
RESEARCH ARTICLE

A new split based searching for exact pattern

matching for natural texts

Saqib Hakak1☯*, Amirrudin Kamsin1☯*, Palaiahnakote Shivakumara1‡, Mohd Yamani Idna

Idris1‡, Gulshan Amin Gilkar2‡

1 Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, 2 College

of Computer and Information technology, Shaqra university, Saudi Arabia

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work.

* saqibhakak@ieee.org (SH); amir@um.edu.my (AK)

Abstract

Exact pattern matching algorithms are popular and used widely in several applications, such

as molecular biology, text processing, image processing, web search engines, network

intrusion detection systems and operating systems. The focus of these algorithms is to

achieve time efficiency according to applications but not memory consumption. In this work,

we propose a novel idea to achieve both time efficiency and memory consumption by split-

ting query string for searching in Corpus. For a given text, the proposed algorithm split the

query pattern into two equal halves and considers the second (right) half as a query string

for searching in Corpus. Once the match is found with second halves, the proposed algo-

rithm applies brute force procedure to find remaining match by referring the location of right

half. Experimental results on different S1 Dataset, namely Arabic, English, Chinese, Italian

and French text databases show that the proposed algorithm outperforms the existing S1

Algorithm in terms of time efficiency and memory consumption as the length of the query

pattern increases.

1. Introduction

As swift changes in digital technologies, converting raw data to digital data and uploading

to system online is also changing with the same proportionality. As a result, size of database

increase drastically. Therefore, in order to cope with real-time applications and situation, there

is a need for focussing on both time and space complexity of the systems or methods because

these two parameters decide usefulness and effectiveness of the system despite the methods

achieve good accuracy. Most of the existing methods in literature have focused on time com-

plexity parameter and little attention has been paid towards space complexity (memory con-

sumption) parameter. Therefore, there is a dearth of developing a method which achieves both

times as well as space efficiency irrespective of the size of the database [1]. It is evident that in

recent days, modern programming languages, such as Java and C# are widely used for setting

up real-time systems because these software-based languages involve automatic memory man-

agement [2]. It is noted that heap size which is part of memory segment plays a major impact

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Hakak S, Kamsin A, Shivakumara P, Idna

Idris MY, Gilkar GA (2018) A new split based

searching for exact pattern matching for natural

texts. PLoS ONE 13(7): e0200912. https://doi.org/

10.1371/journal.pone.0200912

Editor: Hua Wang, Victoria University, AUSTRALIA

Received: December 10, 2017

Accepted: May 24, 2018

Published: July 26, 2018

Copyright: © 2018 Hakak et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the

Fundamental Research Grant (FRGS) through the

University Malaya under Project No. FP003-2016

and IPPP research fund (PG017-2015B) (AK). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0200912
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
https://doi.org/10.1371/journal.pone.0200912
https://doi.org/10.1371/journal.pone.0200912
http://creativecommons.org/licenses/by/4.0/


on the performance of garbage collection which in turn affects the overall performance of the

systems having multiple processes [3]. For example, if heap size is less than the application

requirement, it would cause excessive garbage collection while heap size more than the physi-

cal memory results in induce paging. On the other hand, there is no generalized criterion to

decide the correct heap size according to application requirement [2]. This is beyond scope of

this work. One such illustration using existing string matching [4] on Arabic dataset is shown

in Fig 1 where we can see initially the algorithm requested 350 MB of the heap but it uses 70

MB (average) resulting in a waste of memory resources. Therefore, it is necessary to focus on

both time and space complexities of the method.

The main reason for the existing exact string matching algorithms to consume more mem-

ory is the pre-processing involved in the computation of shifts. For example, in Fig 2, Boyer-

Moore algorithm, [5] starts searching characters from right to left of the given query pattern. If

there is a mismatch, algorithms shift as many as m characters according to the shift table com-

puted in pre-processing phase. It looks similar to QS algorithm [6] with respect to finding a

match, except BM algorithm uses both good suffix shift and bad-shift while QS algorithm

uses only bad shift[7]. BM is one of the most standard and widely used algorithms in pattern

matching and a lot of improvement in terms of time efficiency was carried out by post

Fig 1. Memory usage of existing exact matching algorithms.

https://doi.org/10.1371/journal.pone.0200912.g001

Fig 2. Boyer Moore algorithm [7].

https://doi.org/10.1371/journal.pone.0200912.g002

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 2 / 13

https://doi.org/10.1371/journal.pone.0200912.g001
https://doi.org/10.1371/journal.pone.0200912.g002
https://doi.org/10.1371/journal.pone.0200912


researchers to this very concept of character shifts. Few existing string matching algorithms

using the same concept include fast search searching algorithm [8], modified Boyer Moore

algorithm[9, 10], Horspool algorithm [11], Tuned BM [6], Turbo BM [12], SSM Algorithm [4]

and so on [9, 10].

