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Abstract

We theoretically investigate the signal-to-noise ratio (SNR) of a parallel array of leaky inte-

grate-and-fire (LIF) neurons that receives a weak periodic signal and uses spatially nearest

neighbor correlated noise. By using linear response theory, we derive the analytic expres-

sion of the SNR. The results show that the amplitude of internal noise can be increased up

to an optimal value, which corresponds to a maximum SNR. Given the existence of spatially

nearest neighbor correlated noise in the neural ensemble, the SNR gain of the collective

ensemble response can exceed unity, especially for a negative correlation. This nonlinear

collective phenomenon of SNR gain amplification may be related to the array stochastic res-

onance. In addition, we show that the SNR can be improved by varying the number of neu-

rons, frequency, and amplitude of the weak periodic signal. We expect that this investigation

will be useful for both controlling the collective response of neurons and enhancing weak

signal transmission.

Introduction

Stochastic resonance (SR) was first introduced in the context of worldwide climatic changes

[1]. This mechanism has potential applications in the field of the complex signal processing as

it can be used to extract weak signals from a noisy background. In fact, signals that previously

would have been considered lost can be detected and retrieved using SR-based methods. SR is

usually defined from measures such as the output signal-to-noise ratio (SNR) of a nonlinear

system with periodic input, where the SNR shows a nonmonotonic trend with respect to the

level of background noise. Moreover, SR has been observed in different systems [2–5], includ-

ing lasers, sets of neurons, solid-state devices, among others [6–11]. Likewise, extensive

research has been devoted to investigate the output SNR gain with respect to an input SNR for

periodic signals and Gaussian noise in nonlinear systems [12–15].

SR investigation has also attracted attention in neuroscience, given the abundance of noisy

signals and related effects. For instance, in some organisms, periodic signals are transformed
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from external stimuli into spike trains via sensory neurons in the nervous system. This fact

and the inclusion of noise have motivated many studies on peripheral sensory systems that

exhibit SR. In addition, SR has been found in various neural models and related experimental

observations [4, 12–22]. Furthermore, there are several studies on SR considering both a single

neuron and parallel arrays of neurons, where the latter have been investigated to assess collec-

tive responses and the possibility of SNR gain [12–15]. However, unlike a single neuron sys-

tem, the structure of neural ensembles and noise sources increase complexity and variability.

Hence, investigations of SR and SNR gain in parallel neuron arrays considering noise may lead

to the discovery of novel phenomena.

For instance, the results in [5] demonstrate that neural ensembles can reliably detect sub-

threshold pulses by injecting appropriate noise. Recently, SNR improvement induced by inter-

nal noise has been achieved in a parallel array including several nonlinear subsystems [23–26].

The noise effect in such arrays reveals important phenomena different from the conventional

SR, such as SR without tune [20], suprathreshold SR [15] and array SR [23]. All the subsystems

in these arrays share a single input signal, and the outputs are generated by their collective

response [23–26]. Given that the nervous systems of different organisms, including humans,

have a complex structure with a variety of neurons with specific functions and sizes, research

on the noise effect of neuron arrays in the SR and SNR is still an ongoing endeavor [27], espe-

cially when considering the threshold-based sensory neuron model. Nevertheless, despite the

abundant research on the role of internal and external noise, it is still needed to clarify the vari-

ability mechanisms in noise sources of complex neural networks, the optimization of noise

background, and the correlation among internal noise by using nonlinear subsystems [17].

In fact, research on neural ensembles has been mainly focused on the independent internal

noise of each neuron [23–26]. In contrast, we aim to unveil the correlation of noise in a neural

ensemble. Previous work showed that correlated noise mitigates the general noise effects [23],

and we found that the spatially nearest neighbor correlation among neurons can be general-

ized for a neural ensemble. In other words, the spatially nearest neighbor correlation among

neurons is more beneficial for the ensemble when considering weak periodic signals. Hence,

we examine the effect of spatially nearest neighbor correlation among neurons on the SR from

a parallel array of leaky integrate-and-fire (LIF) neurons. The correlation of noise can be con-

sidered as a more realistic assessment of SR in the brain [28–33].

In this article, we consider an LIF neuron array with N neurons, as illustrated in Fig 1,

because this model is widely used to study the nonlinear dynamics of neural systems. More-

over, it can provide an exact description of the subthreshold integration of synaptic inputs.

