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Abstract

The Major Histocompatibility Complex (MHC) is a critical element in mounting an effective

immune response in vertebrates against invading pathogens. Studies of MHC in wildlife pop-

ulations have typically focused on assessing diversity within the peptide binding regions

(PBR) of the MHC class II (MHC II) family, especially the DQ receptor genes. Such metrics of

diversity, however, are of limited use to health risk assessment since functional analyses

(where changes in the PBR are correlated to recognition/pathologies of known pathogen pro-

teins), are difficult to conduct in wildlife species. Here we describe a means to predict the

binding preferences of MHC proteins: We have developed a model positional scanning library

analysis (MPSLA) by harnessing the power of mixture based combinatorial libraries to probe

the peptide landscapes of distinct MHC II DQ proteins. The algorithm provided by NNAlign

was employed to predict the binding affinities of sets of peptides generated for DQ proteins.

These binding affinities were then used to retroactively construct a model Positional Scan-

ning Library screen. To test the utility of the approach, a model screen was compared to

physical combinatorial screens for human MHC II DP. Model library screens were generated

for DQ proteins derived from sequence data from bottlenose dolphins from the Indian River

Lagoon (IRL) and the Atlantic coast of Florida, and compared to screens of DQ proteins from

Genbank for dolphin and three other cetaceans. To explore the peptide binding landscape for

DQ proteins from the IRL, combinations of the amino acids identified as active were compiled

into peptide sequence lists that were used to mine databases for representation in known

proteins. The frequency of which peptide sequences predicted to bind the MHC protein are

found in proteins from pathogens associated with marine mammals was found to be signifi-

cant (p values <0.0001). Through this analysis, genetic variation in MHC (classes I and II)

can now be associated with the binding repertoires of the expressed MHC proteins and sub-

sequently used to identify target pathogens. This approach may be eventually applied to eval-

uate individual population and species risk for outbreaks of emerging diseases.
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Introduction

The Major Histocompatibility Complex (MHC) is responsible for the initial trigger in mount-

ing an effective acquired immune response to pathogens in vertebrates. Genes of the MHC are

understood to be under a selective pressure that is driven by the pathogens recognized by the

encoded MHC proteins [1]. MHC genes are highly diverse and this polymorphism has been

attributed to high rates of nucleotide substitutions in the peptide binding region (PBR) [2].

This phenomenon has found broad use in wildlife studies. This phenomenon has found utility

in wildlife studies where population separation and environmental differences have been cor-

related with significant differences in MHC allelic frequencies [3]. Furthermore, positive selec-

tion has been found to shape diversity in MHC genes and MHC differentiation among

populations, while a number of studies indicate that MHC may significantly influence fitness,

either by affecting reproductive success or the survival of progeny to pathogen infections [4].

How MHC allelic diversity is able to translate to antigen recognition, and further to an effec-

tive response to specific pathogen communities, needs further study.

In wildlife populations, MHC diversity studies have mostly concentrated on variation in

the MHC class II DQ and DR proteins [5]; the PBR of this dimer protein corresponds to exon

2 in the two genes, DQA and DQB. In cetaceans, studies have frequently compared variation in

small regions of the DQB gene to that at neutral markers or analyzed the variation in amino

acid (aa) residues expressed in the PBR [6–12]. For example, Vassilakos et al. [13] found pat-

terns consistent with differential selection in regional populations of killer whale (Orcinus
orca) and for 2 dolphin species (Tursiops truncatus and Tursiops aduncus). Furthermore, it was

determined that both balancing and local positive selection pressures were important for

defining the pattern of variation at the DQ locus. Cammen et al [14] characterized genetic vari-

ation at a short regions of DQA and B and DRA and B loci in T. truncatus in relation to expo-

sure to harmful algal blooms in dolphins from central-west Florida and the Florida Panhandle.

In the accompanying paper to the present study, Pagán et al. determined sequence variation

for the entire exon-2 of both the DQA and DQB genes for bottlenose dolphins in the Indian

River Lagoon (IRL), and adjacent Atlantic coastal populations of Florida. The study found that

positive selection is influencing the genotypic variation within the PBR of both subunits of the

dimer. Additionally these authors observed lower allelic diversity within the estuarine IRL

compared to the coast. These results beg the question whether the lower diversity parallels a

reduction in immune fitness for the estuarine population or whether selective forces render

the remaining alleles capable of mounting immune responses with the same efficiency.

While such studies of MHC diversity are common [6–8,11,14–20], they have limited appli-

cation to the assessment of immune fitness or the risks of infectious disease. Such investiga-

tions on MHC must ultimately be measured in terms of what they can tell us about the

antigenic peptides, the different MHC variants that selectively bind, and which pathogens such

peptides may be derived from. Only then can we interpret MHC diversity in terms of immune

responses to specific pathogenic threats. If we can expand studies of MHC diversity to investi-

gations of the entire MHC-peptide-pathogen axis, then we can develop a more holistic model

of the factors influencing MHC diversity and finally begin to quantify risk that will assist in the

management and recovery of wildlife populations.

Functional analysis, where changes in specific amino acids or motif changes within the PBR

among different populations have been correlated to pathologies, has been used for some time

in human studies to address these questions [21–25], and has recently been extended to wild-

life populations [25,26]. Such studies, however, remain limited in wildlife species due to a lack

of resources and the challenges of working on such species. Multiple wildlife populations and

species are often involved requiring the development of multiple assays. Furthermore, binding
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peptides are seldom available for wildlife genotypes further hampering assay development.

Finally, functional analysis typically does not explore the entire peptide-pathogen landscape.

Fortunately, studies on human MHC II (i.e., HLA II Human Leukocyte Antigen) have

made great strides in this area and there are several algorithms for predicting peptide binding

affinities for different MHC genotypes and generating databases of individual peptides and

their binding affinities. Combinatorial libraries have also been used to directly assay the bind-

ing affinities of millions of peptides for both MHC class I and II in humans [27–29]. However,

the latter studies generally require the use of a radiolabeled binding peptide to generate a bind-

ing assay. For those working on wildlife populations, sufficient resources are not generally

available to develop specific binding assays and often impractical since multiple assays would

be need to be developed in order to cover the number of different species and/or populations

under study.

In this study, we develop a method to efficiently characterize the MHC-peptide-pathogen

axis and test it against empirical data on MHC II diversity in a number of cetacean species.

Using a combined immunogenetic and proteomic approach, we present a novel method that

combines (a) predicting the binding affinities of large numbers of peptides to different MHC

II protein variants with (b) reverse modeling of positional scanning library analysis to deter-

mine the most active peptides for the different MHC proteins. Bioinformatic tools (c) were

then used to search protein databases for microorganisms that host such peptides. Finally,

these microorganism databases were (d) explored for recognized and potential cetacean patho-

gens. We have successfully achieved our goal to develop a method that enables researchers to

assess the consequences of mutations at the genetic level on the MHC binding landscape and

thus predict the role of MHC genetic diversity on pathogen recognition.

Results

Peptide binding affinities for DQ alleles from Tursiops truncatus
To assess the effect of variations in DQ genes of dolphins on the binding capacities of the

expressed proteins, nucleotide sequences of exon 2 were translated and inserted into their rep-

resentative DQA and DQB protein sequences and subsequently used to predict binding affini-

ties of a series of independently generated peptides using the neural network-based method

NNAlign [30]. The process was initiated by generation of a sequence of 7,647 amino acids of

near equivalent representation of the 20 amino acids. The aa (amino acid) list (S1 Fig) was sup-

plied to the server (NetMHCIIpan 3.1), along with the sequences for the DQ dimer proteins.

For each DQ protein, NNAlign generated a series of 7,634 13mer peptide sequences, a length

typically bound by MHC receptor proteins and predicted both the binding affinity of the

13mer, and identified a 9mer core, (steps 1–3 in Fig 1). The peptide series and their predicted

binding affinities, were generated for each of four DQ proteins (derived from DQA and DQB

alleles and genotypes found within the Florida Atlantic coastal and estuarine populations by

Pagán et al., see Table 1 and Materials and Methods). Each of the dolphin DQ proteins were

compared for their capacity to bind peptides, and plotted in terms of number of peptide

sequences with affinities below 100, 500, 1,000, 5,000 and 10,000 nM (Fig 2). Similar plots were

also generated for peptide affinities generated from a representative DQ protein bottlenose

dolphin (used as standard) and DQ proteins from three other cetacean species: killer whale

(Orcinus orca), finless porpoise (Neophocaena phocaenoides), and sperm whale (Physeter
macrocephalus) (sequences were obtained from GenBank and accession numbers are given in

the Methods section). Comparison of the affinity plots predict weaker binding affinities overall

for DQ protein variants found in dolphins from the IRL as compared to our ‘standard’ (i.e.,

GenBank) bottlenose dolphin DQ protein, nevertheless DQ proteins from Floridian dolphins
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Fig 1. Method for model positional scanning library analysis (MPSLA). Nine steps that take the researcher from genetic sequence data, through MHC

binding analysis, to protein and pathogen prediction.

https://doi.org/10.1371/journal.pone.0201299.g001
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would exhibit strong affinities (<300nM) for a small number of peptides (Fig 2). The binding

affinity profile for DQ1-8 was predicted to exhibit the strongest binding affinities of the four

DQ proteins from the IRL, and was similar in profile to the affinities observed for DQ proteins

derived from killer and sperm whales.

Table 1. Frequency of selected alleles for bottlenose dolphin from Pagán et al.