1.1. Motivation

The motivation of carrying out this research and proposing the idea was initially based on

some experiments and observations. We found that most of the existing exact matching algo-

rithms improve time complexity at the cost of memory wastage as shown in Fig 1. Besides, the

advancement of the technologies like i-core 5/7 processors that can process bits much faster

was another motivation. Our hypothesis assumed that the optimisation of brute force algo-

rithm over fast i-core processors with more than 4 GM RAM will improve time and reduce

heap memory wastage.

In Table 1, different input strings of varying lengths are given. The idea of splitting the

string into two halves came from this very initial observation. Traditional exact matching algo-

rithms need pre-processing to decide, how many letters to skip for the possible match. In case

of splitting the given input into 2 halves and processing the right half first will improve the

memory and time complexity was the core idea.

2. Related work

One of the standard benchmark exact algorithms has been a Boyer-Moore algorithm (BM) as

explained above. There are algorithms which proposed to overcome the drawback of the BM

algorithm based on its good suffix and bad character rule. [11] simplifies the Boyer-Moore’s

algorithm by removing the good suffix rule (Boyer-Moore-Smith Algorithm). [13] proposed

algorithms which are an extension of BM algorithm focuses on computing the shift with the

text character. Timo Raita (Raita, 1992) proposed algorithm known as Raita algorithm which

is modified form of BM algorithm. [12] proposed Turbo-BM Algorithm which works based on

dynamic simulation technique. Berry-Ravindran [14] proposed an algorithm, known as Berry

and Ravindran algorithm which is an improvement over quick search algorithm. Ahmad [15]

proposed an idea of exploring parallel processing for the two pointers that used in string

matching process. i. e., one pointer starts searching from the left side and another pointer starts

searching from the right side, thus it reduces overall search time. [16] proposed hashing tech-

nique to avoid a quadratic number of character comparisons [8]. However, the drawback of

this approach is the possibility of hash collision. Similarly, there are bit-parallelism and autom-

ata-based exact matching approaches to improve the search time. The main issues with these

approaches is that dependence on computer word size for matching and difficulty in imple-

mentation [8].

In the light of above discussion, it can be asserted that the primary focus of the existing

method is time complexity [17], [18]. Researchers paid little attention towards space complex-

ity (memory consumption), especially when database size increases continuously.

Table 1. Motivation to propose the idea of splitting.

Input String Length of String (including

white space)

He 2 characters

And the evening and the morning were the fourth days. 30–50 characters

And God said, Let the waters bring forth abundantly the moving creature that

hath life, and fowl that may fly above the earth in the open firmament of heaven

More than 150 characters

https://doi.org/10.1371/journal.pone.0200912.t001

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 3 / 13

https://doi.org/10.1371/journal.pone.0200912.t001
https://doi.org/10.1371/journal.pone.0200912


Thus, in this paper, we present a novel approach to solving the exact string matching prob-

lem which achieves both time and space efficiency. The main advantage of the proposed

method is that it works well regardless of the type of database, unlike existing methods that

depend on the type of the database. Besides, it is easy to parallelise this method and gain signif-

icant enhancement in decreasing time and memory requirements. This paper is organized as

follows: Section 2 presents the proposed algorithm, Section 3 shows experimental results and

Section 4 provides our conclusion.

3. Proposed algorithm

As noted from the illustration shown in Fig 2 that since conventional exact string matching

algorithms search query pattern at the character level, the algorithms consume more process-

ing time and more space. This factor motivated us to propose an algorithm that uses a bunch

of characters of query pattern for searching in the database. The proposed approach is based

on the divide and conquer approach, where the pattern to be searched is split into two halves,

say pattern p into p1 and p2 respectively. If string pattern length is even, it considers p2 to find

a match with the dataset. Once algorithms find a match, it matches p1 with the adjacent char-

acters found for p2 directly. As a result, it saves lots of comparisons and memory consumption.

