@° PLOS | ONE

Check for
updates

E OPENACCESS

Citation: Hakak S, Kamsin A, Shivakumara P, ldna
Idris MY, Gilkar GA (2018) A new split based
searching for exact pattern matching for natural
texts. PLoS ONE 13(7): €0200912. https://doi.org/
10.1371/journal.pone.0200912

Editor: Hua Wang, Victoria University, AUSTRALIA
Received: December 10, 2017

Accepted: May 24, 2018

Published: July 26, 2018

Copyright: © 2018 Hakak et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information
files.

Funding: This work was supported by the
Fundamental Research Grant (FRGS) through the
University Malaya under Project No. FP003-2016
and IPPP research fund (PG017-2015B) (AK). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE
A new split based searching for exact pattern
matching for natural texts

Saqib Hakak'®*, Amirrudin Kamsin'®*, Palaiahnakote Shivakumara'¥, Mohd Yamani Idna
Idris'¥, Gulshan Amin Gilkar?*

1 Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, 2 College
of Computer and Information technology, Shagra university, Saudi Arabia

® These authors contributed equally to this work.
1 These authors also contributed equally to this work.
* sagibhakak @ieee.org (SH); amir@um.edu.my (AK)

Abstract

Exact pattern matching algorithms are popular and used widely in several applications, such
as molecular biology, text processing, image processing, web search engines, network
intrusion detection systems and operating systems. The focus of these algorithms is to
achieve time efficiency according to applications but not memory consumption. In this work,
we propose a novel idea to achieve both time efficiency and memory consumption by split-
ting query string for searching in Corpus. For a given text, the proposed algorithm split the
query pattern into two equal halves and considers the second (right) half as a query string
for searching in Corpus. Once the match is found with second halves, the proposed algo-
rithm applies brute force procedure to find remaining match by referring the location of right
half. Experimental results on different S1 Dataset, namely Arabic, English, Chinese, Italian
and French text databases show that the proposed algorithm outperforms the existing S1
Algorithm in terms of time efficiency and memory consumption as the length of the query
pattern increases.

1. Introduction

As swift changes in digital technologies, converting raw data to digital data and uploading

to system online is also changing with the same proportionality. As a result, size of database
increase drastically. Therefore, in order to cope with real-time applications and situation, there
is a need for focussing on both time and space complexity of the systems or methods because
these two parameters decide usefulness and effectiveness of the system despite the methods
achieve good accuracy. Most of the existing methods in literature have focused on time com-
plexity parameter and little attention has been paid towards space complexity (memory con-
sumption) parameter. Therefore, there is a dearth of developing a method which achieves both
times as well as space efficiency irrespective of the size of the database [1]. It is evident that in
recent days, modern programming languages, such as Java and C# are widely used for setting
up real-time systems because these software-based languages involve automatic memory man-
agement [2]. It is noted that heap size which is part of memory segment plays a major impact

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018

1/13

https://doi.org/10.1371/journal.pone.0200912
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200912&domain=pdf&date_stamp=2018-07-26
https://doi.org/10.1371/journal.pone.0200912
https://doi.org/10.1371/journal.pone.0200912
http://creativecommons.org/licenses/by/4.0/

o @
@ : PLOS | ONE Split based search for natural texts

11:18:55 AM 11:18:56 AM 11:18:57 AM 11:18:58 AM 11:18:59 AM
>

| A

EHeap Size =@ Used Heap

Fig 1. Memory usage of existing exact matching algorithms.

https://doi.org/10.1371/journal.pone.0200912.9001

on the performance of garbage collection which in turn affects the overall performance of the
systems having multiple processes [3]. For example, if heap size is less than the application
requirement, it would cause excessive garbage collection while heap size more than the physi-
cal memory results in induce paging. On the other hand, there is no generalized criterion to
decide the correct heap size according to application requirement [2]. This is beyond scope of
this work. One such illustration using existing string matching [4] on Arabic dataset is shown
in Fig 1 where we can see initially the algorithm requested 350 MB of the heap but it uses 70
MB (average) resulting in a waste of memory resources. Therefore, it is necessary to focus on
both time and space complexities of the method.