Hence, by assembling LIF neurons into an array, we show that the collective response to a

weak periodic signal with noise can be improved by the internal noise of each neuron. Further-

more, we derive and analyze the SNR gain for this type of signal. Extended theoretical investi-

gations considering other neural models (e.g., the Hodgkin–Huxley and FitzHugh–Nagumo

models) with different types of noises [34, 35] is beyond the scope of this article.

Methods

Parallel array of LIF neurons

Let us consider a parallel array of N LIF neurons driven by the input Ii(t), as illustrated in Fig

1. The i-th LIF neuron is described by membrane potential Vi, which is governed by the fol-

lowing equation [25, 26]:

dViðtÞ
dt
¼ � ViðtÞ þ IiðtÞ ð1Þ
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with1� i� N. Here time is measured in units of the membrane time constant, the resistance

of the cell membrane is lumped into the input, and the voltage variable and input are rescaled

by a typical value such that all variables and parameters are nondimensional. The threshold–

spike–reset condition states that a spike will be generated whenever the membrane potential

satisfies Vi(t) = Vth. Then, the membrane potential will be maintained during refractory period

τr. In the following we set Vth = 1 and Vr = 0. The output spike train of each LIF neuron is

determined by yi(t) = Sk δ(t − tik), with tik being the instant when the k-th spike occurs.

The input Ii (t) is given by

IiðtÞ ¼ mþ xiðtÞ þ SðtÞ; ð2Þ

where μ is the constant base current. Note that, in this article we choose a small bias current μ
< 1 such that the neurons are in a subthreshold firing regime, i.e., spikes are induced by inter-

nal or external noise. The internal noise processes ξi(t) represent the internal stochastic

dynamics of the i-th neuron. The internal noise term ξi(t) are zero-mean Gaussian white noise

of intensity D, i.e.,

hxiðtÞi ¼ 0; hxiðtÞxjðt þ tÞi ¼ 2D½di;j þ ldi;j� 1 þ ldi;jþ1�dðtÞ; ð3Þ

where 1� i, j� N and |λ|�1 with λ a tunable spatially nearest neighbor correlation coefficient.

For λ = 0 all internal noise is uncorrelated among neurons whereas for λ> 0 and λ< 0 inter-

nal noise is positively and negatively correlated between the nearest neighbor neurons, respec-

tively. The common input is a harmonically modulated signal S(t) = Acos(ωt), A< 1.

Given that the response of each neuron is not affected by the correlation between the spa-

tially nearest neighbor neurons, it is important to calculate the spectral statistics of the array of

Fig 1. Parallel array of N LIF neurons. Every neuron receives the same input signal, S(t), and white Gaussian noise ξi(t) (1� i� N)

characterizes the internal stochastic process of the i-th neuron. The average spike train, yðtÞ ¼ 1

N

XN

i¼1

yiðtÞ, is the array output.

https://doi.org/10.1371/journal.pone.0200890.g001
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LIF neurons. Introducing the Fourier transforms of the zero average spike trains [17]

yiðoÞ ¼
1
ffiffiffiffi
T
p

Z T

0

dtexpðiotÞðyiðtÞ � r0ðDÞÞ; ð4Þ

where r0(D)denotes the steady firing rate of a single neuron in the noise level D. The summed

output response y(t) will be a cyclostationary random signal with the same period T = 2π/ω
since the weak signal S(t) is periodic. Finally, ensemble response y(t) is defined as the average

of output spikes given by

yðtÞ ¼
1

N

XN

i¼1

yiðtÞ: ð5Þ

SNR gain

The LIF model has been used to investigate the transmission of signals polluted by external

noise and under the presence of independent internal noise in neural ensembles [25, 26]. As a

result, both noise sources have been shown to induce SR and efficient high-frequency trans-

mission. In addition, recent research has focused on the analysis of neural ensembles consider-

ing noise correlation [13, 15, 36–39]. Accordingly, we focus on theoretical analysis and

simulations to study SR and SNR gain in a LIF neural ensemble by including the correlation of

noise. Hence, this study represents an extension to previous research, e.g., [25, 26].

