activity was measured in cell homogenates

(n = 12 per cell line, technical replicates) and was expressed as “% rotenone inhibition”. 10m-iPS7, 34m-iPS9 and 34m-

MtDNA mutations in mouse aging
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must have been undetectable due to low heteroplasmy levels (below the 2% detection level)

while subsequent clonal propagation during aging accounts for the heteroplasmy increase.

Indeed, five non-synonymous or RNA-coding germline mutations found in old wt mice were

present at heteroplasmy levels ranging between 5 and 100% with an average of 38%±5.9 (S1

Table, red fonts; Fig 2B, P< 0.05, Student’s t-test). However, there was no difference in the

mean number of early embryonic mutations in old when compared to young mice (Fig 2A

and 2B; Table 1). In addition, all 3 embryonic mutations detected in young mice and 8 out of 9

found in old mice were non-synonymous or RNA coding mutations, (S1 Table, blue fonts),

but no significant increase in the heteroplasmy level with aging was seen (Fig 2B and 2E).

We next looked at the distribution of germline mutations in old mice. Protein-coding gene

mutations were grouped according to the OXPHOS enzyme complexes to which their prod-

ucts belonged. Among all germline mutations detected, 40% resided in the genes of mitochon-

drial complex IV (COMIV) while the remaining 60% were evenly distributed between

complex I (COMI), complex III (COMIII) and tRNAs (Fig 2C). COMIII mutations were pres-

ent at higher heteroplasmy levels (93%±2.3) compared to tRNA mutations (10%±1.8). COMI

and COMIV gene mutations were present at intermediate heteroplasmy levels (Fig 2D and S1

Table).

Oxidative damage caused by reactive oxygen species (ROS) has long been considered a pri-

mary driver of mtDNA mutations [33]. Particularly, G>T/C>A transversion mutations are

thought to result from oxidative mtDNA damage [34]. Therefore, we carefully inspected fre-

quency of transition, transversion or indel mutations in wt mice. In both young and old mice,

mtDNA mutation types were biased towards transitions. All mutations (3/3) found in young

mice and 12 out of 15 (80%) mutations in old animals were transition mutations with G>A or

T>C as dominant types (S1 Table and Fig 2F). The remaining 3 mutations in the old mice

included 1 G>T transversion and 2 indels (Fig 2F and S1 Table). These results suggest that the

frequency of each mutation type is similar between young and old mice without noticeable

iPS10 cells displayed reduced activities compared to controls. (H) Mitochondrial OXPHOS complex IV activity in iPS

cells carrying non-synonymous mutations in protein-coding genes and in age-matched control ES or iPS cells. The

complex IV activity was measured in cell homogenates (n = 12 per cell line, technical replicates) and was expressed as

“nmol / min / mg protein”. 18m-iPS2 cells showed decreased activity compared to controls. In (G and H), ns denotes

p� 0.05.

https://doi.org/10.1371/journal.pone.0201304.g002

Table 1. Summary of mtDNA mutations detected in wild type and Polg mice.

Groups Age (month) Total No. of mice No. of mtDNA mutations (mean)

Germline Early embryonicc Somaticd

Young wt 2–13 5 0±0a 0.1±0.1 0

Old wt 18–34 8 0.9±0.1a 0.2±0.1 0

Young Polg 2 3 0.3±0.2b 8.4±3.7 59.2±7.0d

Old Polg 9 3 4.3±0.8b 5.8±2.4 95.4±10.9d

a The mean numbers of germline mutations were calculated as mean/tissue and were significantly different between young wt and old wt (P < 0.05, Student’s t-test).

n = 31 for young wt; n = 44 for old wt.
bThe mean numbers of germline mutations were significantly different between young Polg and old Polg (P < 0.05, Student’s t-test); n = 8 for young Polg; n = 14 for old

Polg.
cThe mean numbers of early embryonic mutations were calculated as mean/tissue or single SF clone; n = 31 for young wt; n = 44 for old wt; n = 14 for young Polg;

n = 20 for old Polg.
dThe mean numbers of somatic mutations were calculated as mean/iPS cell or single SF clone and were significantly different between young Polg and old Polg
(P < 0.05, Student’s t-test); n = 40 for young wt; n = 70 for old wt; n = 10 for young and old Polg.

https://doi.org/10.1371/journal.pone.0201304.t001
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increase in G>T transversions (Fig 2F). These observations are in agreement with previous

studies [35, 36] supporting the view that oxidative damage is not the major driver of mtDNA

mutagenesis.