A. ATL ML NIRL SIRL

% % % %

DQA STD 18 5 0 7

DQA 1�01 16 36 42 45

DQA 1�02 23 34 50 45

Alleles n = 44 n = 44 n = 36 n = 60

DQB 1�01 20 6 0 7

DQB 1�04 10 31 47 45

DQB 1�08 3 6 6 17

DQB 1�10 13 31 38 28

n = 30 n = 36 n = 34 n = 58

B. ATL ML NIRL SIRL Protein

DQA 1�01
DQB 1�01

1 — — 2 DQ1-1

Haplotypes DQA 1�01 DQB 1�08 — 1 — — DQ1-8

DQA 1�01 DQB 1�10 — 3 3 1 DQ1-10

DQA 1�02 DQB 1�04 — 2 5 5 DQ2-4

DQA and DQB peptide binding regions (exon 2) were genotyped in bottlenose dolphins from Florida Mosquito Lagoon (ML), North Indian River Lagoon (NIRL), and

South IRL (SIRL) as well as the adjacent Atlantic coast (ATL). (A) Frequency of allele in sample population (n) expressed as a percentage. (B) The DQA/DQB haplotypes

were determined from homozygous individuals or inferred from heterozygotes. STD; standard.

https://doi.org/10.1371/journal.pone.0201299.t001

Fig 2. Predicted binding affinities of peptide sequences derived from proteins encoded by cetacean MHC II DQ alleles.

Binding affinities of 7,634 peptide sequences predicted by NNAlign were compared by counting the number of peptides below

100, 500, 1000, 5000 and 10,000nM thresholds. The algorithm was supplied with a 7,647 amino acid sequence and the DQA and B

protein sequences from cetaceans (killer whale, sperm whale, finless dolphin) obtained from Genbank and from bottlenose

dolphins in the Indian River Lagoon (IRL) and adjacent Atlantic coast (ATL) (DQ1-1; Protein derived from DQA 1�01 DQB 1�01
DQ1-8; Protein derived from DQA 1�01 DQB 1�08 DQ1-10; Protein derived from DQA 1�01 DQB 1�10 and DQ2-4; Protein

derived from DQA 1�02 DQB 1�04).

https://doi.org/10.1371/journal.pone.0201299.g002
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The frequency of individual 13-mer peptide sequences in binding affinity lists generated for

four IRL-ATL DQ proteins was also examined. Peptide sequences (limited to those with bind-

ing affinities likely to have meaningful activity i.e.<10μM) that had high binding affinities for

just one or for 2, 3 or all 4 DQ proteins were totaled (Fig 3.). A high level of sequence overlap

was observed (i.e. peptide sequences identified as active in all four proteins). This was not alto-

gether surprising as the DQ proteins derived from these haplotypes differ by only a few amino

acids, and not all of these differences were found in the binding pockets, the site most likely to

affect binding affinity. However, we did identify peptide sequences that were predicted to bind

to some DQ haplotypes and not others suggesting that the DQ proteins are likely to have dis-

tinct binding landscapes. For example, 532 peptides had high binding affinities for DQ1-8 and

not for any of the other proteins. These analyses offered new insights into peptide binding in

dolphin DQ proteins. They also highlight, however, the necessity to address how mutations in

the binding pockets of these DQ genotypes influence the total binding landscape and more-

over, whether such changes have a positive or negative influence on the MHC protein’s capac-

ity to recognize pathogens.

Model positional scanning library analysis of predicted binding affinities

for DQ alleles

MHC II proteins recognize a large population of binding peptides and moreover, unlike other

binding proteins, the binding sequences capable of triggering immune responses are not as

tightly correlated with affinity [31], making it challenging to identify likely natural sources.

There has been no method to rapidly determine whether MHC proteins encoded by closely

related alleles differ significantly in their binding landscape and certainly none that would

indicate whether such differences have a positive or negative affect on the organism’s ability to

thrive in its environment.

Fig 3. Distribution of active sequences derived from dolphin DQ proteins from the IRL. Sequences with a binding

affinity below 10,000nM for each of the datasets for the four proteins (DQ1-1, DQ1-8, DQ1-10 and DQ2-4) from

dolphins in the Indian River Lagoon and adjacent Atlantic coast were compiled and the frequency of sequences

identified uniquely binding to one protein or shared by 2, 3 or all 4 proteins is shown.

https://doi.org/10.1371/journal.pone.0201299.g003
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Combinatorial libraries are composed of a series of mixtures that contain all possible pep-

tide sequences for a particular peptide length and have been in use for over 25 years [32–34]. A

Positional Scanning (PS) library is composed of several arrangements of the same peptide

sequences, such that each arrangement addresses a single position in a peptide of a defined

length. For example, for a PS library of a peptide with six amino acids there are six arrange-

ments OXXXXX, XOXXXX, XXOXXX, XXXOXX, XXXXOX, XXXXXO, (where O represents

a defined amino acid and X represents a mixture of amino acids) of 20 mixtures; one for each

L amino acid. Each mixture contains (1X20X20X20X20X 20 = 64,200,000 peptides). Screening

of a PS library identifies the most active amino acid(s) at each position and the combination of

active amino acids generates the peptide sequences active in the assay (for a complete review of

mixture based libraries generation and their use see [35]). Thus, combinatorial libraries are an

ideal means to investigate the peptide binding landscape for MHC proteins and this method

has been used for human MHC proteins [27,28]. However, screening of combinatorial librar-

ies requires setting up of a binding assay and prior identification of an active sequence. Such

resources are not often available for those studying other vertebrates and are not practical for

the study of multiple genotypes of MHC proteins. In order to analyze the peptide binding pro-

files for the four cetacean DQ genotypes, we retroactively constructed a model PS Library

(steps 4 and 5 in Fig 1). We used the affinities of the 7,634 sequences generated by NNAlign to

model a 9-mer core combinatorial library. Since the activity of a mixture is driven by the affini-

ties of its most active components and it is not diluted by its weak or non-active components,

a mixture’s activity is calculated by using the harmonic mean of the combined affinities of

components of the mixture [36]. The nonamer core of the 13-mer sequences generated in

NNAlign and their corresponding affinities were used to generate “calculated mixture affini-

ties”. For example, all sequences with Alanine (A) at position 1 were extracted from the NNA-
lign list and the corresponding affinities were used to calculate the harmonic mean and

therefore the activity of the hypothetical mixture (AXXXXXXXX). A physical positional scan-

ning 9-mer library would actually contain trillions of peptides in such a mixture; however the

vast majority of the peptides are not likely to have any activity. Since the activity is governed

by the harmonic mean and we are using many peptides with predicted activities we can rea-

sonably assume “calculated mixture affinity” will reflect the activity of a physical mixture.

To test our hypothesis that we could accurately model a library screen, we compared our

model PS to a physical combinatorial screen for the human HLA DP2 receptor protein (26).

The harmonic mean was calculated for each of the 20 x 9 = 180 “calculated mixtures” to gener-

ate a Model Positional Scan 9-mer library (S1 Table). To compare the different positional scan-

ning libraries, the mixtures at each of the 9 positions were ranked and scatterplots were

generated from the two ranking sets (Steps 6 and 7 in Fig 1). The calculated affinities for the

171 mixtures of the model PS (19 x 9 = 171, no cysteine, see Methods) with their rankings

from 1–19 where 1 corresponds to the lowest value (i.e. most active mixture) are presented in

Table 2. Scatter plots of the rankings of the physical versus the model libraries revealed low but

significant correlations in 6 of the 9 positions (Fig 4). There was some difficulty in replicating

data from the physical library [28] as it was based on a 13-mer peptide with di-alanine at the

proximal and terminal ends (AAXXXXXXXXXAA), this could not be exactly replicated using

NN-Align. However this method is an improvement on a molecular docking approach by

Patronov et al. [37] that used 247 modelled peptide-DP2 complexes (DS-QMnap) when we

ranked data from this study and plotted them against data for physical library only 3 of the 9

positions yielded significant correlations (Table 3), suggesting that the method we describe is

more likely to resemble a physical library screen.

Since comparisons within the same predictive system should cancel out system bias, we pre-

pared model PS libraries from the predicted affinities of peptides that bind to 4 DQ proteins

Model combinatorial analysis for MHCII binding and pathogen identification
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from the Florida dolphin populations, a DQ derived from sequencing data for dolphin (stan-

dard) and for DQ proteins for 3 other cetacean species (S1–S8 Tables). The ranking values for

these matrices were used to generate scatterplots against rankings derived from the dolphin

standard. Correlation coefficients were calculated for each of the nine positions (Fig 5). Data

from the analysis indicated that rankings for the protein DQ2-4 from dolphin in the IRL has a

very high level of correlation with the dolphin reference standard (all positions exhibited high

values for the Coefficient of determination (r2) derived from Pearson coefficient values r, (r2 val-

ues above 0.7). Rankings for DQ2-4 were also very closely correlated with data for DQ from killer

whale. IRL derived proteins DQ 1–1 and DQ 1–10 exhibited similar patterns when correlated

with the standard dolphin DQ, and Pearson coefficients were greater than 0.7 for all 9 positions

when the two were compared directly. This would suggest that, although there are 6 amino acid

changes between the DQB in these two proteins, the peptides recognized by the proteins are very

similar; however, the binding affinities may be different as suggested by binding affinity plots (Fig

4). Similarly, the standard DQ, DQ2-4 and DQ from killer whale should all recognize a compara-

ble array of peptide sequences. DQ proteins from finless porpoise and sperm whale have less in

common with the DQ standard (low Pearson coefficients), thus are more likely to recognize a

very different set of peptides sequences. It should be noted that only the confirmed haplotypes

(i.e., DQA and DQB alleles from homozygous individuals, DQ1-8, DQ1-10 and DQ2-4) are rep-

resentative of genuine DQ peptide binding regions. Data from WGS projects produce a single

consensus from diploid organisms and thus may not correctly present true heterozygous posi-

tions [38]. Likewise, unphased DQA and DQB alleles from heterozygous individuals represent

only probable haplotypic combinations (e.g. standard DQ, DQA1-1, killer whale, sperm whale

Table 2. Model positional scanning library and ranking for MCH II DP.