We assume that the external input signal S(t) is weak, i.e., that the standard deviation of this

term is small compared to the other terms in Eq (2). In particular, this periodic stimulus can-

not elicit a spike. Weak signals obey the linear response theory; hence, each LIF neuron can be

taken as a linear filter, with its frequency-domain linear response given by [17]

yiðoÞ ¼ yi;0ðo;DÞ þ Bðo;DÞSðoÞ; ð6Þ

where yi,0(ω) is the unperturbed term and B(ω,D) is the linear susceptibility at noise level D. We

have assumed that both internal and external noises are white and Gaussian, the single neuron

cannot distinguish between both kinds of noises. This assumption also extends to the firing rate

r0(D) and the susceptibility function B(ω,D) that should be taken at noise intensity D. We can cal-

culate respectively the firing rate and linear susceptibility B(ω,D) by the following expressions [25]

r0ðDÞ ¼ ½tr þ
ffiffiffi
p
p R ðm� VrÞ=

ffiffiffiffi
2D
p

ðm� VthÞ=
ffiffiffiffi
2D
p dzez2 erfcðzÞ�� 1

; ð7Þ

Bðo;DÞ ¼
r0ðDÞioffiffiffiffi
D
p
ðio � 1Þ

Dio� 1ð
m� Vthffiffiffi

D
p Þ � ebDio� 1ð

m� Vrffiffiffi
D
p Þ

Dioð
m� Vthffiffiffi

D
p Þ � eiotr ebDioð

m� Vrffiffiffi
D
p Þ

; ð8Þ

where β = [Vr
2 − Vth

2 + 2μ(Vth − Vr)]/4D and DaðzÞ is the parabolic cylinder function [26], which

can be numerically obtained. Using this approximation, the power spectrum of the spike train for

each neuron Pðo;DÞ ¼ lim
T!1
hyiðoÞy�i ðoÞi can be obtained as [25, 26]

Pðo;DÞ ¼ P0ðo;DÞ þ jBðo;DÞj
2RSSðoÞ ð9Þ

with

P0ðo;DÞ ¼ r0ðDÞ

�
�
�Dioð

m� Vthffiffiffi
D
p Þ

�
�
�
2

� e2b

�
�
�Dioð

m� Vrffiffiffi
D
p Þ

�
�
�
2

�
�
�Dioð

m� nthffiffiffi
D
p Þ � eiotr ebDioð

m� nrffiffiffi
D
p Þ

�
�
�
2

ð10Þ

where RSS(ω) is the spectral density of the weak periodic signal.
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The cross power spectrum between the i-th and (i+1)-th neurons can be obtained by

decomposing the corresponding inputs:

Ii ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dð1 � jljÞ

p
xiðtÞ þ ½

ffiffiffiffiffiffiffiffiffiffiffi
2Djlj

p
xcðtÞ þ SðtÞ�; ð11Þ

Iiþ1ðtÞ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dð1 � jljÞ

p
xiþ1ðtÞ þ ½

ffiffiffiffiffiffi
2D
p

sgnðlÞ
ffiffiffiffiffiffi
jlj

p
xcðtÞ þ SðtÞ�; ð12Þ

where sgn(x) is the sign function. The internal noise terms ξi(t) and ξc(t) are specific for each

or common to all neurons, respectively. All these noises are uncorrelated among each other.

Note that because of the scaling by the factors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � jljÞ

p
and

ffiffiffiffiffiffi
jlj

p
in Eqs (11) and (12)

the total internal noise have a fixed intensity irrespective of the value of the correlation param-

eter λ. Considering the terms in square brackets of Eqs (11) and (12) as perturbation, an

approximation of the cross power spectrum for two nearest neighbor neurons PcrossðoÞ ¼

lim
T!1
hyiðoÞy�iþ1

ðoÞi can be written as

Pcrossðo;DÞ ¼ jBðo;Dð1 � jljÞÞj
2
½2lDþ RssðoÞ�: ð13Þ

We now turn to discuss the power spectrum of the neural ensemble (for general size N).

The ensemble as a whole has been characterized by a collective output y(t) in Eq (5). The

power spectrum for the neural ensemble can be given by

Pyyðo;DÞ ¼ Pcrossðo;DÞ þ
1

N
½Pðo;DÞ � Pcrossðo;DÞ�

¼
1

N
Pðo;DÞ þ

N � 1

N
Pcrossðo;DÞ

: ð14Þ

It can found that the power spectrum for the neuron ensemble is dominated by the cross cor-

relation between nearest neighbor output spike trains; and other contributions enter only 1/N.