Mitochondrial OXPHOS in iPSCs carrying mtDNA mutations

Mitochondrial OXPHOS complex activities are essential for mitochondrial function and

OXPHOS dysfunctions are linked to a variety of human disorders including primary mito-

chondrial diseases caused by mutations both in the mitochondrial and nuclear DNA [37] as

well as in aging [38]. Non-synonymous substitutions or indel mutations may alter coding of

amino acids, which in turn, can result in changes of protein function. The majority (67%, 12/

18) of mtDNA mutations detected in wt young and old mice were non-synonymous substitu-

tions or indels. To further invest the potential impact of those mutations on mitochondrial

respiratory function, we measured OXPHOS complex activities in undifferentiated iPS cells

carrying non-synonymous mutations in complexes I or IV (S2 Table). Enzymatic activity of

complex I and IV were assayed spectrophotometrically in iPS clone7 (10m-iPS7), clone2

(18m-iPS2), clone9 and clone10 (34m-iPS9 and 34m-iPS10) derived from 10 month male, 18

month female and 34 month male (S2 Table), respectively. Age-matched iPS cells with no

mutations (31m-iPS10) (S2 Table) and ES cells derived from wt embryos (0m-ES) were

included as controls. As expected, iPS cells carrying mutation in complex I, i.e. 10m-iPS7 with

96% heteroplasmy for 3366 G>A mt-Nd1 mutation and 34m-iPS9 and 34m-iPS10 with homo-

plasmy for 13029 G>A mt-Nd5 mutation, displayed significantly reduced complex I activity

(36.1%±2.3 in 10m-iPS7, 55.9%±1.8 in 34m-iPS9 and 59.8%±1.5 in 34m-iPS10), when com-

pared to controls (0m-ES, 74.2%±3.2 and 31m-iPS10, 72.1%±5.2). As expected, 18m-iPS2 cells

carrying mutation in complex IV presented normal complex I activity (76.3%±4.2) similar to

controls (Fig 2G). In contrast, 18m-iPS2 cells displayed significantly reduced complex IV

activity (52.1±3.6 nmol/min/mg protein) while all other iPS cells displayed normal complex IV

activities (from 97±1.8 to 123.9±6.5 nmol/min/mg protein) similar to controls (97.3±2.4

nmol/min/mg protein in 31m-iPS10 and 114.7±3.7 nmol/min/mg protein in 0m-ES) (Fig 2H).

These results suggest functional implications of specific mtDNA variants observed in mice

(Fig 2G and 2H).

In summary, late-onset somatic mutations were undetectable in wt mice, even at the single

cell level, suggesting species specific differences from humans. However, germline mutations

detected in old but not in young mice implied that heteroplasmy levels increased gradually

with advancing age (Table 2). Most of these mutations were non-synonymous substitutions

and presented at high heteroplasmy levels likely affecting metabolic function in aged tissues

and organs.

Clonal propagation of germline mutations during Polg aging

Polg mice show increased loads of mtDNA mutations linked to reduced lifespan and prema-

ture onset of aging-related phenotypes [23–25]. We examined changes in the number and het-

eroplasmy of mtDNA defects during aging in homozygous Polg mice from 2 to 9 months of

age (n = 2). We initially biopsied skin tissue from young living 2 month old mice (young Polg)

and then analyzed skin again, along with brain, heart, kidney, liver, lung and spleen in the

same animals after sacrifice at 9 month of age (old Polg). Germline, early embryonic and late

onset somatic mtDNA mutation types were called based on the criteria used for wt mice.