The steps of the proposed algorithm can be seen in Fig 3. In this work, we determine the divi-

sion of the given query string pattern into two equal halves empirically as shown in Table 1

where we conduct experiments for time and space complexity by varying size of the query

string.

The algorithm more specifically is as follows. Suppose we need to find a p from given text t
of length n. The proposed algorithm instead of considering the whole pattern p as an input, it

searches p2 only such that (m2 < = n). Once right halve has found a match during searching

process, the proposed algorithm considers the whole left half string to match with the database

by considering reference found by right half string match. As a result, the proposed algorithm

involves shift only for a right half in contrast to brute force algorithm or traditional exact

matching algorithms where it involves a lot of shifts for a whole pattern. The proposed algo-

rithm starts scanning from rightmost end to the leftmost end of the given text t and matching

process of p2 starts from left to right i.e. (i0,i1. . .. and-1). In case, there is a match, p1 is mapped

onto the location using the below-mentioned equation, where i0 denotes the position of right-

most character matched in p2.

Position to Map ðpmapÞ ¼ ðp2½i0� � m2Þ ð1Þ

With the formula in Eq (1), if p1 also matches the given text, algorithms move to other loca-

tion to verify the other matches. In case there is a mismatch, algorithm again starts scanning

from the last matching position i.e. i0. The pseudo code of the proposed algorithm is presented

in Fig 4.

The proposed algorithm is illustrated in Figs 5 and 6 for a query string of even and odd

lengths, respectively. Fig 5 shows that for a given text, (t) “HELOGEMLED”, the proposed

algorithms divide a query string “OGEM” into “OG”, say, p1 and “EM”, say p2. Since the

query string length is even, it divides into two equal sub-strings. Then the proposed algorithm

scans p2 in t until it finds a match for “M”.

In the first search phase, “M” do not match with “E” of given text (t). Thus, the pointer will

move to i0+1 position, again encountering mismatch with “L”, followed by “O”, “G” and “E”

respectively. Finally, there is a match where character “M” of sub-pattern (p2) matches charac-

ter “M” in the text (t). Now, the pointer moves to (i0-1) position of pattern p2. Finally, the next

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 4 / 13

https://doi.org/10.1371/journal.pone.0200912


Fig 3. Flow chart of proposed algorithm.

https://doi.org/10.1371/journal.pone.0200912.g003

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 5 / 13

https://doi.org/10.1371/journal.pone.0200912.g003
https://doi.org/10.1371/journal.pone.0200912


character of pattern i.e. “E” also matches the text, indicating the match. At last, p1 is mapped

directly based on the location of the last match.

In the same way, we illustrate the searching process of the proposed algorithm for the odd

length of query string in Fig 6 where it considers sub-string which contains more characters as

p2 after division.

Fig 4. The pseudo code of proposed algorithm.

https://doi.org/10.1371/journal.pone.0200912.g004

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 6 / 13

https://doi.org/10.1371/journal.pone.0200912.g004
https://doi.org/10.1371/journal.pone.0200912


4. Experimental results

To evaluate the proposed algorithm, we consider a standard S1 Dataset of different scripts,

namely, English, Italian, Chinese, French, and Arabic that Alsulami [4] has taken for compari-

son purposes from the work of Faro [10] and Tanzil.net[19]. It is noted that Arabic and Chi-

nese database uses UTF encoding scheme because of diacritics and each character of these two

scripts considers one-byte information while other datasets use ASCII encoding. The main

reason to consider a dataset of the different script is to show that the proposed algorithm is

script independent and takes less amount of memory for all scripts. The experimental frame-

work is presented in Fig 7.

Since our objective is to evaluate the proposed method in terms of time and space-time

complexity, we use processing time in milliseconds and memory consumption in MB as two

performance measures. The same measures are used for all experimentation on different script

S1 Dataset.