A Position (calculated affinities nM) B Position (aa)

AA 1 2 3 4 5 6 7 8 9 Rank 1 2 3 4 5 6 7 8 9

A 835 534 230 725 430 878 592 385 551 1 Y F A Y W F F Y F

D 1818 620 745 410 328 601 885 670 414 2 F Y W V F W L V G

E 1018 615 540 898 388 795 421 424 744 3 V L Y F Y Y Y L Y

F 358 254 308 338 217 264 233 853 310 4 L V V W V L E A D

G 1277 802 483 449 929 862 1042 803 340 5 W H F D D D W I I

H 655 422 781 414 408 1118 543 449 450 6 I T L H E V K E V

I 629 635 556 475 576 731 920 400 435 7 H W G G L R H K H

K 866 732 645 1336 683 716 479 428 528 8 A A E I H K M H L

L 492 342 462 751 395 399 357 368 466 9 K E I T A I A R M

M 1058 677 875 792 707 803 560 679 498 10 T D K A S E T Q K

N 2110 659 1187 850 591 889 752 831 1561 11 E I T L I M N D A

P 2042 2809 1931 2024 1377 847 1702 1634 990 12 M N D M N T Q M W

Q 2250 1997 1066 1247 1138 944 762 623 1648 13 G M H N K P D T E

R 1775 1244 931 1678 869 712 1062 603 2127 14 R K M E M G V W T

S 1805 929 1322 1005 563 917 1893 1544 1625 15 S G R S T A I G P

T 926 430 650 713 801 816 705 712 959 16 D S Q Q R N G N N

V 476 403 278 281 317 660 906 330 443 17 P R N K G S R F S

W 552 445 262 377 201 267 436 734 659 18 N Q S R Q Q P S Q

Y 220 305 263 242 247 280 384 256 408 19 Q P P P P H S P R

(A) The calculated binding affinities for mixtures (nM) derived from the sequences affinities generated by NetMHCIIpan 3.1 for each of the 19 amino acids at nine

positions of the core binding peptide for the human HLA DP2 protein. (B) The amino acids (single letter code A-Y) defined in the mixtures are sorted by mixture

affinity. Mixtures with the lowest value and highest affinity (those ranked 1) are in blue on both sides, those ranked 1–5 are in gray on right.

https://doi.org/10.1371/journal.pone.0201299.t002
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and finless porpoise). Nevertheless, these data provide the groundwork for establishing the utility

of these methods, and they allow for initial cross-species comparisons and predictions that greatly

exceed the scope of standard wildlife MHC genotyping projects.

Predicted peptide sequences from MPSLA and their association with

proteins and pathogen sources

While the model positional scanning method presented here sheds new light on the relation-

ship between the peptide binding capabilities of closely related MHC II protein variants, the

Fig 4. Comparison of amino acid ranking from physical and model positional scanning libraries. Binding affinities for the (19 x 9 = 171)

mixtures obtained from the screening of the physical protein or modeled protein encoded by HLA-DP2 (HsDPA1�0103, HsDPB1�0201)

were ranked from 1–19, where 1 represents the lowest value and therefore highest binding affinity. Correlations were performed on

scatterplots, Coefficients of determination (r2) derived from Pearson coefficients (r) are recorded in upper right corner.

https://doi.org/10.1371/journal.pone.0201299.g004
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true value of such analyses comes from the ability to predict active binding sequences for

MHC II and more importantly linking them to the protein sources and the pathogens that pro-

duce them. Since MHC II proteins can bind a vast number of peptide sequences, and binding

affinity is not always a strong predictor for functional activity, it is nearly impossible to know

which binding peptides are likely to be of biological significance. To overcome this impasse we

have used the amino acid rankings from Model PS libraries for 3 IRL DQ proteins to select

amino acids preferred by particular DQ proteins and used highest ranking amino acids held in

common to both proteins to predict peptide sequences of biological significance. The amino

acids determined to be of significance (i.e., ranked highly in one or both of the DQ proteins)

were used in combinatorial fashion to generate a new list of 9-mer peptide sequences that in

turn were used to mine the protein databases (UniProtKB through the Protein Information

Resource (PIR) [39]). The searches generated tables listing matching sequences, the proteins

where they occur, and the organism from where the protein is derived.

For example, scatter plots for the amino acid ranking at each of the 9 positions in the

MPSLs derived from DQ2-4 and DQ1-10 are shown in (Fig 6). Amino acids that ranked highly

only in DQ2-4, DQ1-10 or DQ 1–8, along with those amino acids that ranked highly in all 3

analyses, are described in the methods and presented in (Fig 7). A combinatorial arrangement

of the amino acids from each of the nine positions that ranked in the top 5 and are common to

all three analyses (i.e., active in all DQ proteins) generated 3,456 highly ranked 9-mer

sequences from a theoretical 1,953,125 (i.e. 59) possible sequences (see ‘common’ in Fig 7C). A

search in the UniProtKB database (90,645,980 entries in release 2017–9 mined through PIR)

for these 3,456 nonomer sequences identified 1,090 in proteins (31.5% see Table 4). This is a

significantly higher hit rate (X2 = 26,812, p<0.0001) than random expectations based on a

Table 3. Coefficients of determination (r2) derived from pearson correlation coefficients (r) from scatterplots of amino acid rankings.

Scatterplots of amino acid rankings Position

A 1 2 3 4 5 6 7 8 9

HsDP

Physical Library v MPSLA 0.2255 0.2690 0.2639 0.5276 0.0428 0.1671 0.3017 0.2233 0.0040

� � � ��� ns ns � � ns

Physical Library v DS-QMnap 0.3491 0.2532 0.1682 0.0052 0.0018 0.0808 0.2615 0.0257 0.0021

�� � ns ns ns ns � ns ns

DS-QMnap MPSLA 0.5042 0.4159 0.1505 0.0025 0.0562 0.1266 0.0182 0.0439 0.0110

��� ��� ns ns ns ns ns ns ns

B

DQ 1–10 v DQ 1–8 0.6741 0.7193 0.7607 0.628 0.5470 0.6840 0.7792 0.8195 0.8442

DQ 1–10 v DQ Neo. ph.a 0.8086 0.5813 0.7142 0.6643 0.2359 0.2187 0.3600 0.6068 0.6643

DQ 1–1 v DQ Neo. ph.a 0.6256 0.5452 0.2330 0.3422 0.4201 0.6424 0.3404 0.5586 0.4640

DQ 1–1 v DQ Phy. ma.b 0.6717 0.5541 0.5744 0.7193 0.7581 0.8359 0.7872 0.9004 0.8581

aNeo.ph; Neophocaena phocaenoides
bPhy.ma; Physeter macrocephalus

Statistical significance as defined by Graphpad;

P values 0.1234 (ns), 0.0332(�), 0.0021(��), 0.0002 (���) and <0.00001(����).

A. Coefficients of determination (r2) were derived from Pearson coefficient values for each of the 9 positions and statistical significance. Correlations were performed

for amino acid ranking values obtained from human HLA-DP alleles using 3 methods; Physical Positional Scanning Library, Model Positional scanning library

(MPSLA) and Model of amino acid preference (DS-QMnap). B. DQ proteins from the Indian River Lagoon that differed significantly from the standard DQ

(correlations generated low Pearson coefficient values) were found to have a higher degree of relatedness (higher Pearson coefficient values) when compared to 2 other

cetacean species (Yangtze finless porpoise and sperm whale).

https://doi.org/10.1371/journal.pone.0201299.t003
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similar search involving a list of 1,000 random 9-mer sequences that generated only 12 hits (a

1.2% hit rate). Hit rates were lower for sequences derived from specific DQ proteins; sequences

from DQ 1–8 yielded 540 hits out of 3,888 (14%), DQ 1–10 yielded 223 hits out of 2,586 (9%);

and DQ 2–4 yielded 178 hits out of 3,456 (5%) sequences. However, these hit rates were still

significantly higher than the random peptide searches (X2 = 454–5,274; p< 0.0001 for all 3).

Notably, the sequences identified from the top 5 ranked amino acids common to both the

model and physical combinatorial screen for the human DPA1�0103 and DPB1�0201 alleles

was also significant, generating 50 hits out of 864 highly ranked peptides (a 5.8% hit rate; X2 =

163, p<0.0001).

