
RESEARCH ARTICLE

CTD: Fast, accurate, and interpretable method

for static and dynamic tensor decompositions

Jungwoo Lee, Dongjin Choi, Lee Sael*

Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea

* saellee@snu.ac.kr

Abstract

How can we find patterns and anomalies in a tensor, i.e., multi-dimensional array, in an effi-

cient and directly interpretable way? How can we do this in an online environment, where a

new tensor arrives at each time step? Finding patterns and anomalies in multi-dimensional

data have many important applications, including building safety monitoring, health monitor-

ing, cyber security, terrorist detection, and fake user detection in social networks. Standard

tensor decomposition results are not directly interpretable and few methods that propose to

increase interpretability need to be made faster, more memory efficient, and more accurate

for large and quickly generated data in the online environment. We propose two versions of

a fast, accurate, and directly interpretable tensor decomposition method we call CTD that is

based on efficient sampling method. First is the static version of CTD, i.e., CTD-S, that prov-

ably guarantees up to 11× higher accuracy than that of the state-of-the-art method. Also,

CTD-S is made up to 2.3× faster and up to 24× more memory-efficient than the state-of-the-

art method by removing redundancy. Second is the dynamic version of CTD, i.e. CTD-D,

which is the first interpretable dynamic tensor decomposition method ever proposed. It is

also made up to 82× faster than the already fast CTD-S by exploiting factors at previous

time step and by reordering operations. With CTD, we demonstrate how the results can be

effectively interpreted in online distributed denial of service (DDoS) attack detection and

online troll detection.

Introduction

Given a tensor, or multi-dimensional array, how can we find patterns and anomalies in an effi-

cient and directly interpretable way? How can we do this in an online environment, where

new data arrive at each time step? Many real-world data are multi-dimensional and can be

modeled as sparse tensors. Examples include network traffic data (source IP—destination IP—

time), movie rating data (user—movie—time), IoT sensor data, and healthcare data. Finding

patterns and anomalies in those tensor data is a very important problem with many applica-

tions such as building safety monitoring [1], patient health monitoring [2–5], cyber security

[6], terrorist detection [7–9], and fake user detection in social networks [10, 11]. Tensor

decomposition method, a widely-used tool in tensor analysis, has been used for this task. How-

ever, the standard tensor decomposition methods such as PARAFAC [12] and Tucker [13] do

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Lee J, Choi D, Sael L (2018) CTD: Fast,

accurate, and interpretable method for static and

dynamic tensor decompositions. PLoS ONE 13(7):

e0200579. https://doi.org/10.1371/journal.

pone.0200579

Editor: Wenjie Ruan, Univerisity of Oxford, UNITED

KINGDOM

Received: December 6, 2017

Accepted: July 1, 2018

Published: July 25, 2018

Copyright: © 2018 Lee et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All data and code are

available from GitHub (https://github.com/leesael/

CTD).

Funding: LS received support from Basic Science

Research Program through the Korea National

Research Foundation (http://www.nrf.re.kr/) grant

number (NRF-2015R1C1A2A01055739).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0200579
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200579&domain=pdf&date_stamp=2018-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200579&domain=pdf&date_stamp=2018-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200579&domain=pdf&date_stamp=2018-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200579&domain=pdf&date_stamp=2018-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200579&domain=pdf&date_stamp=2018-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200579&domain=pdf&date_stamp=2018-07-25
https://doi.org/10.1371/journal.pone.0200579
https://doi.org/10.1371/journal.pone.0200579
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/leesael/CTD
https://github.com/leesael/CTD
http://www.nrf.re.kr/

not provide interpretability and are not applicable for real-time analysis in environments with

high-velocity data.

Sampling-based tensor decomposition methods [14–16] arose as an alternative due to their

direct interpretability. The direct interpretability not only reduces time and effort involved in

finding patterns and anomalies from the decomposed tensors but also provides clarity in inter-

preting the result. A sampling-based decomposition method for sparse tensors is also mem-

ory-efficient since it preserves the sparsity of the original tensors on the sampled factor

matrices. However, existing sampling-based tensor decomposition methods are slow, have

high memory usage, and produce low accuracy. For example, TENSOR-CUR [16], the state-of-

the-art sampling-based static tensor decomposition method, has many redundant fibers

including duplicates in its factors. These redundancy cause higher memory usage and longer

running time. TENSOR-CUR is also not accurate enough for real-world tensor analysis.

In addition to interpretability, demands for online method applicable in a dynamic envi-

ronment, where multi-dimensional data are generated continuously at a fast rate, are also

increasing. A real-time analysis is not feasible with static methods since all the data, i.e., histor-

ical and incoming tensors, need to be decomposed over again at each time step. There are a

few dynamic tensor decomposition methods proposed [17–19]. However, proposed methods

are not directly interpretable and do not preserve sparsity. To the best of our knowledge, there

has been no sampling-based dynamic tensor decomposition method proposed.

In this paper, we propose CTD (Compact Tensor Decomposition), a fast, accurate, and

interpretable sampling-based tensor decomposition method. CTD has two versions: CTD-S

for static tensors, and CTD-D for dynamic tensors. CTD-S is optimal after sampling, and

results in a compact tensor decomposition through careful sampling and redundancy elimina-

tion, thereby providing much better running time and memory efficiency than previous meth-

ods. CTD-D, the first sampling-based dynamic tensor decomposition method in literature,

updates and modifies minimally on the components altered by the incoming data, making the

method applicable for real-time analysis on a dynamic environment. Table 1 shows the com-

parison of CTD and the existing method, TENSOR-CUR.

Our main contributions are as follows:

• Method. We propose CTD, a fast, accurate, and directly interpretable tensor decomposition

method. We prove the optimality of the static method CTD-S which makes it more accurate

than the state-of-the-art method. Also, to the best of our knowledge, the dynamic method

CTD-D is the first sampling-based dynamic tensor decomposition method.

• Performance. CTD-S is up to 11× more accurate, 2.3× faster, and 24× more memory-effi-

cient compared to TENSOR-CUR, the state-of-the-art competitor. CTD-D is up to 82× faster

than CTD-S.

Table 1. Comparison of our proposed CTD and the existing TENSOR-CUR. The static method CTD-S outperforms

the state of-the-art TENSOR-CUR in terms of time, memory usage, and accuracy. The dynamic method CTD-D is the

fastest.

Existing [Proposed]

TENSOR-CUR [16] CTD-S CTD-D

Interpretability ✓ ✓ ✓

Time fast faster fastest

Memory usage low lower low

Accuracy low high high

Online ✗ ✗ ✓

https://doi.org/10.1371/journal.pone.0200579.t001

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 2 / 18

https://doi.org/10.1371/journal.pone.0200579.t001
https://doi.org/10.1371/journal.pone.0200579

• Interpretable Analysis. We show how CTD results are directly interpreted to successfully

detect DDoS attacks in network traffic data and trolls in social network data.