Separating the power spectrum of the spike train for each neuron into coherent and incoherent

parts, we have

Pcohðo;DÞ ¼ jBðo;DÞj2RSSðoÞ; ð15Þ

Pincohðo;DÞ ¼ P0ðo;DÞ: ð16Þ

Separating the cross power spectrum into coherent and incoherent parts, we have

Pcoh
crossðo;DÞ ¼ jBðo;Dð1 � jljÞÞj

2RSSðoÞ; ð17Þ

Pincoh
cross ðo;DÞ ¼ 2lDjBðo;Dð1 � jljÞÞj2: ð18Þ

Based on Eqs (14–18), the power spectrum of the neural ensemble is given by

Pyyðo;DÞ ¼
1

N
½P0ðo;DÞ þ jBðo;DÞj

2RssðoÞ�

þ
ðN � 1Þ

N
jBðo;Dð1 � jljÞÞj2RSSðoÞ

þ
2lDðN � 1Þ

N
jBðo;Dð1 � jljÞÞj2

: ð19Þ

Next, we study the improvement of signal-to-noise ratio (SNR) induced by nearest neigh-

bor correlated noise. For simplicity, we consider a weak periodic signal to be S(t) = Acos(ωt),
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A< 1, whose output SNR is given by

Rout ¼
Pcoh
yy ðo;DÞ

Pincoh
yy ðo;DÞ

; ð20Þ

with

Pcoh
yy ðo;DÞ ¼

1

N
jBðo;DÞj2RssðoÞ þ

ðN � 1Þ

N
jBðo;Dð1 � jljÞÞj2RSSðoÞ; ð21Þ

Pincoh
yy ðo;DÞ ¼

1

N
P0ðo;DÞ þ

2lDðN � 1Þ

N
jBðo;Dð1 � jljÞÞj2: ð22Þ

The theoretical expression of input SNR can be calculated by

Rin ¼
pA2

4D
: ð23Þ

Then, from the definitions of output and input SNR, the SNR gain of the neural ensemble can

be defined by

G ¼
Rout

Rin
: ð24Þ

Hence, Eqs (20) and (23) provide a generic expression to evaluate the SNR of neural ensem-

bles. If SNR gain G exceeds unity, the interactions of the neurons in the ensemble and their

controllable internal noise provide an improvement in the input signal.

Results and discussion

The performance of single LIF neurons has been widely analyzed [4, 12–22]. In contrast, we

mainly examine the collective response of an LIF neural ensemble. We evaluated the SR by

analyzing the variation of the output SNR as a function of the intensity of internal noise. In

addition, from the definition in Eq (24), we analyzed the evolution of G for different system

parameters. If SNR gain G is above unity at the optimal internal noise level, we say that the

internal noise of the neural ensemble improves or amplifies the weak periodic signal at the

input.

In this paper, we also compare the analytical results to numerical simulations. We will ana-

lyze the output SNR and the SNR gain at different array sizes (N = 100, and N = 1000), internal

noise intensity, and different values of the correlation parameter λ. The numerical simulations

were obtained as follows. We used an Euler scheme with a time step Δt = 10−3 for numerically

integrating stochastic differential Eq (1). For each array size N and correlation coefficient λ we

average the results of 1000 realizations of the noises and the signal. The power spectrum can

be calculated as the average of 1000 such recordings. Thus, for the given power spectrum, the

output SNR can be evaluated by

Rout ¼
Power spectrum at signal frequency

Noise power spectrum
: ð25Þ

If the number of neurons, N, is 1 and response yðtÞ ¼ 1

N

X

i
xiðtÞ ¼ x1ðtÞ, the resulting sys-

tem has a single LIF neuron and displays the conventional SR or residual SR [4, 12–22]. We

selected Vth = 1, Vr = 0, τr = 0.1, μ = 0.8, ω = 0.1, and A = 0.5. We show in Fig 2 the variation of

output SNR Rout and SNR gain G according to the intensity D of internal noise. The result of
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the output SNR Rout in Fig 2(A) confirms the phenomena of the conventional SR. The SNR

gain G is below unity, as illustrated in Fig 2(B). The results of numerical simulations (repre-

sented by symbols in the figure) are also shown in Fig 2 and are in good agreement with the

analytical results. These numerical results indicate that the present theoretical framework can

fully describe the SR phenomena in a single LIF neuron. In the following, we will show the

analytical results and numerical simulations in the LIF neural ensemble.