In contrast to wt mice, germline mutations were already detectable in skin tissue of young

Polg mice and in multiple tissues of old Polg animals, their numbers increasing significantly

MtDNA mutations in mouse aging
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with age (from 0.3±0.2 to 4.3±0.8, P< 0.05, Student’s t-test) (Fig 3A, Table 1 and S3 Table).

There were no age-related changes in the number of early embryonic mutations (Table 1).

We also compared changes in mean heteroplasmy of non-synonymous germline and early

embryonic mutations in Polg mice during aging. While there were no changes in early embry-

onic mutations (Fig 4A, S4 Table), those of germline origin increased significantly in the old

Polg group compared to the same animals at a younger age (from 2.1±0.1 to 8.3±0.6, P< 0.05,

Student’s t-test) (Fig 3B).

Similar to wt mice, the majority (65%, 11/17) of germline mutations in Polg mice were non-

synonymous (S3 Table). Those detected in young Polg mice were predominantly in protein-

coding genes with equal distribution between the COMI and COMIV genes. In old Polg mice,

27% were in rRNA genes, 10% in tRNA and 63% in protein-coding genes (Fig 3C). Germline

mutations in rRNA and tRNA genes were undetectable in young Polg but became evident in

several organs of the same animals at 9 months (P< 0.05, Student’s t-test, Fig 3D and S3

Table), indicating that these mutations are clonally expanded with aging. The distribution of

non-synonymous early embryonic mutations did not change with aging of Polg mice (Fig 4B

and S4 Table).

These findings suggest that clonal expansion of potentially pathogenic germline mutations

is a common mechanism that accompanies the aging process in both wt and Polg mice

(Table 2).

De novo and recurring germline mtDNA mutations in Polg mice

Germline mtDNA mutations found in Polg female offspring could be recurrent mutations

inherited from previous generations or de novo mutations arising during oogenesis. To define

the germline mutation spectra in Polg mice, we crossed two homozygous Polg females with wt

C57BL/6 males and analyzed mtDNA mutations in multiple tissues/organs of the Polg mothers

(4 month old) and their offspring (age of 3–12 days).

In the Polg family 1, two low (2–3%) heteroplasmy mutations were detected; one in lung

(9056 C>T) and another in skin tissues (13053 delC in) of the mother (Polg-4). We called

these variants as of early embryonic origin. In her 3 offspring, pup1 carried 6 mutations

including 5 of germline origin; pup2 had 8 mutations including 4 germline, and pup3 showed

only one mutation in the kidney only (S5 Table). No shared mutations between the mother

and her offspring or between siblings were found in this Polg family indicating that all germ-

line mutations in pups were de novo in origin (S5 Table). In the Polg family 2, the mother

(Polg-5) carried three mutations including two of germline origin. Each of her 3 pups carried

between 24 and 27 individual mutations and the majority of them were of germline origin (S5

Table). Two germline mutations were shared between the mother and her pups or between

siblings suggesting recurring germline mutations. A mt15104C>T variant (blue font in S5

Table) was detected in the mother’s skin (6% heteroplasmy) and in all 7 tissues (12–15% het-

eroplasmy) of her pup1. The Mt6612C>T mutation (red font in S5 Table) was seen in all

Table 2. Dynamics of mtDNA mutations during mouse aging.

Germline mutations Early embryonic mutations Late onset somatic mutations

Origin In oocytes During early embryonic development During postnatal development

Number of mutations in wt mice Significantly increased with age No change with age Undetectable

Heteroplasmy changes in wt mice Significantly increased with age No change with age Undetectable

Number of mutations in Polg mice Significantly increased with age No change with age Significantly increased with age