The main reason for the existing exact string matching algorithms to consume more mem-
ory is the pre-processing involved in the computation of shifts. For example, in Fig 2, Boyer-
Moore algorithm, [5] starts searching characters from right to left of the given query pattern. If
there is a mismatch, algorithms shift as many as m characters according to the shift table com-
puted in pre-processing phase. It looks similar to QS algorithm [6] with respect to finding a
match, except BM algorithm uses both good suffix shift and bad-shift while QS algorithm
uses only bad shift[7]. BM is one of the most standard and widely used algorithms in pattern
matching and a lot of improvement in terms of time efficiency was carried out by post

Mismatch at L (Shift by length 3)

Mismatch at G
(Shift by length
m)

Matched

Fig 2. Boyer Moore algorithm [7].
https://doi.org/10.1371/journal.pone.0200912.g002

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 2/13

https://doi.org/10.1371/journal.pone.0200912.g001
https://doi.org/10.1371/journal.pone.0200912.g002
https://doi.org/10.1371/journal.pone.0200912

@° PLOS | ONE

Split based search for natural texts

researchers to this very concept of character shifts. Few existing string matching algorithms
using the same concept include fast search searching algorithm [8], modified Boyer Moore
algorithm[9, 10], Horspool algorithm [11], Tuned BM [6], Turbo BM [12], SSM Algorithm [4]
and so on [9, 10].

1.1. Motivation

The motivation of carrying out this research and proposing the idea was initially based on
some experiments and observations. We found that most of the existing exact matching algo-
rithms improve time complexity at the cost of memory wastage as shown in Fig 1. Besides, the
advancement of the technologies like i-core 5/7 processors that can process bits much faster
was another motivation. Our hypothesis assumed that the optimisation of brute force algo-
rithm over fast i-core processors with more than 4 GM RAM will improve time and reduce
heap memory wastage.

In Table 1, different input strings of varying lengths are given. The idea of splitting the
string into two halves came from this very initial observation. Traditional exact matching algo-
rithms need pre-processing to decide, how many letters to skip for the possible match. In case
of splitting the given input into 2 halves and processing the right half first will improve the
memory and time complexity was the core idea.

2. Related work

One of the standard benchmark exact algorithms has been a Boyer-Moore algorithm (BM) as
explained above. There are algorithms which proposed to overcome the drawback of the BM
algorithm based on its good suffix and bad character rule. [11] simplifies the Boyer-Moore’s
algorithm by removing the good suffix rule (Boyer-Moore-Smith Algorithm). [13] proposed
algorithms which are an extension of BM algorithm focuses on computing the shift with the
text character. Timo Raita (Raita, 1992) proposed algorithm known as Raita algorithm which
is modified form of BM algorithm. [12] proposed Turbo-BM Algorithm which works based on
dynamic simulation technique. Berry-Ravindran [14] proposed an algorithm, known as Berry
and Ravindran algorithm which is an improvement over quick search algorithm. Ahmad [15]
proposed an idea of exploring parallel processing for the two pointers that used in string
matching process. i. e., one pointer starts searching from the left side and another pointer starts
searching from the right side, thus it reduces overall search time. [16] proposed hashing tech-
nique to avoid a quadratic number of character comparisons [8]. However, the drawback of
this approach is the possibility of hash collision. Similarly, there are bit-parallelism and autom-
ata-based exact matching approaches to improve the search time. The main issues with these
approaches is that dependence on computer word size for matching and difficulty in imple-
mentation [8].

In the light of above discussion, it can be asserted that the primary focus of the existing
method is time complexity [17], [18]. Researchers paid little attention towards space complex-
ity (memory consumption), especially when database size increases continuously.

Table 1. Motivation to propose the idea of splitting.