The codes and datasets used in this paper are available at https://github.com/leesael/CTD.

The rest of this paper is organized as follows. We first describe preliminaries and related works

for tensor and sampling-based decomposition. We then describe our proposed method CTD

and the experimental results. After presenting CTD at work, we conclude this paper.

Preliminaries and related works

In this section, we describe preliminaries and related works for tensor and sampling-based

decompositions. Table 2 lists the definitions of symbols used in this paper.

Tensor

A tensor is a multi-dimensional array and is denoted by the boldface Euler script, e.g. X 2

RI1�����IN where N denotes the order (the number of axes) of X. Each axis of a tensor is also

known as mode or way. A fiber is a vector (1-mode tensor) which has fixed indices except one.

Every index of a mode-n fiber is fixed except n-th index. A fiber can be regarded as a higher-

order version of a matrix row and column. A matrix column and row each correspond to

mode-1 fiber and mode-2 fiber, respectively. A slab is an (N − 1)-mode tensor which has only

one fixed index. XðaÞ 2 R
Ia�Na denotes a mode-αmatricization of X, where Nα = ∏n 6¼ α In.

X(α) is made by rearranging mode-α fibers of X to be the columns of X(α). kX kF is the Fro-

benius norm of X and is defined by Eq (1).

kXk2
F¼

X

i1 ;i2 ;���;iN

x2

i1i2 ���iN ð1Þ

X�nU 2 R
I1�����In� 1�J�Inþ1�����IN denotes the n-mode product of a tensor X 2 RI1�����IN with a

matrix U 2 RJ�In . Elementwise,

ðX�nUÞi1 ���in� 1 jinþ1 ���iN
¼
XIn

in¼1

xi1���in� 1 ininþ1 ���iN
ujin ð2Þ

X�nU has a property shown in Eq (3).

Y ¼X�nU, YðnÞ ¼ UXðnÞ ð3Þ

We assume that a matrix or tensor is stored in a sparse-unordered representation (i.e. only

nonzero entries are stored in a form of pair of indices and the corresponding value). nnzðXÞ
denotes the number of nonzero elements in X.

Table 2. Table of symbols.

Symbol Definition Symbol Definition

X tensor (Euler script, bold letter) X† pseudoinverse of X

X matrix (uppercase, bold letter) N order of a tensor

x column vector (lower case, bold letter) ×n n-mode product

x scalar (lower case, italic letter) k•kF Frobenius norm

X(n) mode-n matricization of a tensor X nnzðXÞ number of nonzero elements in X

https://doi.org/10.1371/journal.pone.0200579.t002

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 3 / 18

https://github.com/leesael/CTD
https://doi.org/10.1371/journal.pone.0200579.t002
https://doi.org/10.1371/journal.pone.0200579

We describe existing sampling-based matrix and tensor decomposition methods in the fol-

lowing subsections.

Sampling based matrix decomposition

Sampling-based matrix decomposition methods sample columns or rows from a given matrix

and use them to make their factors. They produce directly interpretable factors which preserve

sparsity since those factors directly reflect the sparsity of the original data. In contrast, a singu-

lar value decomposition (SVD) generates factors which are hard to understand and dense

because the factors are in a form of linear combination of columns or rows from the given

matrix. Definition 1 shows the definition for CX matrix decomposition [20], a kind of sam-

pling-based matrix decomposition.

Definition 1. Given a matrix A 2 Rm�n, the matrix ~A ¼ CX is a CXmatrix decomposition
of A, where a matrix C 2 Rm�c consists of actual columns of A and a matrix X is any matrix of
size c × n.

We introduce well-known CX matrix decomposition methods: LinearTimeCUR, CMD,

and Colibri.

LinearTimeCUR and CMD. Drineas et al. [21] proposed LinearTimeCUR and Sun et al.

[22] proposed CMD. In the initial step, LinearTimeCUR and CMD sample columns from an

original matrix A according to the probabilities proportional to the norm of each column with

replacement. Drineas et al. [21] has proven that this biased sampling provides an optimal

approximation. Then, they project A into the column space spanned by those sampled col-

umns and use the projection as the low-rank approximation of A. LinearTimeCUR has many

duplicates in its factors because a column or row with a higher norm is likely to be selected

multiple times. These duplicates make LinearTimeCUR slow and require a large amount of

memory. CMD handles the duplication issue by removing duplicate columns and rows in the

factors of LinearTimeCUR, thereby reducing running time and memory significantly.

Colibri. Tong et al. [23] proposed Colibri-S which improves CMD by removing all types

of linear dependencies including duplicates. Colibri-S is much faster and memory-efficient

compared to LinearTimeCUR and CMD because the dimension of factors is much smaller

than that of LinearTimeCUR and CMD. Tong et al. [23] also proposed the dynamic version

Colibri-D. Although Colibri-D can update its factors incrementally, it fixes the indices of the

initially sampled columns which need to be updated over time. Our CTD-D not only handles

general dynamic tensors but also does not have to fix those indices.

Sampling based tensor decomposition

Sampling-based tensor decomposition method samples actual fibers or slabs from an original

tensor. In contrast to PARAFAC [12] and Tucker [13], the most famous tensor decomposition

methods, the resulting factors of sampling-based tensor decomposition method are easy to

understand and usually sparse. There are two types of sampling based tensor decomposition:

one based on Tucker and the other based on LR tensor decomposition which is defined in Def-

inition 2.2. In Tucker-type sampling based tensor decomposition (e.g., ApproxTensorSVD

[14] and FBTD (fiber-based tensor decomposition) [15]), factor matrices for all modes are

either sampled or generated; the overhead of generating a factor matrix for each mode makes

these methods too slow for applications to real-time analysis. We focus on sampling methods

based on LR tensor decomposition which is faster than those based on Tucker decomposition.

Definition 2. (LR tensor decomposition) Given a tensor X 2 RI1�I2�����IN , ~X ¼L�aR is a
mode-α LR tensor decomposition of X, where a matrix R 2 RIa�c consists of actual mode-α fibers
of X and a tensor L is any tensor of size I1 × � � � × Iα−1 × c × Iα+1 × � � � × IN.

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0200579

TENSOR-CUR. Mahoney et al. [16] proposed TENSOR-CUR, a mode-α LR tensor decomposi-

tion method. TENSOR-CUR is an n-dimensional extension of LinearTimeCUR. TENSOR-CUR

samples fibers and slabs from an original tensor and builds its factors using the sampled ones.

The only difference between LinearTimeCUR and TENSOR-CUR is that TENSOR-CUR exploits

fibers and slabs instead of columns and rows. Thus, TENSOR-CUR has drawbacks similar to

those of LinearTimeCUR. TENSOR-CUR has many redundant fibers in its factors and these

fibers make TENSOR-CUR slow and use a large amount of memory.