First, we analyze the dependence of output SNR Rout on the intensity D of internal noise

with correlation coefficient λ for different N in the LIF neural ensemble. We selected Vth = 1,

Vr = 0, τr = 0.1, μ = 0.8, ω = 0.1, and A = 0.5. Next, Fig 3(A) shows the variation of output SNR

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5 (a)

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3 (b)

Fig 2. Output SNR and SNR gain for a single LIF neurons (N = 1). The analytical and numerical results are shown in lines and symbols, respectively. (a) Output

SNR Rout and (b) SNR gain G according to the intensity D of internal noise for input S(t). The remaining parameters are Vth = 1, Vr = 0, τr = 0.1, μ = 0.8, ω = 0.1, and

A = 0.5.

https://doi.org/10.1371/journal.pone.0200890.g002
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1
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4
(a)
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0

1
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(b)

Fig 3. Output SNR Rout according to intensity D of internal noise for an ensemble of LIF neurons with different correlation coefficient λ. The analytical

and numerical results are shown in lines and symbols, respectively. Positive (λ = 0.3, solid lines, pentagons), negative (λ = −0.3, dotted lines, circles), and

independent (λ = 0, dashed lines, squares) correlations, and (a) N = 100, (b) N = 1,000 neurons are considered. The remaining parameters are Vth = 1, Vr = 0,

τr = 0.1, μ = 0.8, ω = 0.1, and A = 0.5.

https://doi.org/10.1371/journal.pone.0200890.g003
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Rout according to intensity D of internal noise for different values of λ when N = 100. It can be

seen a nonmonotonic evolution of the output SNR with respect to the intensity of internal

noise, thus exhibiting typical SR characteristics and implying that the internal noise can

improve the collective response of the neural ensemble for weak periodic signals. Furthermore,

the intensity of internal noise shows an optimal value, where the output SNR reaches a maxi-

mum. In addition, the highest value of Rout is reached for a negative correlation, λ = −0.3.

Hence, this correlation is the most suitable for activating neurons and improving the input sig-

nal among the three types of correlations, namely, independent (λ = 0), positive (λ = 0.3), and

negative (λ = −0.3). Similarly, Fig 3(B) shows the variation of output SNR Rout according to the

intensity D of internal noise for different values of λ when N = 1,000. Compared to Fig 3(A), it

can be seen that the maximum output SNR increases with the number of the neurons.

Fig 4 shows SNR gain G according to intensity D of internal noise for a fixed weak periodic

signal, S(t), in an LIF neural ensemble with different correlation coefficient λ. It can be seen

that the SNR gain also displays a nonmonotonic behavior with the increasing intensity of

internal noise for the cases of statistical independence (λ = 0), positive (λ = 0.3) and negative

correlation (λ = −0.3). These collective phenomena can be termed as array SR. In these cases,

the SNR gain is higher than unity at the optimal intensities of internal noise, which is different

from the conventional SR shown in Fig 2. Fig 4(A) and 4(B) show that the negative correlation

assists the collective response of the neural ensemble to improve the signal, and the SNR gain

is higher for an increasing number of the neurons. It is worth noting that the SNR gain does

not reach unity for a positive correlation for N = 100. However, the SNR gain can be tuned to

exceed unity for moderately large size of neuron array N, as illustrated in Fig 4(B).

We now explain why the output SNR and SNR gain can be enhanced by internal noises

with negative nearest neighbor correlation. When an array of neurons acts in parallel, if one of

the neurons makes a mistake (for example, fires when the signal is low or fails to fire), other

neurons that are negatively correlated or independent with it are not likely to repeat the mis-

take. This effect is even stronger for the case that the other neurons are negatively correlated

0 0.05 0.1 0.15 0.2 0.25
0

1

2

3
(a)

0 0.05 0.1 0.15 0.2 0.25
0

1

2

3
(b)

Fig 4. SNR gain G according to intensity D of internal noise for an ensemble of LIF neurons with different correlation coefficient λ. The analytical and

numerical results are shown in lines and symbols, respectively. Positive (λ = 0.3, solid lines, pentagons), negative (λ = −0.3, dotted lines, circles), and independent

(λ = 0, dashed lines, squares) correlations, and (a) N = 100, (b) N = 1,000 neurons are considered. The remaining parameters are Vth = 1, Vr = 0, τr = 0.1, μ = 0.8, ω =