Sequences identified in proteins listed in UniProtKB were further examined for relevance

to dolphin health. In order to establish health relevance, we assembled a list of 55 known path-

ogens of marine mammals (some at genus level some at species level) of which 31 have been

reported to occur in bottlenose dolphins [40–42] and assessed how many of these were identi-

fied among the organisms associated with the identified sequences. Sequences derived from aa

common to all three haplotypes that were identified in proteins from the 55 known pathogens

are listed in Table 4 (A summary of pathogen sources, for hits from the 3,456 sequences (‘com-

mon’ see above) and sample proteins identified are presented in the table). One third (393 of

the 1,090) of the ‘common’ sequences identified were found to occur in microbes that are

known to infect marine mammals, a significantly higher proportion than expected by chance

(X2 = 295, p<0.0001) (similar tables summarizing source hits for sequences derived from the

individual haplotypes are presented in S9–S11 Tables, and a complete table of each sequence

identified with associated database IDs, protein and organism names is presented in S12

Table). A summary of the marine mammal associated microbes that were identified from

Fig 5. Comparison of rankings for dolphin (standard) to four IRL dolphins and 3 other cetaceans. Correlations were

performed on scatterplots of amino acid ranking obtained from our standard DQ protein of Bottlenose dolphin (Tursiops
truncatus), with each of the four proteins found in the IRL (DQ1-1, DQA 1–8, DQA1-10 and DQ2-4). Correlations were also

performed comparing the amino acid ranking from DQ proteins for standard bottlenose dolphin to those of killer whale

(Orcinus orca), Yangtze finless porpoise (Neophocaena phocaenoides) and sperm whale (Physeter microcephalus). Coefficients

of determination (r2) derived from Pearson coefficients (r) are plotted for each of the 9 positions of the MPSLs.

https://doi.org/10.1371/journal.pone.0201299.g005
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sequences derived by our analysis is provided in Tables 5 and 6; 43 of the 55 genera were iden-

tified, 9 of the 11 genera reported in the Indian River Lagoon were identified, and 6 of these

down to species level. While an average of 3,000 sequences per DQ protein were searched in

the protein database, this only represents a minute fraction of the actual number of combina-

tions for the top 5 ranked amino acids. A thorough exploration of the peptide space would

require a search of 59 = 1,953,125 sequences for each DQ protein. The search of sequences

derived from the amino acids common to all 3 IRL haplotypes generated the most hits in

terms of health relevance with 33 pathogen genera identified and 21 of those reported to occur

in bottlenose dolphins. In contrast, a search performed using sequences derived from amino

Fig 6. Comparison of amino acid ranking from MPSLs derived for DQ1-10 and DQ2-4 in dolphin. Predicted binding affinities for

the (20 x 9 = 180) mixtures obtained from the model positional scanning libraries derived from proteins encoded by dolphin alleles

DQA1�01DQB1�10 (DQ1-10) and DQA1�02 DQB1�04 (DQ2-4) were ranked from 1–20, where 1 represents the lowest value and

therefore highest binding affinity. Correlations were performed on scatterplots, coefficients of determination (r2) derived from Pearson

coefficients (r) are recorded in upper right corner. Vertical and horizontal lines demark amino acids ranked below 5.

https://doi.org/10.1371/journal.pone.0201299.g006
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acids common to both screens of the human DP allele, and therefore not expected to have

much connection to marine mammal pathogens, identified 3 of the genera found in marine

mammals and only 2 of those reported to occur in bottlenose dolphins.

Fig 7. Selection of amino acids for combination sequences. (A) To determine the highest ranked amino acids selective for, or common to MPSLs

for 3 IRL dolphin proteins (DQ1-08 □, DQ1-10 Δ and DQ2-04 �), each of the 9 positions the ranking data for all 3 MPSLs were superimposed on a

single graph (sample graph for position 2 is shown). (B). The top 5 amino acids at each position were given a value 1–3 depending on their rank in

the composite graph For example, Tyrosine (Y) in position 2 would be assigned a value of 1 for DQ2-4, 2 in DQ1-10, and is not in the top 5 for DQ1-

8; Methionine (M) would be given a value of 1 for both DQ1-8 and DQ1-10. (C) Combinations of the common or most selective amino acids amino

acids used to generate sequences a total of 13,392 sequences were generated.

https://doi.org/10.1371/journal.pone.0201299.g007
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Perusal of the data obtained from the protein database revealed a wealth of information: of

the four combined searches the sequence that occurred most frequently in different organisms

was VIVSSGAIA. It was identified in 161 different species, in 5 genera, and is located in the

protein Glutamate-5 kinase. The most widely targeted group of proteins was the ABC trans-

porter family, with 106 sequence hits identified, certain members of which are known to be

associated with bacterial virulence (see [43] for review). The most widely identified set of

organisms was the genus Mycobacterium, with 188 sequences recognized, of which the most

recognized species was M. abssessus which had 22 sequences associated with it. There were 294

sequences identified in uncharacterized proteins. The sequence identified in the widest range

of proteins in the database was LIAVAVLAV, which occurs in at least 8 different proteins

including; Serine-threonine protein kinase, ABC transporter/permease, Chemoreceptor

McpA, Glutaredoxin, Hflk protein, Secretion protein EccD and Flagellar L-ring protein pre-

cursor. Interestingly, an analogous sequence VIVVAVLAVwas identified in ABC transporter/

permease in Brucella ceti, a pathogen of interest for dolphins in Florida.

The search for sequences derived from the analysis for aa common to the 3 haplotypes

yielded hits in 38 genera; the most frequently represented was Mycobacterium with 132 species

identified from 157 sequences. There were 212 sequences associated with uncharacterized pro-

teins, and sequences were most frequently identified in transporter proteins. Searches derived

from the analysis for individual DQ haplotypes also revealed interesting results: analysis of

data for DQ1-8 identified the greatest number with relevance to marine pathogens sequences

(129), more than DQ2-4 (29) or DQ1-10 (27). Sequences selective for DQ1-8 represented in

the protein database contained 62 sequences that occurred in uncharacterized proteins and

over 40 in the ABC transporters. Again, the most frequent genus identified was Mycobacterium
with 26 sequences in 51 species. This search identified 5 genera not found in the “common”

search (Bordetella, Proteus, Salmonella, Leptospira and Sporothrix) and 2 genera identified were

specific to this DQ haplotype; Proteus sp. (LIILISLYK), and Salmonella sp. (VMILVVLVW).

The search for haplotype DQ1-10 identified 2 genera not identified in the “common” search

and 1 genera specific to this haplotype; Candida sp. (VIVSSGAIA and IIVSSGAIA). The genus

with the most sequences identified for DQ1-8 was Pseudomonas (7) and the most frequent

protein identified in this search was Glutamate-5 Kinase. The search for haplotype DQ2-4 gen-

erated a high proportion of sequences in uncharacterized proteins (15); of the sequences asso-

ciated with proteins, most were located in ABC transporters. The genus with the most

sequences (5) was Mycobacterium, sequences were identified in 9 species; and the second most

frequent genus Nocardia was identified by 3 sequences that occurred in 4 species. There were

no genera unique to this search however the dolphin related fungus Ajellomyces dermatitidis
was identified by the sequence YFWFFAVLA (in the protein ATPase). While a similar organ-

ism Ajellomyces capsulatus was identified in the DQ1-8 related search, it was recognized by a

completely different sequence (VIVVVSSVA) in a different protein (Hydroxyacyl-Coenzyme

A dehydrogenase type II).

Table 4. Summary of hits from search of UniProtKB database (90,645,980 million entries).

# combinations # sequences

In proteins

# sequences in list

Common 3,456 1,090 32% 393 36%

DQ1-8 3,888 540 14% 129 24%

DQ1-10 2,586 223 9% 27 12%

DQ2-4 3,456 178 5% 29 16%

Total 13,386 2,031 15% 578 28%

https://doi.org/10.1371/journal.pone.0201299.t004

Model combinatorial analysis for MHCII binding and pathogen identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0201299 August 2, 2018 14 / 30

https://doi.org/10.1371/journal.pone.0201299.t004
https://doi.org/10.1371/journal.pone.0201299


Table 5. Proteins and pathogens identified by MPSLA for dolphins from the IRL.

Organism # a Protein # a Sequence

1 Absidia sp. 1 Uncharacterized protein VYAVAAMAA

2 Acinetobacter sp. 9 + Cell division protein FtsQ 5 + FIVVVALVA LIAVAVLAV LYVVAVLIA VIVVVVLVV

Competence protein ComE FIVVVVLVA LIAVVALVV LYVVAVLVA VIYVAALVA

Invasion protein expression up-regulator SirB FYVVAALVV LIVVVVLVA VIAVAVMAV VMAVVALVV

LPS export ABC transporter periplasmic protein LptC IIAVAALIA LMVVVVLVA VIVVAVLIV YYAVVALIA

Surface polysaccharide O-acyltransferase, integral

membrane enzyme

IIVVVVLVA LMVVVVMIA VIVVVVLVA

3 Aeromonas sp. 3 + Sec-independent protein translocase protein TatB 2 VIAVVALVV

Tail length tape-measure protein VMAVVALVA

4 Actinomyces sp. 17 + ABC transporter ATP-binding protein 6 + FIAVAALAA LIAVVVMAV LIVVVVLIA VIVVAALAV

ComEA protein FIVVAVLAV LIVVAALAA LMAVVALVA VIVVAALVA

Membrane protein, PF03706 family (Fragment) FYVVAVLAV LIVVAVLAV LMAVVALVV VIVVAVLVV

Permease, cytosine/purine, uracil, thiamine, allantoin

family

IIVVVVLVA LIVVAVLVV VIAVAVLVV VIYVAVMAA

Putative stage III sporulation protein E IMVVVVLVV LIVVVALIA VIAVVAMAA VMAVAVLVA

Signal recognition particle receptor FtsY LIAVAALVV LIVVVVLAA VIAVVVLAA VYAVVALAA

5 Ajellomyces sp. 1 Uncharacterized protein + LMAVVVLVV

6 Aspergillus sp. 4 1,3-beta-glucanosyltransferase 5 + FYVVAVLIV VIAVAALVA VIYVAVLVV

Zinc finger protein klf1 IIVVVVLVV VIVVVVLWA WIAVAALAV

C2H2 finger domain-containing protein LYVVAAMVA VIYVAALVV WIVVAVLAV

7 Bacillus sp. 30 + ABC transporter permease 12 + FMAVAVMVV IIVVVVMAA LIVVAALVV VIAVVALVA

AI-2E family transporter FYAVAALVV IIYVVAMIA LIYVVALAA VIVVAVLVA

Alkyl hydroperoxide reductase FYAVAVLVV IMAVAALVA LMAVAVMVV VMAVVVLIA

Bacitracin transport permease bcrb FYVVAALVV IMAVAAMVA LMAVVAMIV VMAVVVLIV

Cadmium efflux P-type ATPase FYVVAVLAA IMVVAALVA LMVVAVLVA VMAVVVMAV

D-ribose ABC transporter substrate-binding protein FYYVVALIV LIAVAALAA LMYVVVMAV VMVVAVLIV