Fig 5. Working example of proposed algorithm for even length pattern.

https://doi.org/10.1371/journal.pone.0200912.g005

Fig 6. Working example of proposed algorithm for odd length pattern.

https://doi.org/10.1371/journal.pone.0200912.g006

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 7 / 13

https://doi.org/10.1371/journal.pone.0200912.g005
https://doi.org/10.1371/journal.pone.0200912.g006
https://doi.org/10.1371/journal.pone.0200912


To show effectiveness and usefulness of the proposed algorithm, we compare the results of

the proposed algorithm with the results of well-known S1 Algorithm on different datasets. The

existing S1 Algorithm are Boyer-Moore (BM) algorithm which considers the rightmost char-

acter of the pattern for searching and it uses good-suffix shift and bad-character shift during

matching. [6] proposed an algorithm which is called BMT because it is improved version of

BM algorithm. This algorithm combines the strengths of BM and KMP (Knuth-Morris) algo-

rithms. [12] proposed Turbo-BM (TBM) Algorithm which records the suffix of last matched

sub string of the pattern with which it jumps over sub-string to allow execution of turbo-jump

(memory match), unlike other algorithms. Recently, character-based approach by [4] pro-

posed algorithm (SSM) which compares the pivot character with the corresponding character

and shifts the pattern either using Horspool shift or hybrid shift. In the work of Faro [10],

Hash 3 and SBNDM algorithms have shown better results among 85 algorithms for natural

texts like the bible. For that reason, SSM algorithm [4] has been compared with Hash 3 and

SBNDM algorithms. SSM algorithm has shown better results than hash 3 and SBNDM indicat-

ing that the results are better than those existing 85 algorithms. It is observed from the review

of existing methods that all four existing methods use character components for matching and

searching. Thus, it involves more number of computations, comparisons, and shifts which

results in more time processing and memory consumption. Furthermore, for the all the above

existing methods, traditional brute force criterion is common. Therefore, we also use the same

criterion for comparative study without additional features in this work.

For experimentation, we consider short query pattern (1–4 characters’ length), medium

query pattern (5–8 characters length) and long query pattern (more than 8-character length)

to test time and space efficiency of the proposed and existing S1 Algorithm on different S1

Dataset. Each algorithm is run 10 times and running times were calculated by taking mean of

10 running times. The implementation is done using the NetBeans 8.02 on i-5 Intel Processor

with 4 MB caches, 4 GB RAM using Windows 10.

4.1 Outcome of experiments

The quantitative results of the proposed and existing S1 Algorithm for query pattern lengths

on different S1 Dataset are reported in Tables 2–4 where we can notice that the proposed algo-

rithm outperforms existing S1 Algorithm for all the queries except TBM on Arabic, French

text, BMT on the Italian and French text with SSM on Italian text. Therefore, it can argue that

the proposed algorithms are effective in terms of time efficiency for most of the S1 Dataset.

Since the aim of the proposed algorithm is to achieve better time efficiency, it reports bit poor

results for Italian and French texts. The reason for poor results is probably due to the nature of

these datasets with respect to the arrangement of selected patterns. This is especially worse for

Fig 7. Experimental framework.

https://doi.org/10.1371/journal.pone.0200912.g007

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 8 / 13

https://doi.org/10.1371/journal.pone.0200912.g007
https://doi.org/10.1371/journal.pone.0200912


very short patterns of size <4. However, in case of medium patterns i.e. pattern length 4–7, on

an average SSM algorithm performed much better as this algorithm performs best under this

scenario due to its dynamic pivot pointer that involves a maximal safe shift in case of mismatch

on rightmost end of the pattern. For longer patterns again, on an average proposed algorithm

performed better compared to existing S1 Algorithm.

In the same way of experiments on time efficiency for the same S1 Dataset, we calculate

memory used for matching and searching on the query words listed in Tables 2–4. The

average of memory consumption of different query words of the proposed and existing S1

Algorithm on different S1 Dataset are shown in Fig 8. Fig 8 shows that all the existing S1

Algorithm except Brute force and proposed algorithm consume 100 to 200 MB of heap mem-

ory during runtime. However, Brute force algorithm consumes little memory i.e. less than

20 MB. It requires more time for searching according to Tables 2–4. Brute force algorithms

require more operations for searching string in the database. Since it requires more opera-

tions, usage of pointers, calling internal methods and variable also increases. Therefore,

brute force algorithms consume more space than the proposed algorithm. For the fair com-

parative study, we use the function in Java for estimating memory consumption for all the

experiments shown in Fig 9. Memory requirements were analysed using memory analysis

tool available in java using NetBeans IDE [20]. From Fig 9, it can be seen upper portion is

memory requirements of the proposed algorithm and lower part of brute force algorithm.