Proposed method

In this section, we describe our proposed CTD (Compact Tensor Decomposition), an efficient

and interpretable sampling-based tensor decomposition method. We first describe the static

version CTD-S, and then the dynamic version CTD-D of CTD.

CTD-S for static tensors

Overview. How can we design an efficient sampling-based static tensor decomposition

method? TENSOR-CUR, the existing state-of-the-art, has many redundant fibers in its factors

and these fibers make TENSOR-CUR slow and use large memory. Our proposed CTD-S method

removes all dependencies from the sampled fibers and maintains only independent fibers;

thus, CTD-S is faster and more memory-efficient than TENSOR-CUR.

Algorithm. Fig 1 shows the scheme for CTD-S. CTD-S first samples fibers biased toward

a norm of each fiber. Three different fibers (red, blue, green) are sampled in Fig 1. There are

many duplicates after biased sampling process since CTD-S samples fibers multiple times with

replacement and a fiber with a higher norm is likely to be sampled many times. There also

exist linearly dependent fibers such as the green fiber which can be expressed as a linear com-

bination of the red one and the blue one. Those linearly dependent fibers including duplicates

are redundant in that they do not give new information when interpreting the result. CTD-S

Fig 1. The scheme for CTD-S.

https://doi.org/10.1371/journal.pone.0200579.g001

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 5 / 18

https://doi.org/10.1371/journal.pone.0200579.g001
https://doi.org/10.1371/journal.pone.0200579

removes those redundant fibers and stores only the independent fibers in its factor R to keep

result compact. CTD-S only keeps one red fiber and one blue fiber in R in Fig 1.

CTD-S decomposes a tensor X 2 RI1�I2�����IN into one tensor C 2 RI1�����Ia� 1�~s�Iaþ1�����IN ,

and two matrices U 2 R~s�~s
and R 2 RIa�~s such that X �C�aRU. CTD-S is a mode-α LR

tensor decomposition method and is interpretable since R consists of independent fibers sam-

pled from X.

Algorithm 1 CTD-S for Static Tensor

Input: Tensor X 2 RI1�I2�����IN, mode α 2 {1, � � �, N}, sample size s 2 {1, � � �,
Nα}, and tolerance �

Output: C 2 RI1�����Ia� 1�~s�Iaþ1�����IN, U 2 R~s�~s, R 2 RIa�~s

1: Let X(α) be the mode-α matricization of X

2: Compute column distribution for i = 1, � � �, Nα: PðiÞ jXðaÞð:;iÞj
2

kXðaÞk2F

3: Sample s columns from X(α) based on P(i). Let I = {i1, � � �, is}
4: Let I 0 ¼ fi0

1
; � � � ; i0s0 g be a set consisting of unique elements in I

5: Initialize R ½XðaÞð:; i01Þ� and U 1=ðXðaÞð:; i01Þ
TXðaÞð:; i01ÞÞ

6: for k = 2: s0 do
7: Compute the residual:

~res ðXðaÞð:; i0kÞ � RURTXðaÞð:; i0kÞÞ
8: if jj ~resjj � �jjXðaÞð:; i0kÞjj then
9: continue
10: else
11: Compute: d jj ~resjj2 and ~y URTXðaÞð:; i0kÞ

12: Update U: U
Uþ~y~yT=d � ~y=d

� ~yT=d 1=d

 !

13: Expand R : R ½R;XðaÞð:; i0kÞ�
14: end if
15: end for
16: Compute C X�aR

T

17: return C, U, R

Algorithm 1 shows the procedure of CTD-S. First, CTD-S computes the probabilities of

mode-α fibers of X, which are proportional to the norm of each fiber, and then samples s
fibers from X according to the probabilities with replacement, in lines 1-3. Redundant fibers

exist in the sampled fibers in this step. CTD-S selects unique fibers from the initially sampled s
fibers in line 4 where s0 denotes the number of those unique fibers. This step reduces the num-

ber of iterations in lines 6-15 from s − 1 to s0 − 1. R is initialized by the first sampled fiber in

line 5. In lines 6-15, CTD-S removes redundant mode-α fibers in the sampled fibers. The

matrices U and R are computed incrementally in this step. The columns of R always consist of

independent mode-α fibers through the loop. In each iteration, CTD-S checks whether one of

the sampled fibers is linearly independent of the column space spanned by R or not in lines 7-

8, using the residual tolerance �. If the fiber is independent, CTD-S updates U and expands R

with the fiber in lines 10-13. Finally, CTD-S computes C with X and R in line 16.

Lemma 1 shows the computational cost of CTD-S.

Lemma 1. The computational complexity of CTD-S is
Oðð~sIa þ sÞNa þ s0ð~s2 þ nnzðRÞÞ þ s log sþ nnzðXÞÞ, where Nα is ∏n 6¼ α In and ~s⪡s0 � s.

Proof. The mode-αmatricization of X in line 1 needs OðnnzðXÞÞ operations. Computing

column distribution in line 2 takes OðnnzðXÞ þ NaÞ and sampling s columns in line 3 takes

OðsNaÞ. Oðs log sÞ operation is required in computing unique elements in I in line 4.

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 6 / 18

https://doi.org/10.1371/journal.pone.0200579

Computing R and U in lines 5-15 takes Oðs0ð~s2 þ nnzðRÞÞÞ as proved in Lemma 1 in [23].

Computing C in line 16 takes Oð~sIaNaÞ. Overall, CTD-S needs Oðð~sIa þ sÞNa þ s0ð~s2 þ

nnzðRÞÞ þ s log sþ nnzðXÞÞ operations.

Lemma 2 shows that CTD-S has the optimal accuracy for given sampled fibers and � = 0,

thus is more accurate than TENSOR-CUR.

Lemma 2. CTD-S has the minimum error, thus is more accurate than TENSOR-CUR for a
given R0 consisting of initially sampled fibers when the residual tolerance � = 0.

Proof. CTD-S and TENSOR-CUR are both mode-α LR tensor decomposition methods. They

both sample fibers from X in the same way in the initial step. Assume R0 be the matrix con-

sisting of those initially sampled fibers, and the same R0 is given for CTD-S and TENSOR-CUR.