DUF1453 domain-containing protein IIAVAAMVV LIAVAVLIA LYAVAALVV VMVVVAMVA

Endoribonuclease IIAVAVMVV LIAVAVLVA LYAVAVLVV VYAVAVLAA

Lipoprotein signal peptidase IIVVAALVA LIAVVVLVA LYVVAALAV

Phage protein IIVVAAMIV LIAVVVLVV VIAVVALIA

8 Bordetella sp. 10 + ABC transporter permease 5 + FYAVAALWV LMAVVALAA VIAVVAMVA WIAVAVLAA

Flp pilus assembly protein CpaB IIVVVALAA LMVVAVLVV VIVVAALVA WIVVAVLIA

Receptor family ligand-binding protein IMAVAALAA LYAVAALAA VMVVAALVA

Stress protection protein MarC LIAVAAMAA VIAVAALWV VYAVAVLAA

9 Brucella sp. 10 + ABC transporter permease 1 VIVVAVLAV

10 Campylobacter sp. 4 + BAX inhibitor (BI)-1 like protein (UPF0005 domain) 3 + IIAVAAMWA VIVVVALIA

GntP family permease FIAVVVLIV

D-glycerate transporter (Predicted) IMAVAVLIV

Uncharacterized protein VIAVVVMIV

11 Citrobacter sp. 1 Disulfide bond formation protein B 1 YMVVAVLVV

12 Clostridium sp. 12 + Uracil permease 6 + FIAVVALAV IMAVAALIV LIVVAVLAV VIVVVVMAV

Copper-exporting P-type ATPase A FYAVAALIV IMAVVVLVV LIVVVAMIV VIYVVVLIV

PTS system beta-glucoside-specific EIIBCA component IIAVVALVV IYAVAVLVV LIVVVVLVV WIAVAVLAA

Signal peptidase I IIAVVVLAV IYAVVAMIV VIAVAALIA WIVVVALVA

Sortase IIAVVVLIV IYVVVALIV VIAVVVLAV

Sporulation integral membrane protein YtvI IIVVVALIV LIAVAAMVV VIVVAALAV

IIVVVAMVA LIAVAVLVA VIVVVALIA

(Continued)
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Table 5. (Continued)

Organism # a Protein # a Sequence

13 Corynebacterium
sp.

36 + Arabinosyltransferase C 14 + FIVVAVLVA IIVVVALVA LIVVAVLIA VIAVVAMAV

Beta-carotene 15,15’-monooxygenase FIVVVALVA IIVVVVMAV LIVVAVLVA VIAVVVLAV

Competence protein ComE-like protein FMVVAALAA IIYVAVMVA LIVVVALAV VIVVAVLVA

CvpA family protein FMVVAVLIV IMVVVVLAV LIVVVALIV VIVVVALVA

YceI-like domain protein IIAVAALAA IMYVVAMAV LIVVVALVA VIYVVALAA

CytoChrome c oxidase Caa3 assembly factor IIAVAALAV IYVVAALIA LIVVVVLAV VMAVAALAA

Major facilitator transporter IIAVVALIA LIAVAALAA LIVVVVLVV VYAVAALWA

Septum formation IIAVVVLIV LIAVAALAV LMAVVVLAA WIAVVALVA

Serine protease IIAVVVLVA LIAVVALVA LYAVAALAV WIAVVVLAV

Signal peptidase I IIAVVVLVV LIAVVVLAV VIAVAALIV WMAVAALAV

Sodium/hydrogen exchanger IIVVAVLAV LIAVVVLIA VIAVAVLVA WMAVAVLVA

Phage tail tape measure protein, TP901 family (Fragment) IIVVAVLWA LIAVVVLIV VIAVAVMAV WYAVVALAV

Phosphatidate cytidylyltransferase IIVVAVMVA LIVVAVLAA VIAVVALAV YIVVAVLVA

Polyisoprenoid-binding protein YceI IIVVVALIA LIVVAVLAV VIAVVALIV

14 Edwardsiella sp. 4 Lipoprotein signal peptidase WIVVAVLIV

15 Enterobacter sp. 5 + Inner membrane peptidase. Serine peptidase. MEROPS

family S49

6 + FYAVVALVA IIVVAVLIV LYVVVALVV

Major facilitator superfamily MFS_1 FYAVVALVV IYAVVALAA VIAVVVMAA

Methyl-accepting chemotaxis sensory transducer TarH FYVVVALVV LIVVAVLIA VIVVVALAA

Probable lipid II flippase MurJ FYVVVAMVV LIVVVALAA VIVVVVLAA

16 Enterococcus sp. 7 + Multidrug ABC transporter permease 2 + FIVVVALIA LIVVAALIV LMVVAALIV

Alpha/beta hydrolase IMVVAALIA LIVVAVLAA LMVVVALIV

LIAVVVLIV LIVVVALVV VYYVVALIV

17 Escherichia sp. 3 Glutathione-regulated potassium-efflux system protein (K

(+)/H(+)antiporter)

4 + FIAVAALAA LYVVAALVV LYVVVALVV VIAVAVMWV

Hydrogenase-4 component B / Formate hydrogenlyase

subunit 3

VIAVVVLVA VIAVVVMAA VIVVVALAV

18 Fusarium sp. 2 Amino acid transporter 2 VIVVAALAV

Glutamyl-tRNA amidotransferase subunit A LMVVAALAV

19 Influenza A virus 1 Hemagglutinin 1 IIVVAVLAA

20 Helicobacter sp. 1 + Proline and betaine transporter 2 + IIAVVALIV YIVVVALIA

21 Kingella sp. 1 Uncharacterized protein + IIAVAVLAV

22 Klebsiella sp. 3 Lipoprotein releasing system transmembrane LolC 3 + IIAVAALVA IIAVVAMAV LYVVAALVV

23 Micrococcus sp. 3 + ATP-binding cassette, subfamily B 3 + LMVVAALIV IIAVVAMVV

Predicted arginine uptake transporter WIAVAVMAV

24 Moraxella sp. 3 Mechanosensitive ion channel protein MscS 2 + LMAVVVMAA VYVVVVMVV

Cytochrome c oxidase accessory protein CcoG LIVVAAMIA

25 Morganella sp. 2 Iron ABC transporter permease 3 LIAVVALIA LYVVAALVV

26 Mortierella sp. 1 Uncharacterized protein + LIVVAVMIA IIVVAVLVV

27 Mycobacterium sp. 132 + ABC transporter permease 61 + 157 LIVVVVLAV VIVVAVLIA LIAVAVLAV

Acyl-CoA dehydrogenase FIAVAVLAV LIVVVVLIA VIVVAVLIV LIAVAVMIA

Adenosylcobinamide-GDP ribazoletransferase FIAVVALAA LIYVVAMIV VIVVVALAA LIAVVALAA

Arsenic transporter FIVVAVLIV LMAVAVLAA VIVVVALIV LIAVVALAV

Cadmium-translocating P-type ATPase FIVVVVLAA LMAVVALAA VIVVVVLAA LIAVVALIV

ComE operon protein 1 FIVVVVLAV LMAVVAMAA VIVVVVLAV LIAVVVLAV

Cytochrome C-type biogenesis protein ccdA FMAVAVLAV LMVVAALAA VIVVVVLIV LIVVAALAA
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Model combinatorial analysis for MHCII binding and pathogen identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0201299 August 2, 2018 16 / 30

https://doi.org/10.1371/journal.pone.0201299


Table 5. (Continued)

Organism # a Protein # a Sequence

Dipeptide-binding protein DppE precursor IIAVAVLIV LYAVAALAA VMAVAVLAA LIVVAALAV

Ethanolamine permease IIAVVALIA LYAVAALAV VMAVAVLAV LIVVAALIV

Exopolyphosphatase IIAVVVMIV LYAVAVLAA VMAVVALAA VIAVVAMAA

Flotillin IIVVAALIA LYVVAALWA VMVVAALAV VIAVVAMAA

Haloacid dehalogenase IIVVVALAA VIAVAALAA VIAVVVLAA VMVVAAMWV

Long-chain-acyl-CoA dehydrogenase IIVVVVLAA VIAVAALAV VYAVAALAA VIAVVVLAV

MCE-family protein MCE1A (Fragment) IIVVVVLAV VIAVAALIA VYAVAALWA VIAVVVMAA

Modulator of FtsH protease HflK IMAVAALAA VIAVAALIV VYAVVALAA VIAVVVMAV

Murein biosynthesis integral membrane MurJ IMAVAALIA VIAVAAMIA VYAVVALAV VIAVVVMIA

Oxidoreductase molybdopterin-binding protein IMVVAALAV VIAVAVLAV VYAVVVMAA VIAVVVMIV

Protein-export membrane protein SecF IYVVAALAA VIAVAVLIA VYVVAALIA VIVVAALAV

Thioredoxin LIAVAALAA VIAVVALAA WIAVAALIA WMVVAVLAA

Type VII secretion integral membrane protein EccD LIAVAALAV VIAVVALAV WIAVAAMAV YIAVAAMAA

UDP-phosphate galactose phosphotransferase LIAVAALIA VIAVVALIA WIAVAVLAA YMAVAALAA