Input String Length of String (including
white space)

He 2 characters

And the evening and the morning were the fourth days. 30-50 characters

And God said, Let the waters bring forth abundantly the moving creature that More than 150 characters

hath life, and fowl that may fly above the earth in the open firmament of heaven

https://doi.org/10.1371/journal.pone.0200912.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 3/13

https://doi.org/10.1371/journal.pone.0200912.t001
https://doi.org/10.1371/journal.pone.0200912

@° PLOS | ONE

Split based search for natural texts

Thus, in this paper, we present a novel approach to solving the exact string matching prob-
lem which achieves both time and space efficiency. The main advantage of the proposed
method is that it works well regardless of the type of database, unlike existing methods that
depend on the type of the database. Besides, it is easy to parallelise this method and gain signif-
icant enhancement in decreasing time and memory requirements. This paper is organized as
follows: Section 2 presents the proposed algorithm, Section 3 shows experimental results and
Section 4 provides our conclusion.

3. Proposed algorithm

As noted from the illustration shown in Fig 2 that since conventional exact string matching
algorithms search query pattern at the character level, the algorithms consume more process-
ing time and more space. This factor motivated us to propose an algorithm that uses a bunch
of characters of query pattern for searching in the database. The proposed approach is based
on the divide and conquer approach, where the pattern to be searched is split into two halves,
say pattern p into p1 and p2 respectively. If string pattern length is even, it considers p2 to find
a match with the dataset. Once algorithms find a match, it matches p1 with the adjacent char-
acters found for p2 directly. As a result, it saves lots of comparisons and memory consumption.
The steps of the proposed algorithm can be seen in Fig 3. In this work, we determine the divi-
sion of the given query string pattern into two equal halves empirically as shown in Table 1
where we conduct experiments for time and space complexity by varying size of the query
string.

The algorithm more specifically is as follows. Suppose we need to find a p from given text ¢
of length n. The proposed algorithm instead of considering the whole pattern p as an input, it
searches p, only such that (m, - _ n). Once right halve has found a match during searching
process, the proposed algorithm considers the whole left half string to match with the database
by considering reference found by right half string match. As a result, the proposed algorithm
involves shift only for a right half in contrast to brute force algorithm or traditional exact
matching algorithms where it involves a lot of shifts for a whole pattern. The proposed algo-
rithm starts scanning from rightmost end to the leftmost end of the given text t and matching
process of p, starts from left to right i.e. (ipi;. . and-1). In case, there is a match, p; is mapped
onto the location using the below-mentioned equation, where iy denotes the position of right-
most character matched in p,

Position to Map (p,,,,) = (p,[is] — m,) (1)

With the formula in Eq (1), if p; also matches the given text, algorithms move to other loca-
tion to verify the other matches. In case there is a mismatch, algorithm again starts scanning
from the last matching position i.e. iy The pseudo code of the proposed algorithm is presented
in Fig 4.

The proposed algorithm is illustrated in Figs 5 and 6 for a query string of even and odd
lengths, respectively. Fig 5 shows that for a given text, (t) “HELOGEMLED?”, the proposed
algorithms divide a query string “OGEM” into “OG”, say, pI and “EM”, say p2. Since the
query string length is even, it divides into two equal sub-strings. Then the proposed algorithm
scans p2 in t until it finds a match for “M”.

In the first search phase, “M” do not match with “E” of given text (). Thus, the pointer will
move to ip+1 position, again encountering mismatch with “L”, followed by “O”, “G” and “E”
respectively. Finally, there is a match where character “M” of sub-pattern (p2) matches charac-
ter “M” in the text (¢). Now, the pointer moves to (iy-1) position of pattern p2 Finally, the next

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 4/13

https://doi.org/10.1371/journal.pone.0200912

o @
@ : PLOS | ONE Split based search for natural texts

Input the pattern

Split the pattern into two halves P1 and P2

Search the rightmost end character of P2 from given text T till
end No

If rightmost character matched a portion of textin T

VA
o
>
b

Search all » characters of P2 within that portion

If whole pattern P2 matches

Yes

Map the pattern P1 at the beginning of first character of P2

If P1 matches too

Yes

L

C Search Complete and End)

Fig 3. Flow chart of proposed algorithm.
https://doi.org/10.1371/journal.pone.0200912.9g003

