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Abstract

TP53 is the most mutated gene in all cancers. The mutant protein also accumulates in cells.

The high frequency of p53 mutations makes the protein a promising target for anti-cancer

therapy. Only a few molecules have been found, using in vitro screening, to reactivate the

mutant protein. APR-246 is currently the most successful mutant p53 activator, which reacti-

vates the transcriptional activity of p53 by covalently binding to C124 of the protein. We

have recently created in silico models of G245S-mp53 in its apo and DNA-bound forms. In

this paper we further report on our in silico screening for potential activators of G245S-

mp53. We filtered the ZINC15 database (13 million compounds) to only include drug-like

molecules with moderate to standard reactivity. Our filtered database of 130,000 com-

pounds was screened using the DOCKTITE protocol in the Molecular Operating Environ-

ment software. We performed covalent docking at C124 of G245S-mp53 to identify potential

activators of the mutant protein. The docked compounds were ranked using a consensus

scoring approach. We also used ADMET Predictor™ to predict pharmacokinetics and the

possible toxicities of the compounds. Our screening procedure has identified compounds,

mostly thiosemicarbazones and halo-carbonyls, with the best potential as G245S-mp53

activators, which are described in this work. Based on its binding scores and ADMET risk

score, compound 2 is likely to have the best potential as a G245S-mp53 activator compared

to the other top hits.

Introduction

The transcription factor, p53, binds to its response elements to activate the transcription of

canonical p53 target genes[1]. It controls various processes in cells such as DNA repair, cell

proliferation, metabolism, senescence and apoptosis[1–3]. Since p53 is a master tumor sup-

pressor protein, it is not surprising that it is the most mutated protein in all cancer types[4].

Mutations in the TP53 gene often result in a p53 mutant protein that loses its specific DNA
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binding ability, which consequently compromises or abolishes the protein’s tumor suppression

function[5,6]. The great importance of p53 in the context of cancer has made it a logical target

for anti-cancer treatment[2]. Indeed, in vivo studies have shown that reconstitution of the wild

type (wt) p53 activity in mice induces rapid tumor regression even in the presence of other

tumor-associated genetic alterations[7,8].

A synthetic nine amino acid peptide CDB3 (REDEDEIEW) has been found in a peptide

screen to stabilize the p53 core domain[9]. Additionally, it was found to restore the sequence-

specific binding of the I195T mp53 to DNA[9]. CDB3 was derived from the p53 binding pro-

tein, apoptosis-stimulating of p53 protein 2 (ASPP2), which enhances the DNA binding and

transactivation ability of p53 and consequently enhances the apoptotic function of the latter

protein[10]. It has been hypothesized that CDB3 acts as a chaperone that binds to p53 and

shifts the equilibrium of the protein folding towards its native state. CDB3 is then displaced by

the specific DNA sequence[9]. Such chaperone peptides have some obvious limitations due to

their large size and poor bioavailability. In addition, they are unlikely to restore the DNA bind-

ing ability of contact mutants of p53.

Small molecule p53 activators, rather than peptides, have more advantages as therapeutic

agents in terms of bioavailability, drug administration and compound synthesis. Attempts to

develop small molecules aimed at restoring the wt activity to mutant p53 (mp53) have pro-

gressed in the past years. In 1999, Foster and colleagues[11] reported the discovery of CP-

31398, obtained by a library screen based on an in vitro biochemical assay, in which antibodies

were used to distinguish between the wt and mutant conformations of p53. CP-31398 was also

shown to have a stabilizing effect on the p53 DNA binding domain (DBD) and enhance the

transcriptional activity of wt-p53 in tumor xenografts expressing the mutant protein[11,12].

However, determination of a detailed mechanism of action of CP-31398 still remains elusive

[13]. A study has shown that the molecule binds tightly to the DNA[14] and another suggested

that the molecule acts on other targets since CP-31398 altered gene expression in both p53

dependent and independent manners[15].