Heteroplasmy changes in Polg mice Significantly increased with age No change with age Significantly increased with age

https://doi.org/10.1371/journal.pone.0201304.t002
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Fig 3. Characterization of mtDNA mutations in homozygous Polg mice with aging. (A). Comparison of mean number of

germline mutations in wt and Polg mice at young and old age (n = 31 for young wt, n = 8 for young Polg, n = 44 for old wt and

n = 14 for old Polg). Error bars, mean ± SEM. Asterisk indicates a significant increase in the number of mutations per tissue in

old Polg compared to the old wt (P< 0.05, Student’s t-test). (B). Mean heteroplasmy levels of non-synonymous germline

mutations with�2% heteroplasmy in Polg mice (mean ± SEM; asterisk, P< 0.05, Student’s t-test). (C) Pie charts showing

gene distributions of non-synonymous germline mutations in young Polg mice (2 months, left) and old Polg mice (9 months,

right). (D) Bar graphs representing the mean heteroplasmy levels of non-synonymous germline mutations in protein-coding

MtDNA mutations in mouse aging
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tissues of pup2 (13–28% heteroplasmy) and in kidney and lung of pup3 (5–6% heteroplasmy).

Most other germline mutations were present in only one animal (S5 Table). These data indi-

cate that the majority of germline mutations in Polg offspring are de novo with very few recur-

ring preexisting variants.

Somatic mtDNA mutations in Polg mice

Homozygous Polg mice develop aging phenotypes prematurely and have significantly shorter

lifespans (approximately 3-fold) compared to their wt counterparts and it is believed that

somatic mtDNA mutations acquired later in life play a major role in this phenomenon [23,

24]. We screened multiple, randomly-selected SF clones (n = 10) for each Polg mouse at 2

months of age and compared the outcome with the same animal sampled at 9 months. As

expected, by 2 months of age, SF clones had already acquired substantial numbers of mtDNA

mutations. A total of 705 mutations was discovered in 10 SF clones, 113 (16%) of which were

shared either with other clones or also detected in other tissues from the same animal (S6

Table). The remaining 592 mutations (84%) were clonally unique seen only in one SF clone

from the same animal and thus were categorized as somatic mutations (Fig 3E and S6 Table).

In old Polg mice, a total of 1016 mutations was found in 10 SF clones. Among those, 62 (6%)

were shared with other clones as either germline or early embryonic mutations. The remaining

954 mutations (94%) were unique, found in only one clone as somatic mutations (Fig 3E and

S6 Table).

The mean number of somatic mtDNA mutations (59.2±7.0) detected per SF clone in young

Polg mice increased significantly during aging (95.4±10.9) (Table 1). To gain further insights

into how somatic mtDNA mutations affect premature aging, we examined changes in their

pathogenicity and heteroplasmy levels. Mean heteroplasmy levels of somatic mutations in

non-synonymous protein and RNA-coding genes increased significantly with Polg age (from

34±1.6% to 40±1.6%; P< 0.05, Student’s t-test, Fig 3F). Similarly, the mean number of muta-

tions in rRNA-coding genes increased significantly in old Polg (from 2.4±0.7 to 5.6±1.2,

P< 0.05, Student’s t-test, Fig 3G). All 24 rRNA mutations found in young Polg mice were at

relatively low heteroplasmy levels (�80%), while of the 56 found in old Polg, eight (14%) were

homoplasmic or at�80% (S7 Table, red font). In addition, the mean number of somatic muta-

tions in COMI genes increased significantly in old Polg (from 4.4±1.0 to 10±1.1, P< 0.05, Stu-

dent’s t-test, Fig 3G). Among 99 COMI mutations found in old Polg, 11 were at heteroplasmy

�80%. In contrast, all 44 COMI mutations in young Polg mice were at�80% (S7 Table). Mean

numbers of somatic mutations in COMIII, COMIV, COMV, and tRNA-coding genes did not

change with age (Fig 3G).