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 5/13

https://doi.org/10.1371/journal.pone.0200912.g003
https://doi.org/10.1371/journal.pone.0200912

o @
@ : PLOS | ONE Split based search for natural texts

Pre-processing
compute the length(») of the given text ¢
compute the length() of the pattern p
if the length of m 1s even,

divide the pattern into two equal

halves of pI and p2 with respective length m7 and m?2
else

divide the pattern using m. length () + 1)/2

Searching

Jfor (=0 to n-m) && (j=0 fo j<m2)
if (10 letter of pattern(p2)/= ty letter of text (t))
break:
1if (1o letter of pattern(p2) == ty letter of text (t))

display (index of rightmost character of p2)

for (i=index of rightmost character of p2) & &

(j=index of rightmost character of p2)
if ((p1)! =text (7))
break:

else
display (Pattern Found)

Fig 4. The pseudo code of proposed algorithm.
https://doi.org/10.1371/journal.pone.0200912.9004

character of pattern i.e. “E” also matches the text, indicating the match. At last, pI is mapped
directly based on the location of the last match.

In the same way, we illustrate the searching process of the proposed algorithm for the odd
length of query string in Fig 6 where it considers sub-string which contains more characters as
p2 after division.

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 6/13

https://doi.org/10.1371/journal.pone.0200912.g004
https://doi.org/10.1371/journal.pone.0200912

@° PLOS | ONE

Split based search for natural texts

o | 6 | E | M o | G E | M
A A A 4

b Given text (f)

E

M

i
m2 matched

Whole Pattern
matched

Fig 5. Working example of proposed algorithm for even length pattern.
https://doi.org/10.1371/journal.pone.0200912.9005

4. Experimental results

To evaluate the proposed algorithm, we consider a standard S1 Dataset of different scripts,
namely, English, Italian, Chinese, French, and Arabic that Alsulami [4] has taken for compari-
son purposes from the work of Faro [10] and Tanzil.net[19]. It is noted that Arabic and Chi-
nese database uses UTF encoding scheme because of diacritics and each character of these two
scripts considers one-byte information while other datasets use ASCII encoding. The main
reason to consider a dataset of the different script is to show that the proposed algorithm is
script independent and takes less amount of memory for all scripts. The experimental frame-
work is presented in Fig 7.

Since our objective is to evaluate the proposed method in terms of time and space-time
complexity, we use processing time in milliseconds and memory consumption in MB as two
performance measures. The same measures are used for all experimentation on different script

S1 Dataset.
° o o N ° ° o o N o
[ud J s
H € o o o N ° L e o
x
i N 4
(=] ! ! [
H I 1
| 1
| 1
I 1
1 1
i 1]
i 1 |
o | |
|
| 1 i
1 1
v [e
‘J T T
L 1
o N
o

z

Fig 6. Working example of proposed algorithm for odd length pattern.

https://doi.org/10.1371/journal.pone.0200912.g006

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 7/13

https://doi.org/10.1371/journal.pone.0200912.g005
https://doi.org/10.1371/journal.pone.0200912.g006
https://doi.org/10.1371/journal.pone.0200912

@° PLOS | ONE

Split based search for natural texts

Input single pattern Search the given pattern /
{ A Italian, | Proposed Algorithm sing proposed approach
Chinese or French) | from given corpus
[|
. Chinese | English | French Arabic
Ttalian texts ’ texts i texts texts texts

1T 1]

Measure the search time (in ms) and memory (in MB)

Fig 7. Experimental framework.

https://doi.org/10.1371/journal.pone.0200912.g007

To show effectiveness and usefulness of the proposed algorithm, we compare the results of
the proposed algorithm with the results of well-known S1 Algorithm on different datasets. The
existing S1 Algorithm are Boyer-Moore (BM) algorithm which considers the rightmost char-
acter of the pattern for searching and it uses good-suffix shift and bad-character shift during
matching. [6] proposed an algorithm which is called BMT because it is improved version of
BM algorithm. This algorithm combines the strengths of BM and KMP (Knuth-Morris) algo-
rithms. [12] proposed Turbo-BM (TBM) Algorithm which records the suffix of last matched
sub string of the pattern with which it jumps over sub-string to allow execution of turbo-jump
(memory match), unlike other algorithms. Recently, character-based approach by [4] pro-
posed algorithm (SSM) which compares the pivot character with the corresponding character
and shifts the pattern either using Horspool shift or hybrid shift. In the work of Faro [10],
Hash 3 and SBNDM algorithms have shown better results among 85 algorithms for natural
texts like the bible. For that reason, SSM algorithm [4] has been compared with Hash 3 and
SBNDM algorithms. SSM algorithm has shown better results than hash 3 and SBNDM indicat-
ing that the results are better than those existing 85 algorithms. It is observed from the review
of existing methods that all four existing methods use character components for matching and
searching. Thus, it involves more number of computations, comparisons, and shifts which
results in more time processing and memory consumption. Furthermore, for the all the above
existing methods, traditional brute force criterion is common. Therefore, we also use the same
criterion for comparative study without additional features in this work.