Other successful attempts at finding mp53 rescuers have identified PRIMA-1 (‘p53 reactiva-

tion and induction of massive apoptosis’) and MIRA-1 by means of an in vitro screen[16,17].

The methylated derivative of PRIMA-1, called APR-246[18], is the only small molecule mp53

activator that has reached clinical trials[19]. Both PRIMA-1 and APR-246 are prodrugs that

decompose into the methylene quinuclidinone (MQ). The active MQ, characterized by a reac-

tive double bond, was found to react with the cysteine residues of p53 through a Michael addi-

tion reaction, which restores the wt conformation and transcriptional activity of the protein

[18]. In silico analysis using molecular dynamics (MD) identified a transiently open pocket in

the DBD of p53 formed between loop L1 and the S3 beta-sheet, which contains three cysteines

at residues 124, 141 and 135[20]. In that study, the wt, R175H, R273H and G245S mp53 pro-

teins were simulated. The calculated solvent-accessible surface area of the three different cyste-

ines revealed that C124 was the most solvent exposed cysteine residue at that pocket. Hence,

C124 was concluded to be the most likely residue at which MQ reacts with mp53 to restore its

wt transcriptional activity[20]. This conclusion was further confirmed by the results from the

site-directed mutagenesis of C124 to alanine[20]. MQ treatment could not inhibit the growth

of Saos-2 cells in C124A-R175H-mp53 vs. R175H-mp53 transfected cells. Wassman et al. fur-

ther performed virtual screening using non-covalent docking of the NCI diversity set II and

identified stictic acid as a novel mp53 activator. Indeed, stictic acid was found to elicit the acti-

vation of p21, a p53 target gene product, in a dose-dependent manner in Saos-2 cells trans-

fected with R175H-mp53. Additionally, stictic acid and MQ increased the thermal stability of

R175H and G245S mp53.

Covalent docking of potential G245S mutant p53 activators
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We have previously non-covalently docked small molecule activators of mp53 to R273H-

mp53[21]. The docked covalent p53 activators included MQ, NB, STIMA-1, MIRA-1 and CP-

31398[21]. While the five compounds were not predicted to interact directly with C124, they

were within a short distance that would allow the reaction of the double bonds of the molecules

with the thiol group of C124. On the other hand, our docking results of the non-covalent p53

activators showed that the activator molecules interact directly with C124. In the same study,

we also used ADMET Predictor to predict the pharmacokinetics and toxicity of the docked

compounds. Although in silico toxicity predictions indicated that stictic acid is less toxic than

MQ, the former compound was predicted to have poor pharmacokinetic properties.

The highest frequency, hotspot, mutations in p53 are categorized based on how the muta-

tions alter the protein’s binding to the DNA. p53 variants with a mutation in a residue that

natively interacts with the DNA in the wt protein are classified as contact mutants. Other

mutations in the DNA binding domain of p53 are classified as structural mutants, since they

alter the protein’s structure and therefore affect its binding to the DNA[22]. G245S-mp53 is

one of the p53 hotspot structural mutants, which carries a single-point mutation in codon 245

that changes the wild-type glycine residue to serine[22].

As explained above, previous efforts at finding p53 activators were mainly based on in vitro
and in vivo studies[9,13,18]. In silico screening at C124 has been used to find stictic acid[20].

Docking at a cleft near loop L6 was also used to screen a library of two million compounds to

find activators of Y220C-mp53, which successfully yielded PhiKan083 using non-covalent

docking[23]. In this study, we used DOCKTITE[24], a covalent docking protocol, to screen a

subset of the ZINC database at the C124 pocket to find potential activators of G245S-mp53. To

refine our predictions, we also used a consensus scoring approach by combining two scoring

functions to improve the pose and binding energy predictions. Here, we report potential

G245S-mp53 activators and some of their predicted ADMET properties in this work.

Results and discussion

G245S-mp53 protein models

We performed MD simulations of the apo G245S-mp53 as well as the DNA bound protein

obtained from the virtual mutation of G245 of wt-p53 to serine in the experimentally deter-

mined structures with PDB ID: 2FEJ and 4HJE, respectively. This was to account for the differ-

ent possible conformations of G245S-mp53. We also used the representative structures from

the MD simulations to account for the protein’s flexibility specifically at the binding site.