In summary, similar to wt mice, Polg animals display increase in heteroplasmy levels of

non-synonymous, germline mtDNA mutations with age. Thus, clonal propagation leading to

increased heteroplasmy levels appears to be a common phenomenon in mouse aging. In addi-

tion, Polg mice show a substantial number of somatic mtDNA mutations whose mean number

and heteroplasmy levels also increased significantly with aging. Since the number of somatic

mutations in COMI and rRNA genes significantly increase with Polg aging, likely affecting

and RNA-coding genes in Polg mice (asterisks, P< 0.05, Student’s t-test). (E) Pie charts showing the distribution of shared

and unique mtDNA mutations detected in single skin fibroblast (SF) clones in young and old Polg mice. (F) Mean

heteroplasmy changes for non-synonymous somatic mutations with�15% heteroplasmy in Polg mice. Error bars,

mean ± SEM. Asterisk, P< 0.05, Student’s t-test. (G) Changes in number of non-synonymous somatic mutations with

heteroplasmy levels� 15% among different gene types with Polg mice aging. Error bars, mean ± SEM. Asterisks, P< 0.05,

Student’s t-test.

https://doi.org/10.1371/journal.pone.0201304.g003
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Fig 4. Early embryonic and NCR mtDNA mutations in Polg mice. (A) Bar graphs representing changes in mean heteroplasmy of early embryonic mutations

with Polg mice aging. Error Bars, mean ± SEM. (B) Distribution of non-synonymous early embryonic mtDNA mutations among different genes. Error bars,

mean ± SEM. (C) Quantification of mtDNA mutations in the non-coding region (NCR) in Polg mice (n = 12 for 2 months; n = 24 for 9 months). Error bars,
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OXPHOS function and protein synthesis, they could be implicated in driving mitochondrial

dysfunction during premature aging (Table 2).

Mutations in the non-coding control region of mtDNA

The major non-coding control region (NCR) of mtDNA, including the D-loop area, is impor-

tant for regulating mtDNA replication and transcription [39, 40]. Previous studies show that

both mtDNA replication and transcription are impaired in aged tissues [15, 41]. Interestingly,

mutations in the NCR region are rarely reported even in Polg mice [27, 42]. Consequently, we

screened both wt and Polg mice. As expected, wt mice did not carry any detectable NCR muta-

tions even at advanced age. In contrast, mutations in NCR were found in Polg mice but their

numbers were low compared to mutations in coding regions. Furthermore, the number and

heteroplasmy levels of NCR mutations did not change with age (Fig 4C and 4D). A total of 12

mutations was found in this region including 4 somatic mutations (heteroplasmy 10–87%) in

young Polg with 6 somatic and 2 early embryonic mutations in old Polg mice (heteroplasmy

4–100%). Two mutations (heteroplasmy 10–11%) in young Polg were confined to the extended

termination associated sequence region (ETAS) (Fig 4E). The ETAS region is highly conserved

in mammals but its actual function remains uncertain. One mutation (heteroplasmy 14%) in

old Polg was found in the conserved sequence blocks (CSB), crucial elements controlling

mtDNA replication and transcription [39, 43]. Since NCR is critical for mtDNA replication, it

is likely that functional mutations in this region cannot be propagated and will eventually lead

to their elimination.

Discussion

In this study, we evaluated the accumulation dynamics of mtDNA mutations during mouse

aging based on their occurrence in single or multiple organs, tissues and cells of the same

organism and thus allocation to germline, embryonic or somatic origin. Our results indicate

that wt mice do not display any detectable somatic mtDNA mutations, even with advanced

age. However, old wt mice carry a higher number of non-synonymous, germline mutations

compared to young animals. These mutations likely originated in oocytes since they were

found in multiple organs and tissues of the same animal. However, perhaps due to low hetero-

plasmy levels, many germline mutations remained undetectable at the younger age. The pref-

erential amplification of these rare germline variants could result in substantial increases in

heteroplasmy levels during aging. A few early embryonic mutations (common for one tissue

or organ) were also detected in wt mice but did not change with age, that is, they might be

fixed during early embryogenesis. Possible roles of mtDNA mutations in wt mouse aging have

generated debate that may reflect differences in the detection technology employed, the tissues

examined and the origin of mtDNA mutations (total mutations vs. somatic mutations) [26–

28]. The present study, strictly defining germline, embryonic and acquired mutations, pro-

vides insights into the relative contribution of each to mouse aging.