Virulence factor Mce LIAVAVLAA VIAVVALWV WIAVVALAA YYAVVVLAA

28 Nocardia sp. 10 + Cytochrome C oxidase assembly factor CtaG-related 5 + FIAVAALIV IIVVAAMVA LMAVAALVV VIVVVVLAA

HTH-type transcriptional repressor FIVVAAMVV LIAVAALAV LYAVAALAA VIVVVVLVA

MFS transporter FYAVVVLIV LIAVVALAV VIAVAALVA VIVVVVLVV

Thioredoxin IIAVAALAA LIAVVALVV VIAVVALIA VYAVAALAA

Type VII secretion integral membrane protein EccD-like

protein

IIAVAVLVA LIVVAVLAA VIAVVVLAA WIVVAVLAA

IIAVVALVV LIVVVALIV VIVVVALIV

29 Photobacterium sp. 5 + Macrolide export ATP-binding/permease protein MacB 2 + FIAVVVLIV FMAVAVMAA LIAVVVLVA

Electron transport complex subunit B VIVVVALIV VIAVAVLAA

30 Providencia sp. 5 NADH-ubiquinone/plastoquinone complex I subunit 3 + FIVVVVLIV LIAVAVLVA LIAVVALVA LIAVVVLVA

LemA family protein LIAVVVMAA LYVVAALIV LYVVAALVV

31 Pseudomonas sp. 61 + Acyltransferase family protein 15 + 61 LIAVVVLIA LMAVVALIA VMVVVALAV

Allantoin permease FYAVVALAV LIAVVVMAV LMVVAVMAA VMVVVVMWA

Arabinose efflux permease family protein IIVVAVMAA LIVVAALAA LMVVVVLIA VYVVAALIV

TrbK entry exclusion protein IIVVVALAA LIVVAALAV LMVVVVMAA VYVVAVLAV

Chemotaxis sensory transducer IMVVVALAV LMVVVVMWA LIVVAVLAA WIAVAALIV

Cytochrome o ubiquinol oxidase subunit IV LIAVAALAA LIVVAVLAV LYAVAALIV WIAVAVMIV

Deoxyribonuclease LIAVAALAV LIVVVALAA VIAVAVMAA WIVVAAMIV

TspO and MBR related proteins LIAVAVLAV LIVVVVMAV VIVVAAMIA WIVVAVMIV

Endolytic murein transglycosylase LIAVVALIA LMAVAAMAV VIVVAVMAV YIVVAVLAA

Heat-shock protein LIAVVAMAV LMAVAVLAV VMVVAALIA LMAVAVLIV

32 Rhodococcus sp. 17 + ABC transporter permease 10 + FIAVVALAA LIAVAVLAV LIVVVVLVA VIAVVALAV

Arabinosyltransferase FIVVVALIA LIAVVALIA LMAVAVLIV VIVVAVLVV

Cell wall arabinan synthesis protein FYVVVVLVA LIAVVVLAV LMVVAALAA VYAVVALVA

FMN-binding glutamate synthase family protein IIVVVALVV LIAVVVLVV LMVVAVLAV WIAVAALAV

Histidine kinase LIAVAALAV LIAVVVMVV VIAVAALAA WIVVAVLVA

Methylamine utilization protein MauD LIAVAALIV LIVVAALVA VIAVAALIV WIVVAVLVV

NADH-Ubiquinone/plastoquinone (Complex I), various

chains family protein

LIAVAALVA LIVVAALVV VIAVAALVV WIVVVVLVA

Pilus assembly protein TadE LIAVAALVV LIVVAVLVA VIAVAAMVV WMAVVVLIA

Sensor histidine kinase DcuS LIAVAVLAA LIVVAVLVV VIAVVALAA YIAVAALVV

33 Rhizopus sp. 1 Uncharacterized protein + IIVVVVMVV
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There were 210 sequences that were identified proteins from the 13 pathogens of concern

for dolphins in the IRL [42,44]. Four were identified in Vibrio parahaemolyticus; VMVSSGAIA,

WIGGSAIIL,IISGSGIIA andVIYLISLVA, the first two sequences were identified in the

proteins Glutamate 5-kinase and Maltose O-acetyltransferase, respectively, and the latter two

sequences were located in uncharacterized proteins. Two sequences FIAVAALAA and VIAV
AVMWVwere identified for Escherichia coli. Two sequences were also identified for Mycobac-
terium marinum (VIVVIVLVA VIVSSGAIA). Eight sequences were identified for Myco-
bacterium tuberculosis, indeed all four searches identified sequences for this organism.

Edwardsiella tarda was identified in 2 searches (common and for DQ1-10), and it was also

identified in microbiological cultures from 5 of 8 dolphins tested from the IRL. Of the two

most frequent genera in the microbiological cultures from the IRL (found in 6 and 7 of the 8

dolphins respectively) sequences for Aeromonas sp. were identified but no sequences were

found for Plesiomonas,. Sequences for 9 of the 10 genera identified in the microbiological

cultures however were identified. Lobomycosis is known to be a problem in bottlenose dol-

phins along the Florida Atlantic coast and the IRL [45–49] but the infectious agent Lacazia
(Loboa) loboi was not identified among any of our searches of peptide sequences. However,

at the time of submission there were only 21 entries and 5 reported proteins in the PIR data-

base for this organism.

We analyzed the results obtained from the protein database for confidence; survey of the 90

million entries revealed heavily skewed numbers of entries for certain organisms, in fact just

five genera (Escherichia, Pseudomonas, Mycobacterium, Bacillus and Clostridium) account for

more than 10% of all entries. To ascertain the veracity of our searches, we identified the num-

ber of entries in the database for each of the 55 marine related genera and expressed values as a

percentage of total number of entries. We also determined the number of sequences identified

for each genera and expressed this as a percentage of the total number of sequences identified

Table 5. (Continued)

Organism # a Protein # a Sequence

34 Serratia sp. 10 + Macrolide export protein MacA 4 + FIAVVALIA IIAVAAMAV IIAVVAMAV LIVVVALAA

D-galactonate transporter LIVVVVLVA VIAVAAMAV WIVVAVMAA

35 Sporothrix sp. 2 Autophagy protein 1 + LIAVVVLVV VIVVAVLWV

36 Staphylococcus sp. 3 Multidrug MFS transporter 2 + IIAVAALIV IYAVVALVV LIVVAVLIA LYVVVALIV

37 Streptococcus sp. 8 + Major facilitator transporter 4 + FYAVAALVV LIAVVALIV LMVVAALIV YIVVVVLVA

PTS system beta-glucoside-specific IIA Glc family IIAVVVLIV LIVVVVLVA VIAVVVLAV

Septation ring formation regulator EzrA IIVVVALAA LIVVVVLVV VIYVAVLIA

Phosphate transport system permease protein PstA IYVVVALIA LMAVAVLAV WIAVAVLAA

38 Vibrio sp. 16 + Acriflavin resistance protein 6 + FIVVVVLVV LMVVAALIA

DeoR faimly transcriptional regulator FMVVVVLAV VIAVVVLIA

Dipeptide and tripeptide permease A IIAVVALAA VMVVVALAA

Flagellar basal body-associated protein FliL IIVVAALIV VMVVVALIA

Homoserine/homoserine lactone efflux protein LIAVVALVV WIAVAVLAV

Thiol-disulfide isomerase LIAVVVLIV

Putative ABC transporter, permease component LIVVAVLWV

The 3,456 sequences derived from amino acids common to the 3 Model Positional scanning libraries for (DQ1-8, DQ1-10 and DQ2-4) were searched for protein

matches in the UniProtKB database through the Protein Information Resource (PIR). The search generated 1090 matches with 393 sequences identified in proteins of

microbes associated with marine mammals. Sequence matches for proteins originating from reported pathogens in marine mammals are summarized here. Columns

listed as (#) refer to numbers identified, or (a) list includes undefined species or proteins. Full details are supplied in S12 Table.

https://doi.org/10.1371/journal.pone.0201299.t005
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(Fig 8A). Increases above 2 fold (sequences/entries) were taken as evidence that the search

identified the genera beyond expectations for a random sampling. Twenty-one genera were

identified as having at least a 2 fold or greater hit rate by our search (Fig 8B). This is exempli-

fied by Mycobacterium that had a 4,6 fold higher hit rate than expected although this genus is

one of the more frequent entries in the database. It is interesting to note that for several genera

a much lower hit rate than would be randomly expected was observed, for example for Escheri-
chia sp. had 3 fold fewer sequences identified than would be expected randomly. This may be

evidence that different MHC proteins are directed against specific species.

Discussion

The recent availability of genetic data for MHC class II alleles present in estuarine and coastal

populations of bottlenose dolphins in Florida gave rise to the question of differential fitness

between populations [50]. In the present study we wished to explore whether the reduction in

Table 6. Marine pathogens identified from sequences derived from MPSLs for dolphins from the IRL.

Org.� Genus Reported species identified Org.� Genus Reported species identified

1 IRL Aeromonas sp. ✓ 28 Cet Absidia sp. ✓

2 IRL Bacillus sp. ✓ 29 Cet Acinetobacter sp. ✓

3 IRL Campylobacter sp. ✓ 30 Pin Corynebacterium sp. ✓ Corynebacterium phocae
4 IRL Candida. sp. ✓ Candida albicans 31 Cet Fusarium sp. ✓

5 IRL Clostridium sp. ✓ 32 Pin Bordetella sp. ✓ Bordetella bronchiseptica
6 IRL Edwardsiella sp. ✓ Edwardsiella tarda 33 Cet Citrobacter sp. ✓ Citrobacter freundii
7 IRL Enterobacter sp. ✓ Enterobacter cloacae 34 Cet Influenza A ✓

8 IRL Escherichia sp. ✓ Escherichia coli 35 Cet Kingella sp. ✓

9 IRL Helicobacter sp. ✓ Helicobacter pylori 36 Pin Leptospira sp. ✓ Leptospira interrogans
10 IRL Klebsiella sp. ✓ Klebsiella pneumoniae 37 Cet Micrococcus sp. ✓

11 IRL Plesiomonas sp. 38 Pin Mycoplasma sp. ✓

12 IRL Pseudomonas sp. ✓ Pseudomonas aeruginosa 39 Cet Moraxella sp. ✓

13 BD Actinomyces sp. ✓ Actinomyces viscosus 40 Cet Mortierella sp. ✓

14 BD Ajellomyces sp. ✓ Ajellomyces dermatitidis 41 Pin Rhodococcus sp. ✓ Rhodococcus equi
15 BD Aspergillus sp. ✓ Aspergillus niger 42 Cet Rhizopus sp. ✓

16 BD Brucella sp. ✓ Brucella ceti 43 Cet Serratia sp. ✓ Serratia marcescens
17 BD Enterococcus sp. ✓ Enteroccocus faecalis 44 Cet Sporothrix sp. ✓ Sporothrix schenckii
18 BD Morganella sp. ✓ 45 BD Blastomyces Sp.