For experimentation, we consider short query pattern (1-4 characters’ length), medium
query pattern (5-8 characters length) and long query pattern (more than 8-character length)
to test time and space efficiency of the proposed and existing S1 Algorithm on different S1
Dataset. Each algorithm is run 10 times and running times were calculated by taking mean of
10 running times. The implementation is done using the NetBeans 8.02 on i-5 Intel Processor
with 4 MB caches, 4 GB RAM using Windows 10.

4.1 Outcome of experiments

The quantitative results of the proposed and existing S1 Algorithm for query pattern lengths
on different S1 Dataset are reported in Tables 2-4 where we can notice that the proposed algo-
rithm outperforms existing S1 Algorithm for all the queries except TBM on Arabic, French
text, BMT on the Italian and French text with SSM on Italian text. Therefore, it can argue that
the proposed algorithms are effective in terms of time efficiency for most of the S1 Dataset.
Since the aim of the proposed algorithm is to achieve better time efficiency, it reports bit poor
results for Italian and French texts. The reason for poor results is probably due to the nature of
these datasets with respect to the arrangement of selected patterns. This is especially worse for

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 8/13

https://doi.org/10.1371/journal.pone.0200912.g007
https://doi.org/10.1371/journal.pone.0200912

@° PLOS | ONE

Split based search for natural texts

Table 2. Processing time in milliseconds of the proposed and existing S1 Algorithm for the query pattern length of fewer than four characters (short).

Corpus Text Size (MB) Sample patterns BM BMT TBM SSM Brute Force Proposed
Arabic Quran 0.7 s 1062 985 939 1235 2152 937
English Bible 3.83 Good, the 5967 5396 6027 5710 8527 4205
Italian Orlando 0.72 Dal, tal 5172 4058 5060 4230 13430 4492
Chinese Journey 1.37 i 3025 3969 3158 2806 7547 2500
French L’homme 1.13 Dans, ils 3078 2284 2249 2859 6995 2549

https://doi.org/10.1371/journal.pone.0200912.t002

Table 3. Processing time in milliseconds of the proposed and existing S1 Algorithm for the query pattern length of 4-7 characters (medium).

Corpus Text Size (MB) Sample patterns BM BMT TBM SSM Brute Force Proposed
Arabic Quran 0.7 6:‘*)“ 969 1000 938 906 2050 878
English Bible 3.83 Finishe, wroth 2390 2302 2281 2260 7547 2797
Italian Orlando 0.72 Tratto, saetta 3843 4112 4177 3474 13310 4391
Chinese Journey 1.37 ki 2313 2047 2318 2297 7371 2578
French L’homme 1.13 Cest, epoque 2847 2288 2179 2531 7476 2400

https://doi.org/10.1371/journal.pone.0200912.t003

Table 4. Processing time in milliseconds of the proposed and existing S1 Algorithm for the query pattern length of more than 8 characters (long).

Corpus Text Size (MB) Sample patterns BM BMT TBM SSM Brute Force Proposed
Arabic Quran 0.7 uu)ll 4131 ply 1094 1013 1031 1078 2100 844
English Bible 3.83 Continually, that Adam 2172 2253 2157 2422 7939 2092
Italian Orlando 0.72 Trascorso, lungo tratto 4143 3937 3920 3330 13648 4375
Chinese Journey 1.37 JEAF 2083 2093 2185 2218 7655 2609
French L’homme 1.13 Angleterre, imitele chinois 2869 2374 2337 2719 7105 2384

https://doi.org/10.1371/journal.pone.0200912.t004

very short patterns of size <4. However, in case of medium patterns i.e. pattern length 4-7, on
an average SSM algorithm performed much better as this algorithm performs best under this
scenario due to its dynamic pivot pointer that involves a maximal safe shift in case of mismatch
on rightmost end of the pattern. For longer patterns again, on an average proposed algorithm
performed better compared to existing S1 Algorithm.