The majority of mtDNA mutations detected in wt mice were non-synonymous substitu-

tions or indels and resulted in reduced mitochondrial OXPHOS complex I and IV activities in
vitro in mutation-carrying iPS cells. Mitochondrial dysfunction is a hallmark of aging, leading

to a loss of cellular homeostasis and organismal health [44, 45], but the mechanisms underly-

ing the relationship between mitochondrial dysfunction and the aging process are not well

mean ± SEM. (D) Bar graphs representing mean heteroplasmy levels of NCR mtDNA mutations in Polg mice with aging. Error bars, mean ± SEM. (E) Summary

of mtDNA mutations found in the NCR region (mtDNA15423-16299) in Polg mice. Dots represent mtDNA mutations and numbers under dots represent the

heteroplasmy levels. ETAS indicates the extended termination associated sequence and CSB indicates the conserved sequence block.

https://doi.org/10.1371/journal.pone.0201304.g004
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understood. Deficient OXPHOS and loss of ATP for cellular processes could lead to loss of

OXPHOS enzymes, particularly Complex I, elevated NADH/NAD+ ratio, and reduced levels

of NAD+ [46]. NAD+ is needed for the generation of PARP (Poly (ADP-ribose) polymerase)

which, in turn, is critical for the identification of single-strand DNA breaks and the signaling

to activate enzymatic DNA repair. Reduced levels of NAD+ may also lead to reduced activity

of Sirtuin 1, which may further aggravate age-related organ pathology [47]. Further quantita-

tion of non-synonymous mutations in mtDNA with assignments of those implicated in mito-

chondrial function i.e., respiration deficits in vivo, will supports a plausible cause and effect

relationship in mtDNA based mitochondrial disease and in the aging process.

In Polg mice, both germline and late acquired somatic mutations were evident and their

load increased with aging. These observations are in agreement with findings reported by oth-

ers [24, 25, 48]. In addition, we found age-related increases in the number and heteroplasmy

level for somatic mutations in genes coding 12S and 16S ribosome RNAs and oxidative phos-

phorylation complex I. These mutations, especially at high heteroplasmy, are likely affecting

OXPHOS and consequently aggravating aging phenotypes. The involvement of both germline

and somatic mutations is consistent with the hypothesis that such a dual effect is likely respon-

sible for premature aging seen in homozygous Polg mice [23]. However, clonal amplification

of preexisting germline mutations appears to be a universal mechanism causing OXPHOS

defects responsible for aging in both wt and Polg mice.

In the current study, the heteroplasmy detection threshold was conservatively set at�2%,

predicated in part, by the observation that heteroplasmy levels >1.6% are likely of biological

origin rather than representing technical artifacts [49]. Obviously, we cannot exclude the pos-

sibility that very low heteroplasmy (< 2%) somatic mutations exist in bulk tissues of wt mice.

We defined late-onset somatic mutations based on their unique existence at the single cell

level in SF or iPSC clones. Due to technical limitations of mtDNA mutation analysis in indi-

vidual, particularly post mitotic cells, the extent of somatic mtDNA mutations in more energy

demanding tissues is less well known.

Polg mice were also known to carry mtDNA deletions [24, 50]. However, we did not detect

such mtDNA defects in this study, possibly due to limitations of whole genome sequencing in

identifying low heteroplasmy deletions.

Unlike wt mice, both germline and somatic mutations were observed in humans [13, 51–

53]. However, their individual role and involvement during human aging is unknown. Similar

to Polg mice, low heteroplasmy germline mutations could be clonally amplified with age and

potentiate the effects of late-acquired somatic mutations ultimately contributing to age-onset

disease [52, 54–56]. Other studies suggested that impact of mtDNA mutations on normal

aging may differ significantly between humans and mice [57–59]. Further elucidation of

genetic mechanisms underlying aging should yield valuable insights into the role of mtDNA

mutations in mammalian aging and disease with the promise of developing clinically valuable

approaches to limiting their effects.