These representative structures were obtained by clustering the equilibrated protein[25] based

on the RMSD of residues 113–124 and 141–146, which constitute the pocket around the reac-

tive C124 residue. Clustering was performed based on the average-linkage algorithm[26] using

the cpptraj utility in Ambertools[27]. The choice of the optimum number of clusters was

guided by the calculated DBI, pSF and SSR/SST clustering metrics for each cluster count from

2 to 20.

The choice of the optimum cluster number is not trivial. Ideally, the best number of clusters

falls at a local minimum DBI value, local maximum pSF value and where the SSR/SST ratio

starts to plateau[26]. Our clustering metrics did not all fulfill these criteria at a particular clus-

ter count, as shown in Fig 1. As partial fulfilment of these criteria, however, we chose cluster

counts of 4 and 2 to represent the last 460 ns and 1 μs of the equilibrated apo and DNA-bound

G245S-mp53. The centroids of these clusters were used to represent the G245S-mp53 for cova-

lent docking. We used monomer B in the DNA-bound G245S-mp53 models and removed the

bound DNA for docking.

Covalent docking of potential G245S mutant p53 activators
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Covalent docking of the filtered ZINC library

While non-covalent docking is a vastly used virtual screening tool, covalent docking has been

used less frequently in computational drug design. Nonetheless, covalent docking has been

used successfully[28–30]. A previous study employing virtual screening using covalent dock-

ing on the vaccinia virus I7L ubiquitin-like proteinase homology model has reported a 21%

successful hit rate[31].

In this study, we used a versatile covalent docking protocol in the Molecular Operating

Environment (MOE)[32] called DOCKTITE[24]. We assigned the thiol of C124 as the reaction

site for the screened library. We filtered the ZINC library to only include compounds that

were in stock and had a molecular weight between 300 and 500, which falls within the weight

range suggested by the Lipinski’s rule of five[33]. We also filtered for compounds that had

moderate to standard reactivity. This criterion was specified since we aimed to find covalent

activators of p53 that could permanently restore the mutant protein’s wild type activity. The

final filtered library size was about 130,000 molecules.

Each of the screened ligands was then tagged at its reaction site and additional stereoiso-

mers were created for ligands with prochiral centers. A conformational search was performed

in MOE until a maximum of 5,000 conformers were generated for each ligand and each iso-

mer. A pharmacophore model was automatically generated by MOE to guide the placement of

the generated conformers at the active site. The docked poses were then evaluated by the Affin-

ity dG scoring function in MOE. The top 100 poses of each docked ligand were further refined.

There are two possible refinement methods in MOE: energy and grid minimization. ROC

curves of the two methods have demonstrated that the former is only marginally more accurate

with an area under the curve of 0.81 vs. 0.79[24]. This slight increase in accuracy comes at the

expense of forty times the computational cost[24]. For our virtual screening purposes we,

therefore, used grid minimization for refinement and rescored the refined poses using the

Affinity dG scoring function.

We used a consensus-based strategy to rank the top hits. To do this, the highest ranked

pose for each compound was then detached and rescored by the DSX scoring function as a

non-covalently bound ligand since it gives more accurate results[24]. While the Affinity dG

scoring function predicts the binding energy of the ligand, the DSX is a knowledge-based func-

tion that scores ligands on how close they are to near-native poses i.e. experimentally resolved

Fig 1. Plots of the DBI, pSF and SSR/SST clustering metrics for the equilibrated (A) apo and (B) DNA-bound G245S-mp53. The pSF values were normalized to fit on

the graph.

https://doi.org/10.1371/journal.pone.0200769.g001
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complex structures[24]. The screened compounds were ranked based on both scores. Fig 2

shows a list of the top 10 potential activators based on their DSX scores and favorable predicted

Affinity dG scores.