Then, the reconstruction error of X given R0 is a function of L(α) as shown in Eq (4). The

equality comes from Eq (3).

jjX � L�aR0jjF ¼ jjXðaÞ � R0LðaÞjjF ð4Þ

The reconstruction error is globally minimum when LðaÞ ¼ Ry
0
XðaÞ. Eq (5) shows the minimum

reconstruction error.

min
LðaÞ
jjXðaÞ � R0LðaÞjjF ¼ jjXðaÞ � R0R

y

0
XðaÞjjF ð5Þ

Let R be the factor of CTD-S. R consists of the independent columns of R0 since the tolerance

� = 0. We show that CTD-S has the minimum reconstruction error in Eq (6).

jjXðaÞ � R0R
y

0
XðaÞjjF ¼ jjXðaÞ � RRyXðaÞjjF

¼ jjXðaÞ � RðRTRÞ� 1RTXðaÞjjF
¼ jjXðaÞ � RUCðaÞjjF
¼ Error of CTD � S

ð6Þ

The first equality in Eq (6) holds because R0R
y

0
XðaÞ means the projection of X(α) onto the col-

umn space of R0, and R and R0 have the same column space. The third equality holds because

CTD-S uses (RT R)−1 for its factor U (theorem 1 in [23]), and RT X(α) for its factor C. In con-

trast, TENSOR-CUR does not have the minimum reconstruction error because TENSOR-CUR has

L(α) which is different from Ry
0
XðaÞ. Specifically, TENSOR-CUR further samples rows (called

slabs) from X(α) to construct its L(α).

CTD-D for dynamic tensors

Overview. How can we design an efficient sampling-based dynamic tensor decomposition

method? In a dynamic setting, a new tensor arrives at every time step and we want to keep

track of sampling-based tensor decomposition. The main challenge is to update factors quickly

while preserving accuracy. Note that there has been no sampling-based dynamic tensor

decomposition method in the literature. Applying CTD-S at every time step is not a feasible

option since it starts from scratch to update its factors, and thus running time increases rapidly

as tensor grows. We propose CTD-D, the first sampling-based dynamic tensor decomposition

method. CTD-D samples mode-α fibers only from the newly arrived tensor, and then updates

the factors appropriately using those sampled ones. The main idea of CTD-D is to update the

factors of CTD-S incrementally by (1) exploiting factors at previous time step and (2) reorder-

ing operations.

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0200579

Algorithm 2 CTD-D for Dynamic Tensor

Input: Tensor DX 2 RI1�����IN� 1�1, mode α 2 {1, � � �, N − 1}, C
ðtÞ, U(t), R(t),

sample size d 2 {1, � � �, ΔNα}, and tolerance �

Output: C
ðtþ1Þ, U(t+1), R(t+1)

1: Let ΔX(α) be the mode-α matricization of DX

2: Compute column distribution for i = 1, � � �, ΔNα:

PðiÞ jDXðaÞð:;iÞj
2

kDXðaÞk2F

3: Sample d columns from ΔX(α) based on P(i). Let I = {i1, � � �, id}
4: Let I 0 ¼ fi0

1
; � � � ; i0d0 g be a set consisting of unique elements in I

5: Initialize R(t+1) R(t), U(t+1) U(t), and ΔR []
6: for k = 1: d0 do
7: Let x DXðaÞð:; i0kÞ
8: Compute the residual:

~res ðx � Rðtþ1ÞUðtþ1ÞðRðtþ1ÞÞ
TxÞ

9: if jj ~resjj � �jjxjj then
10: continue
11: else
12: Compute: d jj ~resjj2 and ~y Uðtþ1ÞðRðtþ1ÞÞ

Tx

13: Update U(t+1): Uðtþ1Þ
Uðtþ1Þ þ~y~yT=d � ~y=d

� ~yT=d 1=d

 !

14: Expand R(t+1) and ΔR: R(t+1) [R(t+1),x] and ΔR [ΔR,x]
15: end if
16: end for

Update Cðtþ1Þ

ðaÞ :
17: if ΔR is not empty then

18: Cðtþ1Þ

ðaÞ
CðtÞðaÞ ðRðtÞÞTDXðaÞ

ðDRÞTRðtÞUðtÞCðtÞðaÞ ðDRÞ
T
DXðaÞ

0

@

1

A

19: else

20: Cðtþ1Þ

ðaÞ CðtÞðaÞ ðR
ðtÞÞ

T
DXðaÞ

� �

21: end if
22: Fold Cðtþ1Þ

ðaÞ into Cðtþ1Þ

23: return Cðtþ1Þ, U(t+1), R(t+1)

Algorithm. Fig 2 shows the scheme for CTD-D. At each time step, CTD-D samples fibers

from newly arrived tensor and updates factors by checking linear dependency of sampled

fibers with the factor at previous time step. Purple and green fiber are sampled from newly

arrived tensor in Fig 2. Note that the purple fiber is added to the factor R since it is linearly

independent of the fibers in the factor at the previous time step, while the linearly dependent

green fiber is ignored.

For any time step t, CTD-D maintains its factors C
ðtÞ
2 RI1�����Ia� 1�

~dt�Iaþ1�����IN� 1�t ,

UðtÞ 2 R~dt�~dt , and RðtÞ 2 RIa�~dt such that X
ðtÞ
�C

ðtÞ
�aR

ðtÞUðtÞ, where the upper subscript (t)
indicates that the factor is at time step t. XðtÞ

grows along the time mode and we assume that

N-th mode is the time mode in a dynamic setting, where N denotes the order of X
ðtÞ

. At the

next time step t + 1, CTD-D receives newly arrived tensor DX 2 RI1�I2���������IN� 1�1 and

updates C
ðtÞ

, U(t), and R(t) into C
ðtþ1Þ
2 RI1�����Ia� 1�

~dtþ1�Iaþ1�����IN� 1�ðtþ1Þ, Uðtþ1Þ 2 R~dtþ1�
~dtþ1 , and

Rðtþ1Þ 2 RIa�~dtþ1 , respectively such that X
ðtþ1Þ
�C

ðtþ1Þ
�aR

ðtþ1ÞUðtþ1Þ.

Algorithm 2 shows the procedure of CTD-D. First, CTD-D computes the probabilities of

mode-α fibers of DX, which are proportional to the norm of each fiber, and then samples d

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 8 / 18

https://doi.org/10.1371/journal.pone.0200579

fibers according to the probabilities with replacement in lines 1-3. CTD-D selects unique d0

fibers in line 4 and initializes R(t+1), U(t+1), and ΔR with R(t), U(t), and an empty matrix respec-

tively in line 5, where ΔR consists of differences between R(t) and R(t+1). In lines 6-16, CTD-D

expands R(t+1) with those sampled fibers by sequentially evaluating linear dependency of each

fiber with the column space of R(t+1). R(t+1) and U(t+1) are updated in this step. Finally, Cðtþ1Þ

ðaÞ is

updated in lines 17-21.

In the following, we describe two main ideas of CTD-D to update Cðtþ1Þ

ðaÞ , R(t+1), and U(t+1)

efficiently while preserving accuracy: exploiting factors at previous time step, and reordering

operations.

(1) Exploiting factors at previous time step: First, we explain how we update R(t+1) and

U(t+1) using the idea. In line 5 of Algorithm 1, CTD-S initializes R and U using one of the sam-

pled fibers. This is because CTD-S requires R to consist of linearly independent columns and

it is satisfied when R has only one fiber. Since R(t) already consists of linearly independent col-

umns, we initialize R(t+1) and U(t+1) with R(t) and U(t) respectively in line 5 of Algorithm 2. In

lines 6-16, we check linear independence of each sampled fiber from ΔX(α) with R(t+1). If the

fiber is linearly independent, we expand R(t+1) and update U(t+1) as in the lines 11-13 of Algo-

rithm 1.