Materials and methods

Animals

All mice were housed in pathogen-free conditions under controlled lighting conditions (12 h

light/12 h dark) in the Small Lab Animal Unit at the Oregon National Primate Research Cen-

ter. All animal procedures were approved by the Institutional Animal Care and Use Commit-

tee (IACUC number IP00000982) at Oregon Health & Science University. Guidelines in the

approved protocols were fully followed in the current study.

MtDNA mutations in mouse aging

PLOS ONE | https://doi.org/10.1371/journal.pone.0201304 July 24, 2018 13 / 20

https://doi.org/10.1371/journal.pone.0201304


Mouse strains

Mouse strain of B6D2F1 (BDF), generated by crossing C57BL/6 females with DBA/2 males

(Charles River laboratory), was used in this study as the wild type (wt). BDF contains C57BL/6

mitochondria background. A total of 13 wt mice with age ranging from 2 to 34 months with-

out observed pathogenic phenotype, was analyzed. Homozygous PolgAmut/mut (C57BL/6N-

Polgmut/N) [24] mice carrying C57BL/6 mtDNA were also included in the study. Heterozy-

gous PolgAmut/wild were generated by crossing a homozygous PolgAmut/mut female with a wild

C57BL/6 male.

Tissue collection

Multiple tissues (brain, heart, kidney, liver, lung, spleen, and ear skin) were collected from wt

mice at various ages. For Polg mice, ear skin tissue was first collected at 2 months of age, and

then brain, heart, kidney, liver, spleen, and ear skin samples were collected from the same

mice euthanized at 9 months. Multiple tissues (brain, heart, kidney, liver, lung, spleen, and

skin) were also collected from Polg mothers and their heterozygous pups to study transmission

of de novo and recurring germline mtDNA mutations.

Skin fibroblast isolation, culture and single cell sub-cloning

Skin samples were incubated in 0.1% collagenase (Type IV) for 30 min and then plated into

25-mm flasks containing DMEM/F12 medium supplemented with 10% fetal bovine serum

(FBS). Single cells were seeded with limited dilution and subcloned before extracting mtDNA

for sequencing.

Generation of iPSCs from skin fibroblasts

Lentiviral vectors carrying Oct4, Sox2, C-myc, Klf4 and RTTA genes (Addgene) were trans-

fected with pPACKH1 (SBI) and PureFection (SBI) in 293T cells. Supernatants were collected

every 24 hours during 3 days starting 24 hours after transfection and filtration through a 0.45

um pore size cellulose acetate filter. Cells (1 x 105) per well were plated in 6-well culture dishes

containing DMEM/F12 medium with 10% FBS one day before transduction. Cultured cells

were transduced with filtered supernatants containing viral vector. Three days after transduc-

tion, cells were re-plated onto 100-mm dishes containing feeder layers of mitomycin C inacti-

vated mouse embryonic fibroblasts (mEFs) with mouse ES cell media: KODMEM (Invitrogen)

supplemented with 20% KSR, 1 mM L-glutamine, 0.1 mM nonessential amino acids (NAA),

0.1 mM β-mercaptoethanol (Sigma), penicillin-streptomycin and 1,000 units/ml LIF (Milli-

pore). Doxycycline was added at a final concentration of 2 μg/ml and medium was changed

every day. Colonies appeared 3–4 weeks after transduction and 10 colonies with typical mouse

pluripotent stem cell morphology were randomly picked up and propagated for each iPSC

line.

Derivation and culture of ESCs

Superovulated C57BL/6 females were paired with DBA/2 males (Charles River laboratory).