Although there is not much difference in terms of memory requirements (ranging from 15–

25 MB) between the two. But, the slight difference with respect to memory requirements

Table 3. Processing time in milliseconds of the proposed and existing S1 Algorithm for the query pattern length of 4–7 characters (medium).

Corpus Text Size (MB) Sample patterns BM BMT TBM SSM Brute Force Proposed

Arabic Quran 0.7 مِیحِرَّلا 969 1000 938 906 2050 878

English Bible 3.83 Finishe, wroth 2390 2302 2281 2260 7547 2797

Italian Orlando 0.72 Tratto, saetta 3843 4112 4177 3474 13310 4391

Chinese Journey 1.37 隔開 2313 2047 2318 2297 7371 2578

French L’homme 1.13 C’est, epoque 2847 2288 2179 2531 7476 2400

https://doi.org/10.1371/journal.pone.0200912.t003

Table 2. Processing time in milliseconds of the proposed and existing S1 Algorithm for the query pattern length of fewer than four characters (short).

Corpus Text Size (MB) Sample patterns BM BMT TBM SSM Brute Force Proposed

Arabic Quran 0.7 مِسْبِ 1062 985 939 1235 2152 937

English Bible 3.83 Good, the 5967 5396 6027 5710 8527 4205

Italian Orlando 0.72 Dal, tal 5172 4058 5060 4230 13430 4492

Chinese Journey 1.37 兒 3025 3969 3158 2806 7547 2500

French L’homme 1.13 Dans, ils 3078 2284 2249 2859 6995 2549

https://doi.org/10.1371/journal.pone.0200912.t002

Table 4. Processing time in milliseconds of the proposed and existing S1 Algorithm for the query pattern length of more than 8 characters (long).

Corpus Text Size (MB) Sample patterns BM BMT TBM SSM Brute Force Proposed

Arabic Quran 0.7 نِمَحْرَّلاھِلَّلامِسْبِ 1094 1013 1031 1078 2100 844

English Bible 3.83 Continually, that Adam 2172 2253 2157 2422 7939 2092

Italian Orlando 0.72 Trascorso, lungo tratto 4143 3937 3920 3330 13648 4375

Chinese Journey 1.37 旗飛彩 2083 2093 2185 2218 7655 2609

French L’homme 1.13 Angleterre, imitele chinois 2869 2374 2337 2719 7105 2384

https://doi.org/10.1371/journal.pone.0200912.t004

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0200912.t003
https://doi.org/10.1371/journal.pone.0200912.t002
https://doi.org/10.1371/journal.pone.0200912.t004
https://doi.org/10.1371/journal.pone.0200912


Fig 8. Memory analysis.

https://doi.org/10.1371/journal.pone.0200912.g008

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 10 / 13

https://doi.org/10.1371/journal.pone.0200912.g008
https://doi.org/10.1371/journal.pone.0200912


depends on the allocation of bytes and char inside JVM that take some amount of memory.

Therefore, we can confirm that the proposed algorithm achieves both time and space effi-

ciency for different query pattern length on different S1 Dataset.

5. Conclusion and future work

In this paper, we have proposed a novel idea for exact string matching to achieve both time

and space efficiency regardless of query pattern length, dataset size and scripts. The proposed

algorithm split given query pattern length into two halves and then it considers right halve for

searching in a text. Once the match is found for right halve, the proposed algorithm uses left

halve directly from the matched reference. This process helps in reducing the number of com-

putation especially comparisons at the same time it consumes less memory due to no pre-pro-

cessing involved as compared to existing exact matching algorithms. To show the usefulness

of the proposed method, we have conducted experiments on datasets of different S1 Dataset

scripts, namely, Arabic, English, and Chinese. Experimental results of the proposed and exist-

ing S1 Algorithm on different S1 Dataset for different query pattern length show that the pro-

posed algorithm outperforms most of the existing S1 Algorithm in terms of time and space

efficiency. Therefore, we can assert that the proposed algorithm is a script, query pattern length

and dataset size independent.

In near future, we are planning to extend the proposed algorithm to solve string matching

with multiple string matching and approximate string matching. To handle scalability on huge

databases with different scripts, formats etc, we are investigating to introduce keyword spot-

ting for exact matching such that the algorithms spot the word, which represents the whole

page. In this case, no need to scan the whole page from beginning to end of the page. In

addition, the approach considers semantics layout of the page for searching keywords of the

page. It is valid because any book or number pages in the book have some logical flow at the

Fig 9. Brute force memory analysis.

https://doi.org/10.1371/journal.pone.0200912.g009

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 11 / 13

https://doi.org/10.1371/journal.pone.0200912.g009
https://doi.org/10.1371/journal.pone.0200912


semantic level. The new approach is to explore such high-level semantics to reduce search

time, at the same time, it should extract right information with minimum memory usage.