Fig 2. The scheme for CTD-D.

https://doi.org/10.1371/journal.pone.0200579.g002

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 9 / 18

https://doi.org/10.1371/journal.pone.0200579.g002
https://doi.org/10.1371/journal.pone.0200579

Second, we describe how we update C
ðtþ1Þ

using the idea. We assume that ΔR is not empty

after line 16 of Algorithm 2. At time step t and its successor step t + 1, CTD-S satisfies Eqs (7)

and (8), where CðtÞðaÞ has the size ~dt � NðtÞ
a

and Cðtþ1Þ

ðaÞ has the size ~dtþ1 � Nðtþ1Þ
a

.

CðtÞðaÞ ðR
ðtÞÞ

TXðtÞðaÞ ð7Þ

Cðtþ1Þ

ðaÞ ðR
ðtþ1ÞÞ

TXðtþ1Þ

ðaÞ
ð8Þ

We can rewrite R(t+1) and Xðtþ1Þ

ðaÞ as Eqs (9) and (10) respectively, where ΔR has the size Ia �

D~d and ΔX(α) has the size Iα × ΔNα such that Nðtþ1Þ
a
¼ NðtÞ

a
þ DNa and ~dtþ1 ¼

~dt þ D~d .

Rðtþ1Þ ¼ ½RðtÞ DR� ð9Þ

Xðtþ1Þ

ðaÞ ¼ ½X
ðtÞ
ðaÞ DXðaÞ� ð10Þ

We replace R(t+1) and Xðtþ1Þ

ðaÞ in Eq (8) with those in Eqs (9) and (10), respectively, to obtain

the Eq (11).

Cðtþ1Þ

ðaÞ
ðRðtÞÞT

ðDRÞT

2

4

3

5 ½XðtÞðaÞ DXðaÞ�

¼

ðRðtÞÞTXðtÞðaÞ ðR
ðtÞÞ

T
DXðaÞ

ðDRÞTXðtÞðaÞ ðDRÞ
T
DXðaÞ

2

4

3

5 ð11Þ

CTD-S computes all the 4 elements (ðRðtÞÞTXðtÞðaÞ, (R(t))TΔX(α), ðDRÞ
TXðtÞðaÞ, and (ΔR)TΔX(α))

in Eq (11) from scratch, hence requires a lot of computations. To make computation of Cðtþ1Þ

ðaÞ

incremental, we exploit existing factors at time step t: CðtÞðaÞ, R(t), and U(t). First, we use CðtÞðaÞ
instead of ðRðtÞÞTXðtÞðaÞ as in the Eq (7). Second, we should replace XðtÞðaÞ in ðDRÞTXðtÞðaÞ with the fac-

tors at time step t, since CTD-D does not have XðtÞðaÞ as its input unlike CTD-S. We substitute

RðtÞUðtÞCðtÞðaÞ for XðtÞðaÞ. This is because CTD-S ensures X
ðtÞ
�C

ðtÞ
�aR

ðtÞUðtÞ which can be rewrit-

ten as XðtÞðaÞ � RðtÞUðtÞCðtÞðaÞ by Eq (3). Eq (12) shows the final form of Cðtþ1Þ

ðaÞ which is the same as

line 18 in Algorithm 2.

Cðtþ1Þ

ðaÞ

CðtÞðaÞ ðRðtÞÞTDXðaÞ

ðDRÞTRðtÞUðtÞCðtÞðaÞ ðDRÞ
T
DXðaÞ

2

4

3

5 ð12Þ

ðDRÞTRðtÞUðtÞCðtÞðaÞ and (ΔR)TΔX(α) are ignored when ΔR is empty as expressed in line 20 of

Algorithm 2.

(2) Reordering computations: The computation order for the element ðDRÞTRðtÞUðtÞCðtÞðaÞ is

important since each order has a different computation cost. We want to determine the opti-

mal parenthesization among possible parenthesizations. It can be shown that

ðððDRÞTRðtÞÞUðtÞÞCðtÞðaÞ is the optimal one with OððD~dÞ~dtðIa þ
~dt þ NðtÞ

a
ÞÞ operations and can be

done by parenthesizing from the left.

We prove that CTD-D is faster than CTD-S in Lemma 3.

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 10 / 18

https://doi.org/10.1371/journal.pone.0200579

Lemma 3. CTD-D is faster than CTD-S. The computational complexity of CTD-D is
OððD~dÞ~dtðNðtÞa

þ IaÞ þ ð
~dtþ1Ia þ dÞDNa þ d0ð~d2

tþ1
þ nnzðRðtþ1ÞÞÞ þ d logd þ nnzðDXÞÞ.

Proof. The lines 1-4 of Algorithm 2 for CTD-D are similar to those of Algorithm 1 for

CTD-S. The only difference is that CTD-D samples d columns from ΔX(α) while CTD-S sam-

ples s columns from X(α). Thus, lines 1-4 takes OðnnzðDXÞ þ dDNa þ d logdÞ. Updating R(t

+1) and U(t+1) in lines 5-16 needs Oðd0ð~d2
tþ1
þ nnzðRðtþ1ÞÞÞÞ operations as proved in Lemma 1

in [23]. In updating Cðtþ1Þ in lines 17-18, (R(t))TΔX(α) takes computational cost of Oð~dtIaDNaÞ.

(ΔR)TΔX(α) takes OðD~dIaDNaÞ and ðDRÞTRðtÞUðtÞCðtÞðaÞ takes OððD~dÞ~dtðIa þ
~dt þ NðtÞ

a
ÞÞ. Over-

all, CTD-D takes

OððD~dÞ~dtðNðtÞa
þ IaÞ þ ð

~dtþ1Ia þ dÞDNa þ d0ð~d2
tþ1
þ nnzðRðtþ1ÞÞÞ þ d logd þ nnzðDXÞÞ.

CTD-D is faster than CTD-S because CTD-S has ~sIaNa in its complexity, which is much

larger than all the terms in the complexity of CTD-D.

Experiments

We perform experiments to answer the following questions.

Q1: What is the performance of our static method CTD-S compared to the competing

method TENSOR-CUR?

Q2: How do the performance of CTD-S and TENSOR-CUR change with regard to the sample

size parameter?

Q3: What is the performance of our dynamic method CTD-D compared to the static

method CTD-S?

Q4: What are the results of applying CTD-D for online DDoS attack detection and online

troll detection?

Experimental settings

Machine. All the experiments are performed on a machine with a 10-core Intel 2.20 GHz

CPU and 256 GB RAM.

Competing method. We compare our proposed method CTD with TENSOR-CUR [16], the

state-of-the-art sampling-based tensor decomposition method. Both methods are imple-

mented in MATLAB.