In the same way of experiments on time efficiency for the same S1 Dataset, we calculate
memory used for matching and searching on the query words listed in Tables 2-4. The
average of memory consumption of different query words of the proposed and existing S1
Algorithm on different S1 Dataset are shown in Fig 8. Fig 8 shows that all the existing S1
Algorithm except Brute force and proposed algorithm consume 100 to 200 MB of heap mem-
ory during runtime. However, Brute force algorithm consumes little memory i.e. less than
20 MB. It requires more time for searching according to Tables 2-4. Brute force algorithms
require more operations for searching string in the database. Since it requires more opera-
tions, usage of pointers, calling internal methods and variable also increases. Therefore,
brute force algorithms consume more space than the proposed algorithm. For the fair com-
parative study, we use the function in Java for estimating memory consumption for all the
experiments shown in Fig 9. Memory requirements were analysed using memory analysis
tool available in java using NetBeans IDE [20]. From Fig 9, it can be seen upper portion is
memory requirements of the proposed algorithm and lower part of brute force algorithm.
Although there is not much difference in terms of memory requirements (ranging from 15—
25 MB) between the two. But, the slight difference with respect to memory requirements

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 9/13

https://doi.org/10.1371/journal.pone.0200912.t003
https://doi.org/10.1371/journal.pone.0200912.t002
https://doi.org/10.1371/journal.pone.0200912.t004
https://doi.org/10.1371/journal.pone.0200912

o _ 0
@ : PLOS ’ ONE Split based search for natural texts

BM BMT
300 300
250 250
200 m Arabic 200 m Arabic
g 150 B Chinese € 150 B Chinese
100 H raian 100 m tdian
N French u French
50 50
u sible mBible
0 0
1 2 3 1 2 3
Pattern Pattern
TBM SSM
300 350
250 300
200 m Arabic =0 m Arabic
200
g 150 m Chinese g m Chinese
150
100 m rdian 100 m taian
50 m French s0 m French
) m Bible 0 mBble
1 2 3 1 2 3
Pattern Pattern
Proposed - SH Brute
25 25
20 20
15 m Arabic 15 m Arabic
g m Chinese g u Chinese
10 mRkaian 10 m edizn
s m French s » French
mBible mBble
0 0o
1 2 3 1 2 3
Pattern Pattern

Fig 8. Memory analysis.
https://doi.org/10.1371/journal.pone.0200912.g008

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 10/13

https://doi.org/10.1371/journal.pone.0200912.g008
https://doi.org/10.1371/journal.pone.0200912