Unlike all the previous covalent p53 activators such as MQ, STIMA-1 and MIRA-1, which

are all Michael acceptors, five of our potential hits were thiosemicarbazones, four were halo-

carbonyls and only one was a Michael acceptor molecule (Fig 2). The DSX scores, which rank

near-native binding modes, ranged from -17.5 to -8. The Affinity dG binding energies of the

compounds ranged from -3.8 to -2.2 kcal•mol-1.

In conventional non-covalent docking, especially when screening for competitive inhibi-

tors, a higher binding affinity is an indication of better potential inhibition. This is due to the

fact that a ligand that can bind strongly at the active-site will likely decrease the chance of the

native substrate from binding. However, analysing the results of covalent molecules aimed at

activating a protein, like our case, is less trivial. A good p53 mutant activator is a compound

that not only interacts with C124, like MQ, but also alters the structure of the protein to restore

its wild type activity. Nonetheless, a higher DSX score, being an indication of the pose being

near-native, is an indication that the conformation is likely to exist. Indeed, a 21% hit rate was

achieved in a previous study where virtual screening using covalent docking was used.

ADMET property predictions

The toxicities of the top 10 compounds were predicted using ADMET Predictor™ and were

compared to those of APR-246’s active metabolite called MQ. The prodrug APR-246 is the

only mp53 activator that is currently in clinical trials[19]. Some of the predicted properties are

listed in Table 1.

ADMET Predictor™ assigns an ADMET risk score to each compound based on its calcu-

lated pharmacokinetic (PK) and pharmacodynamics (PD) properties; higher scores are

assigned to less favorable properties. This parameter has been developed using drugs from the

World Drug Index as a training set. Only 10% of the focused subset of the World Drug Index

have an ADMET risk score of more than 6.5. MQ had a predicted risk score of 3. Only com-

pounds 2, 6, 7 and 9 had lower risk scores than MQ (Table 1). Interestingly, all the top hits as

well as MQ, are predicted to cross the blood brain barrier, except compound 10. While com-

pound 1 was predicted to be cardiotoxic, the remaining compounds, including MQ, were not

predicted to inhibit the hERG channel. Additionally, most compounds were predicted to be

non-inhibitory to p-glycoproteins, nor were substrates to these protein pumps. The only

exceptions to this were compounds 3 and 8, which were predicted to inhibit p-glycoproteins.

Compound 4 was predicted to be both a p-glycoprotein substrate and inhibitor. Like MQ,

compounds 1, 5, 8 and 10 were predicted to be hepatotoxic and likely to cause an elevation in

serum levels of both ALT and AST. None of the other compounds are expected to elevate

serum levels of the two enzymes, except compounds 3 and 7, which were predicted to elevate

serum AST levels. It is worth noting that none of our potential hits violates Lipinski’s rule of

five[33].

Compound 2: The best potential hit

From the results above, compound 1 had a DSX score of -17.5, an Affinity dG score of -2.5

kcal•mol-1 and an ADMET risk score of 3.8. Compound 2, which had the second highest DSX

score of -16.5, had the highest Affinity dG score of -3.5 kcal•mol-1 and the second best

ADMET score of 1. The compound with the best ADMET risk score of 0.4, had DSX and

Affinity dG scores of -9.5 and -2.4 kcal•mol-1, respectively. Collectively, these predictions indi-

cate that compound 2 has the best potential as a G245S-mp53 activator.

Covalent docking of potential G245S mutant p53 activators
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Fig 2. The top ten hits from our covalent docking virtual screening. The hits are ranked based on their DSX score.

The reactive moiety of molecules is tagged by ‘Ta’, which marks the thiol group of C124 of G245S-mp53 in case of a

true hit. Mwt = molecular weight of the compound.

https://doi.org/10.1371/journal.pone.0200769.g002
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Fig 3 shows the minimized G245S-mp53 bound to compound 2 at C124 (S1 Text). Our

model shows that compound 2 becomes buried in the core of the protein (Fig 3A). This is

especially true for the fused ring system of compound 2, which becomes surrounded by F109,

L111, F113, V143, L145, A159, I195, Y234, Y236, I255 and F270 (Fig 3B). Additionally, the

amine group of compound 2 is predicted to be protonated while the neighboring C141 thiol of

G245S-mp53 becomes deprotonated. These moieties are predicted to form a salt bridge. The

amine group of compound 2 also forms a hydrogen bond with the backbone of C141 of the

protein. Also, R110 backbone forms a hydrogen bond with the hydroxyl of compound 2.