Measure. We define three metrics (1. Relative Error, 2. Memory, and 3. Time) as follows.

First, a Relative Error is defined as Eq (13). X denotes the original tensor and ~X is the tensor

reconstructed from the factors of X. For example, ~X ¼C�aRU in CTD-S.

Relative Error ¼
jj ~X � Xjj

2

F

jjXjj
2

F

ð13Þ

Second, Memory is defined as Eq (14). It measures the relative amount of memory needed for

storing the resulting factors. The denominator and numerator indicate the amount of memory

needed for storing the original tensor and the resulting factors, respectively.

Memory ¼
nnzðCÞ þ nnzðUÞ þ nnzðRÞ

nnzðXÞ
ð14Þ

Finally, Time denotes running time in seconds.

Data. Table 3 shows the data we used in our experiments.

Input parameters. All methods take a tensor X generated from each dataset, a mode α,

and a sample size s as input because they are LR tensor decomposition methods. In each

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0200579

experiment, we give the same input and compare the performance. We fix α = 1 and perform

experiments under various sample sizes s. We set the number of slabs to sample r = s and the

rank k = 10 in TENSOR-CUR, and set � = 10−6 in CTD.

Performance of CTD-S

We measure the performance of CTD-S to answer Q1 and Q2. In summary, compared to the

TENSOR-CUR, CTD-S is more accurate, and its running time and memory usage are relatively

constant over various sample sizes.

Fig 3 shows the Time vs. Relative Error and the Memory vs. Relative Error of CTD-S com-

pared to TENSOR-CUR under various sample sizes to answer Q1. We measure error under simi-

lar level of running time with the pair of results with smallest difference in running time

(horizontal lines in Fig 3). We find that CTD-S is up to 11× more accurate for the same level of

running time compared to TENSOR-CUR. This phenomenon coincides with the Lemma 2,

which guarantees that CTD-S is more accurate than TENSOR-CUR theoretically. Likewise, we

choose the pair of points with smallest error difference between the two methods to compare

Table 3. Summary of the tensor data used.

Name I1 I2 I3 Nonzeros

Facebook-wall [25] 63,891 63,890 1,504 738,485

Facebook-wall (synthetic) [30] 63,891 63,890 1,504 1,169,656

Hyperspectral Image [26] 538 323 148 25,715,854

Infectious [27] 407 410 1,392 17,298

Hypertext 2009 [28] 112 113 5,246 20,818

Haggle [29] 77 274 1,567 27,972

CAIDA [30] 189 189 1,000 20,511

CAIDA (synthetic) [30] 189 189 1,000 46,102

https://doi.org/10.1371/journal.pone.0200579.t003

Fig 3. Error, running time, and memory usage of CTD-S compared to TENSOR-CUR varying sample sizes. CTD-S is

more accurate, faster and more memory-efficient than TENSOR-CUR.

https://doi.org/10.1371/journal.pone.0200579.g003

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 12 / 18

https://doi.org/10.1371/journal.pone.0200579.t003
https://doi.org/10.1371/journal.pone.0200579.g003
https://doi.org/10.1371/journal.pone.0200579

running time and memory (vertical lines in Fig 3). Although no significant improvement in

speed and memory usages are found for under similar sample sizes, CTD-S is able to perform

2.3× faster, and 24× more memory-efficient than TENSOR-CUR under similar error rates.

Fig 4 shows the Relative Error, Time, and Memory of CTD-S compared to those of TENSOR-

CUR over increasing sample sizes s for the Haggle dataset to answer question Q2. The error of

CTD-S decreases as s increases because it gains more data to sample important fibers which

describe the original tensor well. The running time and memory usage of CTD-S are relatively

constant compared to those of TENSOR-CUR. This is because CTD-S keeps only the linearly

independent fibers, the number of which is bound by the rank of X(α). There are small fluctua-

tions in the graphs since the sampling process of both CTD-S and TENSOR-CUR are based on

randomness. Although we have shown the results for only the Haggle dataset, the overall trend

persists over other datasets.

We further investigate the differences in accuracy improvements under various datasets by

characterizing the dataset and relations to CTD-S performs. we characterize the datasets with

density (dense or sparse) and fiber independence rate. The fiber independence rates are mea-

sured as follows:

number of independent mode� a fibers
number of the whole mode� afibers of a tensor

Table 4 represents the accuracy of CTD-S compared to TENSOR-CUR and fiber indepen-

dence rate. We can identify that in sparse datasets, ones with a lower fiber independence rate

shows better accuracy performance in large. This is in an accordance to the assumption that if

Fig 4. Error, running time, and memory usage of CTD-S compared to those of TENSOR-CUR over sample size s for

haggle dataset. CTD-S is more accurate over various sample sizes, and its running time and memory usage are

relatively constant compared to the TENSOR-CUR.

https://doi.org/10.1371/journal.pone.0200579.g004

Table 4. The accuracy of CTD-S compared to TENSOR-CUR and the fiber independence rate.

Name Density Accuracy compared to TENSOR-CUR Fiber independence rate

CAIDA sparse 48.3× 3.81 × 10−6

Haggle sparse 30.1× 1.24 × 10−6

Hypertext 2009 sparse 11× 1.79 × 10−4

Facebook-wall sparse 2.2× 4.40 × 10−4

Infectious sparse 2.8× 6.43 × 10−4

Hyperspectral Image dense 10× 1.13 × 10−2

https://doi.org/10.1371/journal.pone.0200579.t004

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 13 / 18

https://doi.org/10.1371/journal.pone.0200579.g004
https://doi.org/10.1371/journal.pone.0200579.t004
https://doi.org/10.1371/journal.pone.0200579

the fiber independence rate is low, there’s a high probability of obtaining most of these inde-

pendent fibers with a given sample size leading to high accuracy for CTD-S. The Hyperspectral

Image data that forms a dense tensor showed relatively higher accuracy even though the pro-

portion of independent fibers is high under the strict measure of independence. However,

image data are known to have high redundancy and CTD-S samples fibers well even when

strict independence rate is low.

Performance of CTD-D

We compare the performance of CTD-D with those of CTD-S to answer Q3. In summary,

CTD-D is up to 82× faster for the same level of error compared to CTD-S. The detail is as

follows.

To simulate a dynamic environment, we divide a given dataset into two parts along the

time mode. We use the first 80% of the dataset as historical data and the later 20% as incoming

data. We assume that historical data is already given and incoming data arrives sequentially at

every time step, such that the whole data grows along the time mode. We measure the perfor-

mance of CTD-D and CTD-S at each time step and calculate the average. We set the sample

size d of CTD-D to be much smaller than that of CTD-S because CTD-D samples fibers only

from the increment DX while CTD-S samples from the whole data X. We set d of CTD-D to

be 0.01 times s of CTD-S, α = 1, and � = 10−6.