19 BD Mycobacterium sp. ✓ Mycobacterium tuberculosis 46 BD Coccidioides sp.

20 BD Nocardia sp. ✓ Nocardia brasiliensis 47 BD Trycophyton sp.

21 BD Photobacterium sp. ✓ Photobacterium damselae 48 BD Lacazia sp.

22 BD Proteus sp. ✓ Proteus mirabilis 49 Pin Dermatophilus sp.

23 BD Providencia sp. ✓ 50 Cet Pasteurella sp.

24 BD Salmonella sp. ✓ 51 Cet Abiotrophia sp.

25 BD Streptococcus sp. ✓ 52 Cet Actinobacillus sp.

26 BD Staphylococcus sp. ✓ Staphylococcus epidermidis 53 Cet Cetobacterium sp.

27 BD Vibrio sp. ✓ Vibrio parahaemolyticus 54 Cet Mucor sp.

55 Pin Bisgaardia sp.

�Reported in bottlenose dolphin in Indian River Lagoon IRL, other bottlenose dolphin, BD; other cetacean, Cet; or pinniped, Pin.

Sequences derived from Model Positional scanning libraries for 3 dolphin proteins (DQ1-8, DQ1-10 and DQ2-4) were searched for protein matches in the UniProtKB

database through Protein Information Resource (PIR). The bacterial, fungal or viral sources of the matching proteins that have been reported to infect marine mammals

are summarized.

https://doi.org/10.1371/journal.pone.0201299.t006
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allelic abundance in MHC II DQ found in dolphins of the Indian River Lagoon (IRL) as com-

pared to their Atlantic neighbors (Table 1) was reflected by a reduction in immunocompe-

tence. We wanted to determine whether diminished repertoires of peptides were recognized

by these MHC proteins or whether the DQ alleles that dominated in the IRL population

Fig 8. Relative occurrence of genera in UniProt database and in current search for marine related pathogens. A. Percentage of entries for named genera

in the database compared to the percentage of sequences identified in named genera derived from MPSLA. B. Fold increase in identification of named

genera.

https://doi.org/10.1371/journal.pone.0201299.g008
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resulted in DQ proteins that were generalists and thereby compensated for the loss of other

alleles in this population. To begin to address this issue, we needed to determine and compare

the affinities of peptides that bound to the different DQ proteins arising from the combined

DQA and DQB alleles of interest. Our initial approach analyzed the affinities of a series of pep-

tide sequences as predicted by the MHC II binding algorithm NNAlign. This algorithm allows

for user input of the MHC II alpha and beta protein sequences which enabled us to predict the

binding affinities using the same list of 7,647 amino acids for each of four DQ proteins derived

from alleles occurring in the IRL, and to compare the predicted affinities to those derived from

a different dolphin DQ protein and from other cetacean species. The predicted affinities found

for protein sequences derived from DQ alleles in the IRL were weaker than affinities for a pre-

dicted dolphin protein downloaded from Genbank, however, the predicted affinities observed

were not very different to those observed for DQ proteins from other cetaceans, e.g. sperm

whale. Significant overlap was observed for the sequences that were designated as active (bind-

ing affinity<10,000nM) between DQ proteins in the IRL. Only 534 of 7,406 sequences were

selective for an individual DQ protein (532 sequences were predicated to bind only to DQ 1–8

and only 2 were unique to DQ 2–4), suggesting that these proteins may indeed be generalists.

Unfortunately this approach provided little insight into the repertoires of peptides that bind to

the individual DQ proteins and such inferences could not be confirmed.

Our second approach, however, harnessed the power of mixture based combinatorial

libraries to provide such insight. The essence of a combinatorial library is equal representation

of each amino acid at each position of a peptide length and the possible numbers of combina-

tions can be in the trillions. Thereby, combinatorial libraries can readily encompass the com-

plete repertoire of peptides that will bind to a particular MHCII protein. We used the binding

affinities of 7,364 nonamer sequences to retroactively generate the binding affinities of the

mixtures in a positional scanning combinatorial library. This set of calculated affinities repre-

sents the data obtained on screening the Positional scanning library in a traditional binding

assay. From the four searches performed for the DQ proteins, 38 of the 53 known marine

mammal pathogens and 18 of the 24 bacterial or fungal agents reported in bottlenose dolphins

were identified, and 12 of those were identified down to species level. The advantage of model-

ling a combinatorial library is that it can be made available to entities that lack the physical and

financial resources to conduct the physical experiments. Naturally any physical experiment

will have more dependable results, but this approach of a modeled analysis using the binding

algorithms and protein database searches will only improve with time as each of the compo-

nents is refined. Indeed many of the assumptions made in this study will need further refine-

ment. The amino acid list fed to the MHC II algorithm has small disparities in amino acid

frequency (up to 2 fold differences, Fig 9A), this was much lower than frequencies found for a

natural sample of peptides (>10 fold differences, Fig 9B) and while considered unlikely, it is

possible that such differences were sufficient to influence rankings generated by the model

library. Also in future studies it would also be useful to include amino acid rankings derived

using algorithms other than NNAlign,which may shed light on bias inherent to the current sys-

tem. In this initial study only a tiny fraction of the possible combinations of the top 5 ranked

amino acids were combined and searched as sequences in the protein database, indeed even

the choice of 5 amino acids as a cutoff was arbitrary and would need further evaluation. The

search in the protein database for sequences derived from DQ1-8 yielded few results, suggest-

ing that connectivity was not established with the amino acid choices and a greater number of

combinations may need to be searched for a fuller evaluation.

In spite of the limitations mentioned, above, this initial study has demonstrated a method

for bridging the genetic data (variance observed in MHCII alleles) through the protein level

(prediction peptides recognized by the MHC protein variants) to the target (identification of
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pathogens). We were able to demonstrate strong correlations for the amino acids recognized

by these proteins, and that the amino acids predicted to rank as most active did indeed gener-

ate sequences that not only occurred in proteins but in proteins from species known to infect

this population of marine mammals. The most abundant proteins and organisms were also

organisms related to infection in marine mammals, thus use of the filter of marine causing dis-

eases, though useful, was not critical. High success for identifying proteins in pathogens for

marine mammals was found when amino acids chosen were common to the DQ proteins.

This suggests these DQ proteins may indeed be generalists, but sequences unique to DQ1-10,

DQ2-4 and DQ1-8 were also identified, indicating these haplotypes may also function in spe-

cific pathogen recognition. Evidently, a more in depth study is required now that we have

demonstrated the means. The data obtained from these analyses would benefit to research

Fig 9. Frequency of amino acids at each position of a decamer peptide sequence. The frequency of each of the 20

amino acids (single letter code) was determined for each of the 10 positions of the peptide (one symbol for each

position) from (A) a list of 616 sequences designed to have near equal distribution or (B) a list of 616 peptides derived

from viral proteins.

https://doi.org/10.1371/journal.pone.0201299.g009

Model combinatorial analysis for MHCII binding and pathogen identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0201299 August 2, 2018 22 / 30

https://doi.org/10.1371/journal.pone.0201299.g009
https://doi.org/10.1371/journal.pone.0201299


scientists, wildlife managers and policy makers through enhancing the specificity of popula-

tion health studies and providing detailed susceptibility concerns. Rather than attempting to

speculate on a population’s vulnerability to a disease outbreak based solely on genetic diversity,

a disease threat can be explicitly probed against haplotypic binding potential of the dominant

MHC allelic makeup. Even populations with high allelic diversity can be at risk from patho-

gens to which they are unable to recognize. Once the data has been corroborated by physical

experiments, results would be of great value to databases like the Marine Mammal Health

Monitoring and Analysis Platform (MMHMAP) [51]. The potential for MPSLA is significant,

now rather than being limited to performing binding studies using peptide sequences derived

from a pre-established target protein (for most MHCII proteins established targets are rela-

tively few), target proteins can be identified through MPCL analysis and binding peptides can

be evaluated physically once their role in a pathogen has been confirmed. Thus this methodol-

ogy will be much more attainable for a variety of species, including non-model organisms and

populations for which parasite load data is not available. Genetic variation in MHC alleles

(MPSLA can be applied to both MHC class I and II) in distinct populations can now be linked

to alterations in binding repertoires of expressed MHC proteins and used in the identification

of target pathogens. Ultimately this approach may be used by researchers to evaluate risk in

outbreaks of emerging diseases.