o @
@ ’ PLOS | ONE Split based search for natural texts

@ NetBeans IDE 8.02 — X
File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help Q- Search (Ciri+1)
PEED B-®-
proerts [Files ‘“L":Z"u [Profier | =@ Classes | StartPage | SelectData java x|Ebbi.java x| mine_sql.java x| brute_sql.java x|Ebalgo.java x|Ebreverse java |@nest.java x| @ mem: 6:02:19 PM * x Te
NEEEESEE
© Profiling Results
Class Nare - Live Objects Live Bytes [%0] ~ Live Bytes Live Objects a
byte[] | 6,863,552 B (59.2%) 32051 (26%) A
Take Snapshot Dump Heap Live Results [0 |char[] m 2,069,816 B (17.9%) 21,829 (17.7%)
= Saved Snapshots byte[1[] [| 730,824B (6.2%) 30,385 (24.6%)
= int[] 1 381,768B (3.2%) 1,146 (0.9%)
[Guiinzntilczitsn Y| favalang String 1 3500168 (3%) 14,584 (11.8%)
@ mem: May 24, 2016 10:21| Open java.lang.Object[]] 243,016 B (2.1%) 1,829 (1.5%)
B mem: May 24, 2016 11111 javalang Class | 174,880B (1.5%) 1,527 (1.2%)
Java util HashMap$Node | 716488 (0.6%) 2,239 (18%)
Delete java.lang reflect Method | 58,6088 (0.5%) 666 (05%)
S Java.lang StringBuilder | 54,1688 (0.5%) 2,257 (18%)
Javalang reflect Field | 44,352B (0.4%) 616 (05%)
. fava.util LinkedHashMap$Entry | 33,2008 (03%) 830 (0.7%) ¥
= View . Class Narme Filter (Contains) v
B =] = + || & Memary Results @ Info
i tavgator X —|[E WM Telemetry Overview x|E1VM Telemetry |l Threads *|ElLock Contention x| Live Results x| & mem: 6:03:51 PM * x| ve
Members || <empty> SICEIEICSCEA]
S brute_sql Class Name - Live Cbjects Live Bytes [%6] ~ Live Bytes Live Obijects P
 © main(Stringl] args)
- @ search(String pat, String bt) : List<Intd Pvtel] I &, 100,20 (5 7) 30/8c0/(ETSTNIA
& DB_LRL : String char[] | | 763,040B (2.2%) 11,814 (11.2%)
B JIDBC_DRIVER : String byte[1[] n 730,824B (7.9%) 30,385 (28.8%)
8 PASS : String int[] 1 353,168B (3:8%) 1,528 (1.5%)
i USER : String java.lang String 1 282,504B (3%) 11,771 (11.2%)
java.lang.Object[]] 209,5768 (2.2%) 1,331 (1.3%)
javalang Class 1 1816968 (2%) 1,588 (15%)
Java util HashMap$Node | 11,7768 (1.2%) 3493 (33%)
Java.util HashMap$Node[] | 68,3128 (0.7%) 146 (0.1%)
Javalang reflect Method | 58,6086 (0.6%) 666 (0.6%) |,
P — i prr—— e —
P Class Narne Filter (Contains)
Merory Results @ Info
< > = o ~o
— B Output - authentication (profile) *|& Javadoc |
& O0[@] w8 e e i
89:25 INS

6:05 PM

o Ask me anything Y) ENG 13/10/2016

Fig 9. Brute force memory analysis.

https://doi.org/10.1371/journal.pone.0200912.9009

depends on the allocation of bytes and char inside JVM that take some amount of memory.
Therefore, we can confirm that the proposed algorithm achieves both time and space effi-
ciency for different query pattern length on different S1 Dataset.

5. Conclusion and future work

In this paper, we have proposed a novel idea for exact string matching to achieve both time
and space efficiency regardless of query pattern length, dataset size and scripts. The proposed
algorithm split given query pattern length into two halves and then it considers right halve for
searching in a text. Once the match is found for right halve, the proposed algorithm uses left
halve directly from the matched reference. This process helps in reducing the number of com-
putation especially comparisons at the same time it consumes less memory due to no pre-pro-
cessing involved as compared to existing exact matching algorithms. To show the usefulness
of the proposed method, we have conducted experiments on datasets of different S1 Dataset
scripts, namely, Arabic, English, and Chinese. Experimental results of the proposed and exist-
ing S1 Algorithm on different S1 Dataset for different query pattern length show that the pro-
posed algorithm outperforms most of the existing S1 Algorithm in terms of time and space
efficiency. Therefore, we can assert that the proposed algorithm is a script, query pattern length
and dataset size independent.

In near future, we are planning to extend the proposed algorithm to solve string matching
with multiple string matching and approximate string matching. To handle scalability on huge
databases with different scripts, formats etc, we are investigating to introduce keyword spot-
ting for exact matching such that the algorithms spot the word, which represents the whole
page. In this case, no need to scan the whole page from beginning to end of the page. In
addition, the approach considers semantics layout of the page for searching keywords of the
page. It is valid because any book or number pages in the book have some logical flow at the

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 11/13

https://doi.org/10.1371/journal.pone.0200912.g009
https://doi.org/10.1371/journal.pone.0200912

@° PLOS | ONE

Split based search for natural texts

semantic level. The new approach is to explore such high-level semantics to reduce search
time, at the same time, it should extract right information with minimum memory usage.