Supporting information

S1 Dataset. Benchmark datasets.

(RAR)

S1 Algorithm. Algorithm-sources.

(JAR)

Acknowledgments

This work was supported by the Fundamental Research Grant (FRGS) through the University

Malaya under Project No. FP003-2016 and IPPP research fund (PG017-2015B).

Author Contributions

Conceptualization: Mohd Yamani Idna Idris.

Investigation: Saqib Hakak.

Methodology: Palaiahnakote Shivakumara.

Software: Saqib Hakak.

Supervision: Amirrudin Kamsin.

Writing – original draft: Saqib Hakak.

Writing – review & editing: Gulshan Amin Gilkar.

References
1. Frakes WB, Baeza-Yates R. Information retrieval: data structures and algorithms. 1992.

2. Yang T, Hertz M, Berger ED, Kaplan SF, Moss JEB, editors. Automatic heap sizing: Taking real mem-

ory into account. Proceedings of the 4th international symposium on Memory management; 2004:

ACM.

3. Kim J-S, Hsu Y, editors. Memory system behavior of Java programs: methodology and analysis. ACM

SIGMETRICS Performance Evaluation Review; 2000: ACM.

4. Al-Ssulami AM. Hybrid string matching algorithm with a pivot. Journal of Information Science. 2014:82–

8.

5. Boyer RS, Moore JS. A fast string searching algorithm. Communications of the ACM. 1977; 20

(10):762–72.

6. Sunday DM. A very fast substring search algorithm. Communications of the ACM. 1990; 33(8):132–42.

7. Lin J, Adjeroh D, Jiang Y. A Faster Quick Search Algorithm. Algorithms. 2014; 7(2):253–75.

8. Lecroq T. Fast exact string matching algorithms. Information Processing Letters. 2007; 102(6):229–35.

9. Rafiq ANME, El-Kharashi MW, Gebali F. A fast string search algorithm for deep packet classification.

Computer Communications. 2004; 27(15):1524–38.

10. Faro S, Lecroq T. The exact online string matching problem. Acm Comput Surv. 2013; 45(2):1–42.

11. Horspool RN. Practical fast searching in strings. Software: Practice and Experience. 1980; 10(6):501–

6.

12. Crochemore M, Czumaj A., Gasieniec L., Jarominek S., Lecroq T., Plandowski W., & Rytter W. Speed-

ing up two string-matching algorithms. Algorithmica. 1994:247–67.

13. Michailidis PD, Margaritis KG. On-line approximate string searching algorithms: Survey and experimen-

tal results. International Journal of Computer Mathematics. 2002; 79(8):867–88.

14. Berry TaR, S., editor A Fast String Matching Algorithm and Experimental Results. Proceedings of the

Prague Stringology Club Workshop’99; 2001.

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 12 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0200912.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0200912.s002
https://doi.org/10.1371/journal.pone.0200912


15. Ahmad MK. An Enhanced Boyer-Moore Algorithm (Doctoral dissertation): Middle East University; 2014.

16. Karp RM, Rabin MO. Efficient Randomized Pattern-Matching Algorithms. Ibm Journal of Research and

Development. 1987; 31(2):249–60.

17. Bobroff N, Dawson MH, Fong LL, Iyengar AK, Westerink PH. SYSTEM AND METHOD FOR IMPROV-

ING MEMORY USAGE IN VIRTUAL MACHINES. US Patent 20,160,110,225; 2016.

18. Shaham R, Kolodner EK, Sagiv M, editors. Heap profiling for space-efficient Java. ACM SIGPLAN

Notices; 2001: ACM.

19. http://tanzil.net/#2:1. 2016

20. https://profiler.netbeans.org/docs/help/5.5/results_objliveness.html. Netbeans 2016

Split based search for natural texts

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 13 / 13

http://tanzil.net/#2:1
https://profiler.netbeans.org/docs/help/5.5/results_objliveness.html
https://doi.org/10.1371/journal.pone.0200912