Methods

Peptide binding affinities for DQ alleles

To determine the peptide sequences likely to be recognized by unique MHC DQ heterodi-

meric proteins, we generated a large number of peptide sequences. These short peptides were

then analyzed in conjunction with cetacean DQ receptor proteins to predict peptide binding

affinities for different DQ molecules. This was achieved by first preparing a long sequence

(7,647) of amino acids (aa) designed to have near to equal representation of each of the 20

L-amino acids (S1 Fig). This sequence was then supplied to NN-Align through the server

(NetMHCIIpan 3.1 [30]) in combination with sequences for DQA and DQB derived from dif-

ferent alleles from cetacean species. The algorithm predicted binding affinities for 13-mer pep-

tides (n = 7,634 drawn from the 7,647 aa sequence) a length typically bound by MHC receptor

proteins. DQ protein sequences of four species from three cetacean families (Delphinidae

n = 2, Phocoenidae n = 1 and Physeteridae n = 1) were downloaded from Genbank and used

as standards for predicting binding affinities across the order; accession numbers were as fol-

lows: 1) Bottlenose dolphin Tursiops truncatus (Standard) DQA: XP_004317963.2,DQB:

ABS58529.1; 2) Killer whale Orcinus orca: DQA:XP_004285666.1, DQB�0101: XP_01239443

9.1; 3) Finless porpoise Neophocaena phocaenoides: DQA: ALB25544.1, DQB: ALB25548.1;

and 4) Sperm whale Physeter macrocephalus: DQA XP_007123886.1 DQB: XP_007123885.1.

Most of these protein sequences were predicted from whole genome sequencing projects

(WGS). Because a WGS generates a single consensus sequence from a diploid animal, these

may not represent a true wildtype either individually as DQA or DQB alleles or together as a

DQA/DQB haplotype. We therefore also used experimental data from Florida bottlenose dol-

phin populations recently documented in a companion paper by Pagán et al. Sequencing data

from this study was limited to the DQA and DQB peptide binding region (i.e., exon 2), thus

PBR sequences were inserted into the full length DQ protein sequence for standard dolphin

described above (S2 Fig) and will be referred to as derived DQ proteins. Including the stan-

dards detailed above, a total of three DQA and four DQB PBR alleles were examined from

dolphins. All except the DQB standard were found in both estuarine and Atlantic dolphins

(Table 1). Three of the DQA and DQB PBR allelic combinations were found in homozogyotes
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from estuarine populations (Indian River Lagoon, IRL), and thus represent a confirmed haplo-

type. Exon 2 in DQA and DQB correspond to the amino acids located in the binding pockets

of the expressed protein and it is acknowledged that mutations in this region have the greatest

effect on peptide binding affinity [5]. Information submitted to the server (NetMHCIIpan 3.1)

was as follows: A single query sequence of 7,647residues in FASTA format, Peptide length = 13,

Threshold for strong binder (% Rank) = 2, Threshold for weak binder (% Rank) = 10; full

length DQ Alpha and Beta chain protein sequences were individually uploaded. The affinities

of active 13-mer peptide sequences for eight DQ proteins were compared and plotted (Graph-

Pad Prism 6.1 software). To determine sequence overlap for Fig 3, only sequences with pre-

dicted affinities below 10,000 nM (designated as active binding peptides) were included in the

analysis all 4 lists generated for (DQ 1–1, 10 = -8, 1–10 and 2–4) were combined and any dupli-

cate sequences removed. the remaining sequences were then identified as occurring in one,

two, three or all four peptide lists.

Model positional scanning library analysis (MPSLA)

To model a positional scanning library, we generated hypothetical mixtures using the nonamer

core of the 7,634 13-mer sequences generated by NNAlign (NetMHCIIpan 3.1). For example,

to calculate the activity of a hypothetical mixture with the following nonamer core: AXXX

XXXXX all sequences with alanine (A) at position 1 and their corresponding affinities were

extracted from the list generated by NNAlign. Binding activity of the mixtures was then calcu-

lated by employing the harmonic mean [36] which is dominated by the minimum of its argu-

ments; the equation is; H = 1 / (∑(i = 1)
N (fi / Xi) where fi is the proportion of the ith mixture

constituent with dosing point Xi. N is the total number of mixture constituents; and if constit-

uents are present in equal numbers, then fi = 1/N for all i (22). In practice, sequences with ala-

nine at the first position were extracted, their numbers counted, the inverse of their affinities

summed, and the values used to determine the harmonic mean. The process was repeated for

the remaining 19 amino acids at position 1 and the 20 amino acids for positions 2–9. The

results were compiled in a table of 20 x 9 mixture affinities. This table is a model of the results

of a screen of a physical positional scanning combinatorial library. The mixtures at each of the

9 positions were then ranked from 1–20 based on their affinity, with 1 corresponding to the

amino acid that yielded a mixture with the lowest value and therefore the greatest affinity for

the MHCII protein. To compare the peptide repertoire of individual protein genotypes, the

ranking values for each of the 9 positions were compared across genotypes using a series of

scatterplots (GraphPad Prism 6.1 software). Correlations were performed for each position

and Coefficients of determination (r2) derived from Pearson correlation coefficient (r) val-

ues were recorded. Statistical significance as defined by Graphpad; P values 0.1234 (ns), 0.0332

(�), 0.0021(��), 0.0002 (���) and <0.00001(����). To highlight amino acids that ranked highly

(i.e., below 5) and were either common to both proteins or found in one protein as opposed to

the other, a line for x = y and lines demarking x = 5 and y = 5 were added to the scatter plots.

Combination Choice of active amino acids from DQ alleles (step 8 in Fig 1). Combina-

tions of the amino acids found to be most active at each position of a combinatorial library are

used to identify the peptide sequences most likely to be driving activity in the mixtures. We

used the amino acids ranked 5 or less and common to 3 IRL DQ proteins to generate (5 x 1 x 3

x 2 x 1 x 2 x 2 x 2 x 2 = 480) peptide sequences. We also wanted to examine the peptide land-

scape particular to proteins derived from individual alleles, in which case we concentrated on

extracting sequences unique to the individual alleles. The amino rankings for the proteins

derived from the three confirmed haplotypes DQA1�02DQB1�04 (DQ 2–4), DQA1�01DQB1�

08 (DQ1-8) and DQA1�01DQB1�10 (DQ 1–10) were plotted together for each of the nine
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positions. Amino acids ranked below 5 for each genotype were each given a Hierarchical

Value (HV = 1 to 3) determined by their respective occurrence on this plot, first, second or

third. For example, F at position 2 was attributed a HV = 1 for DQ 2–4, a HV = 2 for DQ 1–8

and HV = 3 for DQ 1–10; M at position 2 was attributed a HV = 1 for both DQ1-8 and DQ1-

10 and had no value at DQ 2–4 as it ranked above 5. Amino acids were chosen for combination

based on three criteria,1) they ranked 5 or below, 2) they were attributed HV = 1 and 3) they

did not represent a conservative replacement for another amino acid chosen (e.g. Y and F, or S

and T, or I and L).

Determination of peptide relevance and potential pathogen source (step 9 in Fig 1).

The peptide sequences representing the combinations of amino acids chosen in step 8 for each

of the DQ proteins and for those common to all proteins were used in searches of protein data-

bases (Protein Information Resource PIR [39]). Tabulated data of sequence, protein and

organism source obtained from these searches were further mined for sequences that were

identified in proteins from known marine mammal pathogens.

Model PS library analysis for human MHC II: HLA -DP alleles. To determine the utility

of the MPSLA, we needed to compare the peptide affinities of the model to the affinities of a

physical library. We chose a human MHC protein, HLA DP, where binding affinities had been

obtained for physical positional scanning library (26). The physical library explores a

322,687,697,779 (i.e., 19aa9) nonomer peptide landscape. A model PS Library was constructed

using the human HLA–DP2 alleles [37,52], DPA1�0103:01:01 (https://www.ebi.ac.uk/cgi-bin/

ipd/imgt/hla/get_allele.cgi?DPA1�01:03:01:01, Accession number NP_291032) and DPB1�0201
(https://www.ebi.ac.uk/cgibin/ipd/imgt/hla/get_allele.cgi DPB1�02:01:02:01, Accession num-

ber CAA26871.1). Sequences of the alleles were obtained from a search of the Immuno Poly-

morphism Database IPD-IMGT/HLA [53,54]. In this study, human alleles were given the

prefix Hs to distinguish them from cetacean alleles. Since the model library would be com-

pared to a physical library, cysteines were eliminated. Physical combinatorial libraries omit

cysteine from mixtures as this amino acid has the propensity to oxidize and dimerize peptides.

A second 7,647 aa list was generated lacking cysteines. The amino acid sequences encoded by

HsDPA and HsDPB were manually supplied to the server. Although the protein sequences

derived from these alleles are offered on the NetMHCIIpan 3.1 server, they were entered man-

ually to ensure use of the precise sequence and for consistency as cetacean sequences were sup-

plied manually.
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listed as (#) refer to numbers identified, or (a) list includes undefined species or proteins. Full

details are supplied in S12 Table.

(PDF)

S10 Table. Proteins and pathogens identified from MPSLA for DQ 1–10. The 2,586

sequences derived from amino acids for DQ 1–10 were searched for protein matches in the

UniProtKB database through the Protein Information Resource (PIR). Sequence matches for

proteins originating from reported pathogens in marine mammals are summarized here. Col-

umns listed as (#) refer to numbers identified, or (a) list includes undefined species or proteins.
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Full details are supplied in S12 Table.

(PDF)

S11 Table. Proteins and pathogens identified from MPSLA for DQ 1–8. The 3,888

sequences derived from amino acids for DQ 1-8were searched for protein matches in the Uni-

ProtKB database through the Protein Information Resource (PIR). Sequence matches for pro-

teins originating from reported pathogens in marine mammals are summarized here.

Columns listed as (#) refer to numbers identified, or (a) list includes undefined species or pro-

teins. Full details are supplied in S12 Table.

(PDF)

S12 Table. Combined data from all four searches of proteins and pathogens identified in

marine mammals. The sequences derived from amino acids common to the 3 Model Posi-

tional scanning libraries and for DQ1-8, DQ1-10 and DQ2-4 were searched for protein

matches in the UniProtKB database through the Protein Information Resource (PIR). The

search sequences identified in proteins of microbes associated with marine mammals were

combined in this table.

(XLSX)
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