Fig 5 shows the Time vs. Relative Error and Memory vs. Relative Error relation of CTD-D

compared to those of CTD-S. Note that CTD-D is much faster than CTD-S for all the datasets.

The reason why CTD-D is especially faster for the Hyperspectral Image dataset is that the data-

set has relatively many dependent fibers, which makes CTD-D skip updating U, compared to

the other datasets. CTD-D uses the same or slightly more memory than CTD-S does. This is

because multiplication between sparse matrices used in updating C does not always produce

sparse output, thus the number of nonzero entries in C increases slightly over time steps.

Fig 5. Error, running time, and memory usage relation of CTD-D compared CTD-S varying sample sizes. CTD-D is

faster and has smaller error while using the same or slightly larger memory space compared to CTD-S.

https://doi.org/10.1371/journal.pone.0200579.g005

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 14 / 18

https://doi.org/10.1371/journal.pone.0200579.g005
https://doi.org/10.1371/journal.pone.0200579

CTD at work

In this section, we apply CTD-D to online DDoS attack detection in network traffic data and

online troll detection in social network data. We show how CTD-D’s interpretability can help

successfully detect DDoS attacks and trolls.

Online DDoS attack detection

A DDoS attack makes an online service unavailable by sending a huge amount of traffic to the

server from multiple sources. DDoS attacks are still major threats to many companies. In

effect, 20% of financial companies get $1 million revenue loss per hour and 43% lose more

than $250,000 hourly under DDoS attack, while 74% take more than 1 hour to shut down the

attacks [24].

Our goal is to detect DDoS attacks in network traffic data efficiently in an online fashion.

We propose a novel online DDoS attack detection method based on CTD-D’s interpretability.

We show that CTD-D is one of the feasible options for online DDoS attack detection and

show how it detects attacks successfully. In contrast to the standard PARAFAC [12] and

Tucker [13] decomposition methods, CTD-D can determine DDoS attacks from its decompo-

sition result without expensive overhead. We aim to dynamically find a victim (destination

host) and corresponding attackers (source hosts) of each DDOS attack in network traffic data

that is when a victim receives a huge amount of traffic from a large number of attackers.

The online DDoS attack detection method based on CTD-D is as follows. First, we apply

CTD-D on network traffic data which is a 3-mode tensor in the form of (source IP—destina-

tion IP—time). We assume an online environment where each slab of the network traffic data

in the form of (source IP—destination IP) arrives sequentially at every time step. We use

source IP mode as mode α. Second, we inspect the factor R of CTD-D, which consists of actual

mode-α fibers from the original data. R is composed of important mode-α fibers which signify

major activities such as DDoS attack or heavy traffic to the main server. Thanks to CTD, we

can directly find out destination host and occurrence time of a major activity represented in a

fiber in R, by simply tracking the indices of fibers. We regard fibers with the same destination

host index represent the same major activity, and consider the first fiber among those with the

same destination host index to be the representative of each major activity. Then, we select

fibers with the norm higher than the average among the first fibers and suggest them as candi-

dates of DDoS attack. This is because DDoS attacks have much higher norms than normal traf-

fic does.

We generate network traffic data by injecting DDoS attacks on the real-world CAIDA net-

work traffic dataset [30]. We assume that randomly selected 20% of source hosts participate in

each DDoS attack. Table 5 shows the result of DDoS attack detection method of CTD-D.

Table 5. The result of online DDoS attack detection method based on CTD-D. CTD-D achieves high F1 score for

various n with notable precision, where n denotes the number of injected DDoS attacks.

n Recall Precision F1 score

1 1.000 1.000 1.000

3 1.000 1.000 1.000

5 0.880 1.000 0.931

7 0.857 1.000 0.921

https://doi.org/10.1371/journal.pone.0200579.t005

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 15 / 18

https://doi.org/10.1371/journal.pone.0200579.t005
https://doi.org/10.1371/journal.pone.0200579

CTD-D achieves high F1 score for various number n of injected DDoS attacks with notable

precision. We set d = 10, and � = 0.15.

Online troll detection

Recent social network services (SNS) such as Facebook or Twitter has billions of users; their

main concern is to detect trolls, or abnormal users, since trolls can severely undermine the ser-

vice. Our goal is to detect trolls in social network tensor data in an online fashion. We define a

troll as an abnormal user who posts on the other users’ walls much more than normal users

do. We show how CTD-D finds trolls successfully using its interpretability.

We use a process similar to the online DDoS attack detection method based on CTD-D

described in the previous section to find trolls. We use the real-world Facebook-wall social net-

work tensor, a 3-mode tensor containing triplets where each entry denotes the number of

posts for the corresponding triplet. A triplet (User 1—User 2—time) means that User 2 posted

on the User 1’s wall. We assume an online environment where new data point in the form of

(User 1—User 2) arrives at every time step. We apply CTD-D with User 1 mode for α so that

each fiber collected in the factor R represents User 2’s behavior at some time. By tracking indi-

ces of fibers in the factor R, we can reveal which fiber represents behaviors of which users at

which time. We then decide trolls (User 2) by picking fibers which have norm larger than the

average.

We test the ability of CTD to interpretability detect trolls by inserting synthetic trolls into

the Facebook-wall dataset. Table 6 shows the result of online troll detection in Facebook-wall

dataset based on CTD-D. It is notable that we can detect all the trolls inserted with very small

sample size, 10−4% of the entire fibers, for a various number of trolls.

Conclusion

We propose CTD, a fast, accurate, and directly interpretable tensor decomposition method

based on sampling. The static version CTD-S is up to 11× more accurate, 2.3× faster, and 24×
more memory-efficient compared to the state-of-the-art method. The dynamic version

CTD-D is up to 82× faster than CTD-S for an online environment. CTD-D is the first method

providing interpretable dynamic tensor decomposition. Utilizing the interpretability of CTD,

we were able to successfully detect online DDoS attacks and trolls from network data. The

interpretability of CTD comes from the assumption that the original data fiber itself is sparse

and interpretable, such as IP address or words in documents. Although not all real-world data

have this property, such as values in gene expression data, a wide range of social and techno-

logical data in the online environment does have the sparse and interpretable properties. In

such cases, CTD is capable of dynamically detecting important or abnormal data in an online

environment.

Table 6. The result of online troll detection in facebook-wall dataset based on CTD-D. CTD-D detects all the trolls

inserted (recall = 1) for various n, where n denotes the number of injected troll users. Note that we used only 10−4% of

the entire fibers as a sample size.

n Recall Precision F1 score

1 1.000 0.200 0.333

3 1.000 0.500 0.667

5 1.000 0.556 0.714

10 1.000 0.833 0.909

https://doi.org/10.1371/journal.pone.0200579.t006

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 16 / 18

https://doi.org/10.1371/journal.pone.0200579.t006
https://doi.org/10.1371/journal.pone.0200579

Author Contributions

Conceptualization: Lee Sael.