0.1, and A = 0.5.

https://doi.org/10.1371/journal.pone.0200890.g004
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with the one that makes the mistake than for the case that other neurons are independent. In

other words, nearest neighbor negative correlations between noises at different sites tend to

repeat them. It is not going to lead to a visible increase in the spectrum peak at the signal fre-

quency, but it may lead to a decrease of the noise background. According to the definition of

output SNR in Eq (20), the cross power spectrum contribution 2λD|B(ω,D(1−|λ|))|2(N−1)/N to

the incoherent part of the cross power spectrum in Eq (22) becomes negative value when the

nearest neighbor correlation is negative. Thus, the denominator term of output SNR

(Pincoh
yy ðo;Dð1 � jljÞÞ) is smaller for negative correlation than that for other types of correla-

tions, regardless of other parameters. As a result, the output SNR and SNR gain can benefit

from the negative nearest neighbor correlation of internal noises. Thus, the mechanism of

enhancing the SNR relies on lowering the noise background, not on elevating the signal peak.

In addition, we note that the output SNR and SNR gain increases significantly for all intensities

of internal noise as the array size increases whether the nearest neighbor correlation is nega-

tive, positive or zero. It can be concluded that the enhanced SNR and SNR gain is not of any

specific dynamics of neural array but is present also in arrays of uncoupled neurons. This,

together with previous results observed in other systems [25,26], shows that the enhanced SR

is a generic feature of arrays.

The results above show that the highest SNR is achieved with a negative spatially nearest

neighbor correlation of internal noise. However, these results held for a fixed angular fre-

quency ω = 0.1. Hence, our next step was to study the evolution of output SNR Rout and SNR

gain G according to the intensity D of internal noise with λ = −0.3 for different frequency val-

ues ω, and the results are shown in Fig 5(A) and 5(B) for the output SNR and SNR gain,

respectively. Fig 5(A) shows that Rout increases with the decreasing of frequency, and the maxi-

mum Rout is reached at the lowest frequency, ω = 0.05. Nevertheless, the intensity of internal

noise that corresponds to the maximum Rout is larger for the frequency of 0.05 than for the

other two frequencies in the graph. Likewise, Fig 5(B) shows that the SNR gain also increases

with the decreasing of frequency. Clearly, the SNR gain corresponding to the optimal intensity

of internal noise is larger than unity for all the frequencies, i.e., ω = 0.05, 0.1, 0.2. Therefore, a
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Fig 5. SNR and SNR gain for different frequencies. The analytical and numerical results are shown in lines and symbols, respectively. ω = 0.05 (solid lines,

pentagons), ω = 0.1 (dashed lines, squares), and ω = 0.2 (dotted lines, circles). (a) Output SNR Rout and (b) SNR gain G according to the intensity D of internal

noise for input S(t). The remaining parameters are Vth = 1, Vr = 0, τr = 0.1, μ = 0.8, λ = −0.3, N = 100, and A = 0.5.

https://doi.org/10.1371/journal.pone.0200890.g005
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SNR gain above unity can be considered as a general characteristic when using negative corre-

lation in an LIF neural ensemble, regardless of the frequency. In addition, Fig 5(B) shows that

the SNR gain at the optimal intensity of internal noise becomes larger as the input signal

becomes slower. Therefore, we can conclude that low-frequency signals (e.g., ω = 0.05) in a

noisy environment can notably induce the collective response of neural ensembles. It is impor-

tant to understand mechanism responsible for the enhanced output SNR and gain. The shape

of the low-frequency signal is resolved much better compared to the high-frequency signal.

The low-frequency signal in noisy environment is more possible to be detected by the LIF neu-

ron model. Thus, the output SNR and SNR gain increases as the decreasing of the signal fre-

quency. The present results agree with observations in several nonlinear physical and

biological systems [17, 40–42].

We have shown that the SNR gain depends on correlation coefficient λ, input signal fre-

quency ω, and intensity D of internal noise. Next, we evaluated the effect caused by the ampli-

tude of the weak periodic signal received by the neural ensemble. This effect is important

because the sensory nervous system usually presents complex signals. Moreover, external sti-

muli of the sensory nervous system produces coding patterns determined by oscillations in the

amplitude of calcium-ion activity. This activity is characterized by periodic signals that enter

the nucleus to induce response variations [43–46], and several experimental and theoretical

studies report the amplitude modulation of calcium-ion activity induced by external stimulus

[44, 45].