These interactions could likely confer a conformational change in G245S-mp53 that could

lead to better binding of the protein to its response elements and hence restore the wild activity

to this mutant.

Conclusions

Restoring the wt activity to mp53 is a promising strategy to treat cancer. APR-246 is the only

mp53 activator that is currently in clinical trials. Our aim was to find potential G245S-mp53

activators. We created atomistic in silico models of the mutant protein and virtually screened

the ZINC database library using DOCKTITE’s covalent docking protocol. The filtered library

was assigned to bind at C124 of G245S-mp53. The ligands were ranked based on consensus

scoring. We used both the knowledge-based DSX and Affinity dG empirical scoring functions.

We also used ADMET Predictor™ to predict possible toxicities of the compounds. Our results

show that compound 2 has the best potential as a G245S-mp53 activator. The minimized struc-

ture of the complex composed of Compound 2 and G245S-mp53 protein shows that the com-

pound becomes buried in the protein and its hydrophobic portion forms van der Waals

interactions with the hydrophobic core of the protein. In vitro testing will be required to vali-

date our predictions and, provided this is successful, further select a subset of the predicted

hits for preclinical development. It is hoped that the work reported here opens new avenues

for targeting this important cancer biomarker.

Methods and models

Ligand library preparation

We screened the ZINC15 database, which originally contains about 13 million compounds

[34]. We applied three criteria to filter the compounds and reduce the size of the docked

Table 1. The predicted ADMET properties of MQ and the top 10 potential hits from our covalent docking screen. Values between brackets indicate confidence levels.

Compound ADMET risk score BBB filter hERG filter Pgp Inh Pgp substr Ser ALT Ser AST

1 3.8 High Yes (85%) No (94%) No (95%) Elevated (98%) Elevated (94%)

2 1.0 High No (95%) No (63%) No (59%) Normal (78%) Normal (62%)

3 2.9 High No (95%) Yes (83%) No (95%) Normal (73%) Elevated (94%)

4 3.7 High No (95%) Yes (69%) Yes (97%) Normal (52%) Normal (70%)

5 6.0 High No (59%) No (65%) No (58%) Elevated (84%) Elevated (94%)

6 2.8 High No (95%) No (94%) No (85%) Normal (95%) Normal (65%)

7 0.4 High No (95%) No (65%) No (95%) Normal (60%) Elevated (69%)

8 4.4 High No (82%) Yes (70%) No (95%) Elevated (66%) Elevated (94%)

9 1.0 High No (76%) No (62%) No (79%) Normal (99%) Normal (89%)

10 4.2 Low No (95%) No (94%) No (59%) Elevated (70%) Elevated (59%)

MQ 3.0 High No (95%) No (94%) No (75%) Elevated (79%) Elevated (94%)

https://doi.org/10.1371/journal.pone.0200769.t001
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database. Our filtered sub-library contained compounds with molecular weights between 300

and 500 Daltons and had an octanol-water partition coefficient (logP) between -1 and 5. We

also limited our search to compounds that were in stock and were categorized as mild to reac-

tive. Our final library size was about 130,000 drug-like compounds. We downloaded the 3D

representations of the ligands including their different protomer and tautomers.

G245S-mp53 preparation

We created the G245S-mp53 models as described in our previous work[25]. Briefly, we used

the NMR resolved apo wt-p53 with PDB ID: 2FEJ[35] as well as the X-ray resolved wt

p53-DNA complex (PDB ID: 4HJE[36]) as the starting structures for our models. We used

PyMol to virtually mutate residue 245 from glycine to serine[37]. We MD-simulated the

mutated models for 1 and 1.5 μs, respectively as described in[25].