Embryos at morula-blastocyst stage were flushed, collected from the uterus of E2.5 females,

and cultured in KSOM media for 24 h. The zona pellucida was removed with acidic Tyrode’s

solution (Sigma-Aldrich) and blastocysts were individually transferred into mitomycin C

treated mEF feeder layers in ES medium: KODMEM (Invitrogen) containing 1mM L-gluta-

mine, 0.1mM β-mercaptoethanol, 0.1mM NAA, 100 units/ml penicillin, 100 μg/ml streptomy-

cin, 1,000 units/ml LIF (Millipore), 10% FBS and 10% KSR (Invitrogen).
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After ICM outgrowth, colony was picked up manually and dispersed into single cells using

0.15% trypsin solution (Sigma-Aldrich) before seeding on mEF in ES medium containing

1 μM PD0325901 (Axon) and 3 μM CHIR99021 (Axon).

DNA extraction and full length mtDNA amplification

DNA was extracted from tissues, skin fibroblasts and iPSCs using a Gentra DNA extraction kit

(Qiagen). DNA masses were measured by NanoDrop 2000 spectrophotometry (NanoDrop

Technologies). Full length mtDNA was amplified by single PCR reaction for skin fibroblasts

and iPSCs using primers, F-3338 CCCCTTCGACCTGACAGAAGGAGAATC and R-3337

GCCCGGTTTGTTTCTGCTAGGGTTG. For whole mtDNA amplification from tissues, 2 frag-

ment PCR reaction was performed employing the following primers, fragment 1: F-3222

GGATCCTACTCTCTACAAAC and R- 11432 TAGTTTGCCGCGTTGGGTGG; fragment 2: F-

11271 CTACCCCCTTCAATCAATCT and R- 3335 CCGGTTTGTTTCTGCTAGGG. PCR condi-

tions for single PCR reaction were: one cycle at 94˚C for 3 min, followed by 30 cycles at 94˚C

for 30 sec, 56˚C for 1 min and 68 oC for 16 min, and then one cycle at 72˚C for 10 min with

TAKARA LA Taq kit (Clontech). Two fragment PCR reaction was performed under the fol-

lowing conditions: one cycle at 94˚C for 5 min, then 30 cycles at 94˚C for 30 sec, 56˚C for 20

sec and 68 oC for 7 min, and followed by one cycle at 68˚C for 3 min.

Whole mtDNA sequencing by MiSeq

Whole mtDNA sequencing was performed as described previously [13]. Briefly, the concentra-

tion of full length mtDNA PCR products was measured by Qubit 2.0 Fluorometer (Invitrogen)

and library preparation was performed using Nextera XT DNA sample preparation kits (Illu-

mina) following the manufacturer’s manual. Sequencing was performed on the Illumina

MiSeq platform and the data were analyzed using NextGENe software. Sequence reads ranging

from 250–500 bps were quality filtered and processed using NextGENe software and an algo-

rithm similar to BLAT. Sequence error correction feature (condensation) was performed to

reduce false positive variants and produce consensus sequence and variant calls for each sam-

ple. Alignment without sequence condensation was used to calculate the percentage of the

mitochondrial genome with depth of coverage of 1000. Starting from quality FASTQ reads,

the reads were filtered for quality and converted to FASTA format. Filtered reads were then

aligned to the mouse mitochondrial sequence reference AY172335 followed by variant calling.

Variant heteroplasmy was calculated by NextGENe software as follows: Base Heteroplasmy

(Mutant Allele Frequency %) = mutant allele (forward + reverse) / total coverage of all alleles

C, G, T, A (Forward + Reverse) �100.

Mitochondrial respiratory chain enzyme activity assays

Mitochondrial-enriched fractions were generated from each iPS or ESC homogenate as

described previously [60]. Mitochondrial respiratory chain complex I and IV activities were

measured in mitochondrial-enriched samples by spectrophotometric methods [60]. A Versa-

Max microplate reader (Molecular Devices) in combination with SoftMax Pro software was

used for activity measurements and calculations. Complex I activities were expressed as per-

cent relative to rotenone inhibition and complex IV activities were expressed as nmol per min

per mg protein.
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Statistical analysis

Student’s t-test was used for all comparisons involved in the study. A P-value less than 0.05

was considered significant. No statistical methods were used to predetermine sample size.

Accession numbers

The SRA accession number for processed Miseq datasets reported in this paper is SRP099227.
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