In Eqs (21–24), the input and output SNR (Rin and Rout) are determined by the weak signal

amplitude (A), the internal noise intensities (D). Regardless the nearest neighbor correlation

and frequency of weak signal, the signal amplitude could affect the input and output SNR.

Accordingly, the SNR gain will also vary with A. By selecting different values of A, we calcu-

lated SNR gain G to verify the effect of a varying input signal amplitude A. Fig 6 show SNR

gain G according to the intensity D of internal noise for amplitudes A = 0.4, 0.6, 0.8, respec-

tively. The figure show increasing maximum SNR gain values as input signal amplitude A

0 0.05 0.1 0.15 0.2 0.25
0
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3

Fig 6. SNR gain for different signal amplitudes. The analytical and numerical results are shown in lines and symbols,

respectively. A = 0.4 (solid lines, pentagons), A = 0.6 (dashed lines, squares), and A = 0.8 (dotted lines, circles). The

remaining parameters are Vth = 1, Vr = 0, τr = 0.1, μ = 0.8, λ = −0.3, ω = 0.1, and N = 100.

https://doi.org/10.1371/journal.pone.0200890.g006
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increases, with the highest SNR reached at A = 0.8. Thus, high amplitude of a weak signal (i.e.,

a signal with A< 1) induces a more pronounced SNR gain of the neural ensemble. In addition,

Fig 6 show that the maximum SNR gain values for different amplitudes are located at the dif-

ferent optimal noise level D. Furthermore, the curves show SNR gain G larger than unity even

for the smallest signal amplitude, A = 0.2, provided that the correlation is negative, i.e., λ =

−0.3. Thus, we can conclude that the SNR gain can be improved by varying the amplitude of a

weak periodic signal when considering a negative correlation. Hence, amplitude is another fac-

tor to improve signal processed by an LIF neural ensemble. It is worth noting that both inten-

sity of noise and the amplitude of the weak periodic signal can be controlled in a wide range

that can be tuned for specific signal processing applications [30].

Conclusions

We investigated the SNR gain of a parallel array of LIF neurons that receives a weak periodic

signal and presents spatially nearest neighbor correlated noise. By using linear response theory,

we derived the analytic expressions of SNR and SNR gain. This article reports that the intensity

of internal noise can be increased up to an optimal value, where the output SNR reaches its

maximum. This property suitable for noise-enhanced transmission of weak periodic signals

can be related to SR. In addition, the results show that the spatially nearest neighbor correla-

tion of noise in an LIF neural ensemble can influence the collective response of neurons. In

particular, the output SNR according to the intensity of internal noise presented a more

pronounced peak when the spatially nearest neighbor correlation is negative, i.e., negative cor-

relation has more beneficial effect that the other types, namely, positive correlation and inde-

pendence, in the signal enhancement. The improvement of SNR gain resulting from noise in

an array of elements can be related to the array SR [23].

We also found that the SNR gain can be further improved by tuning the number of neurons

in the arrays and input signal frequency. Likewise, the region that SNR gain exceeds unity,

which implies an improved signal, can be modulated by tuning some parameters. Our investi-

gation showed that increasing the number of neurons in the array induces high SNR gains

regardless of the correlation type, thus improving the signal qualities for transmission. In

addition, low-frequency periodic signals induce higher SNR gains than high-frequency

signals, which might allow to explain the common sensitivity of the brain to low-frequency

and discrete weak periodic signals [40–42]. In fact, the brain has cells have fast and slow adap-

tation mechanisms, which react in periods ranging from less than a millisecond to tens of

milliseconds.

Another source of SNR gain improvement is the variation in the amplitude of the weak

periodic signal, and we evaluated the SNR gain with more realistic signal inputs that involve

modulated amplitude. The corresponding results might provide insights on the spontaneous

generation of spike trains in the auditory systems, which are also related to SR. Although

model and experiments should be further studied to optimize the parameters, existing research

in biophysical phenomena [40–42] supports our results on the benefits of internal noise to

improve signals. Overall, this article illustrates the potential to utilize spatially nearest neighbor

correlated noise and the number of neurons in an ensemble for improving the collective

response to inputs, and provides guidelines for designing signal processing methods to trans-

mit improved weak periodic signals.
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