RMSD-based clustering

To account for the flexibility of the protein’s binding site using a manageable number of repre-

sentative protein models, the structure of the last 460 ns of the equilibrated apo G245S-mp53

monomer (from 2FEJ) and the last 1μs of the G245S-mp53 monomer B (from 4HJE) were

clustered using the cpptraj utility in Ambertools[27]. Clustering using the average-linkage bot-

tom-up algorithm was based on the root-mean-squared deviation of residues 113–124 and

141–146, constituting the pocket around the C124 site. We used the Davies-Bouldin index

(DBI), the pseudo F-statistic (pSF) and the sum of square regression-sum of total sum of

square ratio (SSR/SST) clustering metrics to determine the clustering quality and the optimum

number of representative clusters[26]. Generally, lower DBI and higher pSF values signal bet-

ter clustering. The SSR/SST ratio was used following the "elbow criterion" for the choice of the

number of clusters[26]. The centroid structures, which have the lowest RMSD to all the other

conformations in the cluster, were used to represent the flexibility of the active site during

docking.

Covalent docking using DOCKTITE

We employed the DOCKTITE protocol to virtually screen the filtered sub-library using cova-

lent docking[24]. The first step of the protocol is to screen the molecules for reactive electro-

philic warheads. For each compound in the filtered sub-library, the ligands are each attached

to the nucleophilic thiol of C124. Additionally, stereoisomers were also created for prochiral

compounds. A pharmacophore model of the active site is also automatically generated. The

active site was defined by residues 113–124 and 141–146 as well as all atoms within 9 Å from

the center of the selected residues. As part of the DOCKTITE protocol, stochastic sampling

was used to generate 5,000 possible conformations of the ligands. Docking of the 5,000 con-

formers was then performed and was guided by the previously generated pharmacophore

model. The docked conformers were first evaluated by the empirical Affinity dG scoring func-

tion. Based on their scores, the top 100 poses are further refined using the grid minimization

method then rescored using the Affinity dG scoring function. For better estimation of the

results, the ligands were then cleaved from the nucleophilic side-chains and rescored. Identifi-

cation of the top hits at this stage was based on consensus scoring. The external knowledge-

Fig 3. Compound 2 covalently bound to G245S-mp53. (A) The protein’s molecular surface is shown in grey. Loop L1, where compound 2 is

covalently bound, is colored as an orange ribbon. Helix H2 and loop L3, which interact with the DNA are colored red and green, respectively. The

mutated S245 in loop L3 is shown as green spheres. Compound 2 is represented by its molecular surface and is colored based on its electrostatic

potential. (B) The ligand interaction scheme of compound 2 with the minimized G245S-mp53.

https://doi.org/10.1371/journal.pone.0200769.g003
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based scoring function, DSX[38], was used to rank the different poses of a compound based

on their similarities to near-native poses. The binding energy of the pose that ranked first with

the DSX function was then recalculated with MOE’s Affinity dG empirical scoring function.

ADMET Predictor™
We used ADMET Predictor™ of SimulationsPlus[39] to predict compound toxicities. ADMET

predictor is a machine learning algorithm that calculates various properties and toxicities of

compounds and assigns an ADMET risk score to them called ‘ADMET risk’; higher scores

indicate less favorable pharmacokinetic and pharmacodynamic properties. We calculated the

ligands’ blood brain barrier penetration ‘BBB filter’, their inhibition of the hERG potassium

channel of the heart ‘hERG filter’, the likelihood of the compounds to inhibit or be substrates

of p-glycoproteins ‘Pgp Inh’ and ‘Pgp substr’, respectively. We also calculated the hepatotoxic

potential of the compounds by predicting their effect on serum alanine transaminase ‘Ser ALT’

and aspartate transaminase ‘Ser AST’ liver enzymes.

Supporting information

S1 Text. The PDB file of the minimized G245S-mp53 covalently bound to compound 2.
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