Supporting information

S1 Dataset. Benchmark datasets.
(RAR)

S1 Algorithm. Algorithm-sources.
(JAR)

Acknowledgments

This work was supported by the Fundamental Research Grant (FRGS) through the University
Malaya under Project No. FP003-2016 and IPPP research fund (PG017-2015B).

Author Contributions
Conceptualization: Mohd Yamani Idna Idris.
Investigation: Saqib Hakak.

Methodology: Palaiahnakote Shivakumara.
Software: Saqib Hakak.

Supervision: Amirrudin Kamsin.

Writing - original draft: Saqib Hakak.

Writing - review & editing: Gulshan Amin Gilkar.

References
1. Frakes WB, Baeza-Yates R. Information retrieval: data structures and algorithms. 1992.

2. YangT, Hertz M, Berger ED, Kaplan SF, Moss JEB, editors. Automatic heap sizing: Taking real mem-
ory into account. Proceedings of the 4th international symposium on Memory management; 2004:
ACM.

3. KimJ-S, Hsu Y, editors. Memory system behavior of Java programs: methodology and analysis. ACM
SIGMETRICS Performance Evaluation Review; 2000: ACM.

4. Al-Ssulami AM. Hybrid string matching algorithm with a pivot. Journal of Information Science. 2014:82—
8.

5. Boyer RS, Moore JS. A fast string searching algorithm. Communications of the ACM. 1977; 20
(10):762-72.

Sunday DM. A very fast substring search algorithm. Communications of the ACM. 1990; 33(8):132—42.
Lin J, Adjeroh D, Jiang Y. A Faster Quick Search Algorithm. Algorithms. 2014; 7(2):253-75.
Lecroq T. Fast exact string matching algorithms. Information Processing Letters. 2007; 102(6):229-35.

Rafig ANME, El-Kharashi MW, Gebali F. A fast string search algorithm for deep packet classification.
Computer Communications. 2004; 27(15):1524-38.

10. Faro S, Lecroq T. The exact online string matching problem. Acm Comput Surv. 2013; 45(2):1-42.

11. Horspool RN. Practical fast searching in strings. Software: Practice and Experience. 1980; 10(6):501—
6.

12. Crochemore M, Czumaj A., Gasieniec L., Jarominek S., Lecroq T., Plandowski W., & Rytter W. Speed-
ing up two string-matching algorithms. Algorithmica. 1994:247-67.

© @ N

13. Michailidis PD, Margaritis KG. On-line approximate string searching algorithms: Survey and experimen-
tal results. International Journal of Computer Mathematics. 2002; 79(8):867—-88.

14. Berry TaR, S, editor A Fast String Matching Algorithm and Experimental Results. Proceedings of the
Prague Stringology Club Workshop’99; 2001.

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 12/13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0200912.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0200912.s002
https://doi.org/10.1371/journal.pone.0200912

o @
@ ’ PLOS | ONE Split based search for natural texts

15. Ahmad MK. An Enhanced Boyer-Moore Algorithm (Doctoral dissertation): Middle East University; 2014.

16. Karp RM, Rabin MO. Efficient Randomized Pattern-Matching Algorithms. Ibm Journal of Research and
Development. 1987; 31(2):249-60.

17. Bobroff N, Dawson MH, Fong LL, lyengar AK, Westerink PH. SYSTEM AND METHOD FOR IMPROV-
ING MEMORY USAGE IN VIRTUAL MACHINES. US Patent 20,160,110,225; 2016.

18. Shaham R, Kolodner EK, Sagiv M, editors. Heap profiling for space-efficient Java. ACM SIGPLAN
Notices; 2001: ACM.

19. hitp://tanzil.net/#2:1. 2016
20. https:/profiler.netbeans.org/docs/help/5.5/results_objliveness.html. Netbeans 2016

PLOS ONE | https://doi.org/10.1371/journal.pone.0200912 July 26, 2018 13/13

http://tanzil.net/#2:1
https://profiler.netbeans.org/docs/help/5.5/results_objliveness.html
https://doi.org/10.1371/journal.pone.0200912