Data curation: Jungwoo Lee.

Formal analysis: Jungwoo Lee.

Funding acquisition: Lee Sael.

Investigation: Jungwoo Lee, Dongjin Choi.

Methodology: Jungwoo Lee.

Resources: Dongjin Choi.

Software: Jungwoo Lee.

Supervision: Lee Sael.

Writing – original draft: Jungwoo Lee.

Writing – review & editing: Dongjin Choi, Lee Sael.

References
1. Khoa NLD, Zhang B, Wang Y, Liu W, Chen F, Mustapha S, et al. On Damage Identification in Civil

Structures Using Tensor Analysis. In PAKDD 2015. 2015.

2. Prada MA, Toivola J, Kullaa J, HollméN J. Three-way Analysis of Structural Health Monitoring Data.

Neurocomput. 2012; 80(15):119–128. https://doi.org/10.1016/j.neucom.2011.07.030

3. Wang Y, Chen R, Ghosh J, Denny JC, Kho A, Chen Y, et al. Rubik: Knowledge Guided Tensor Factori-

zation and Completion for Health Data Analytics. In KDD’15; 2015; p. 1265–1274.

4. Cyganek B, Woźniak M. Tensor based representation and analysis of the electronic healthcare record

data. BIBM; 2015; p. 1383–1390.

5. Perros I, Chen R, Vuduc R, Sun J. Sparse Hierarchical Tucker Factorization and Its Application to

Healthcare. ICDM; 2015; p. 943–948.

6. Thuraisingham BM, Khan K, Masud MM, Hamlen KW. Data Mining for Security Applications. In IEEE/

IFIP EUC 2008; 2008; p. 585–589.

7. Phua C, Lee VCS, Smith-Miles K, Gayler RW. A Comprehensive Survey of Data Mining-based Fraud

Detection Research; In ICICTA 2010; 2010; p. 50–53.

8. Allanach J, Tu H, Singh S, Willett P, Pattipati K. Detecting, tracking, and counteracting terrorist networks

via hidden Markov models. In IEEE Aerospace; 2004; p. 3257.

9. Arulselvan A, Commander CW, Elefteriadou L, Pardalos PM. Detecting Critical Nodes in Sparse

Graphs. Comput Oper Res. 2009; 36(7):2193–2200. https://doi.org/10.1016/j.cor.2008.08.016

10. Cao Q, Sirivianos M, Yang X, Pregueiro T. Aiding the Detection of Fake Accounts in Large Scale Social

Online Services. NSDI12; 2012; p. 197–210.

11. Kontaxis G, Polakis I, Ioannidis S, Markatos EP. Detecting social network profile cloning. In PERCOM

Workshops; 2011; p. 295–300.

12. Harshman RA. Foundations of the PARAFAC procedure: Models and conditions for an “explanatory”

multi-modal factor analysis. UCLA Working Papers in Phonetics; 1970; 16(1).

13. Tucker LR. Some mathematical notes on three-mode factor analysis. Psychometrika. 1966;(31) 3:279–

311. https://doi.org/10.1007/BF02289464

14. Drineas P, Mahoney MW. A randomized algorithm for a tensor-based generalization of the singular

value decomposition. Linear algebra and its applications. 2007; 430(2-3):553–571. https://doi.org/10.

1016/j.laa.2006.08.023

15. Caiafa CF, Cichocki A. Generalizing the column–row matrix decomposition to multi-way arrays. Linear

Algebra and its Applications. 2010; 433(3):557–573. https://doi.org/10.1016/j.laa.2010.03.020

16. Mahoney MW, Maggioni M, Drineas P. TENSOR-CUR decompositions for tensor-based data. SIAM J

Matrix Anal Appl. 2008; 30(3): 957–987. https://doi.org/10.1137/060665336

17. Sun J, Tao D, Faloutsos C. Beyond streams and graphs: dynamic tensor analysis. In ACM SIGKDD’06;

2006; p.374–383.

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 17 / 18

https://doi.org/10.1016/j.neucom.2011.07.030
https://doi.org/10.1016/j.cor.2008.08.016
https://doi.org/10.1007/BF02289464
https://doi.org/10.1016/j.laa.2006.08.023
https://doi.org/10.1016/j.laa.2006.08.023
https://doi.org/10.1016/j.laa.2010.03.020
https://doi.org/10.1137/060665336
https://doi.org/10.1371/journal.pone.0200579

18. Sun J, Papadimitriou S, Yu PS. Window-based Tensor Analysis on High-dimensional and Multi-aspect

Streams. In ICDM’06; 2006; p. 1076–1080.

19. Zhou S, Nguyen XV, Bailey J, Jia Y, Davidson I. Accelerating Online CP Decompositions for Higher

Order Tensors. In ACM SIG KDD’16; 2016: p.1375–1384.

20. Drineas P, Mahoney MW, Muthukrishnan S. Relative-error CUR matrix decompositions. SIAM J Matrix

Anal Appl. 2008; 30(2):844–881. https://doi.org/10.1137/07070471X

21. Drineas P, Kannan R, Mahoney M. Fast Monte Carlo algorithms for matrices III: Computing a com-

pressed approximate matrix decomposition. SIAM J Comput. 2006; 36(1):184–206. https://doi.org/10.

1137/S0097539704442696

22. Sun J, Xie Y, Zhang H, Faloutsos C. Less is More: Compact Matrix Decomposition for Large Sparse

Graphs. In SDM’07; 2007; p. 366–377.

23. Tong H, Papadimitriou S, Sun J, Yu PS, Faloutsos C. Colibri: fast mining of large static and dynamic

graphs. In ACM SIGKDD’08; 2008; p. 686–694.

24. Korolov M. DDoS costs, damages on the rise. CSO News, 2016.

25. http://socialnetworks.mpi-sws.org/data-wosn2009.html.

26. http://www.imageval.com/scene-database-4-faces-3-meters/.

27. http://konect.uni-koblenz.de/networks/sociopatterns-infectious.

28. http://konect.uni-koblenz.de/networks/sociopatterns-hypertext.

29. http://konect.uni-koblenz.de/networks/contact.

30. https://github.com/leesael/CTD.

CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions

PLOS ONE | https://doi.org/10.1371/journal.pone.0200579 July 25, 2018 18 / 18

https://doi.org/10.1137/07070471X
https://doi.org/10.1137/S0097539704442696
https://doi.org/10.1137/S0097539704442696
http://socialnetworks.mpi-sws.org/data-wosn2009.html
http://www.imageval.com/scene-database-4-faces-3-meters/
http://konect.uni-koblenz.de/networks/sociopatterns-infectious
http://konect.uni-koblenz.de/networks/sociopatterns-hypertext
http://konect.uni-koblenz.de/networks/contact
https://github.com/leesael/CTD
https://doi.org/10.1371/journal.pone.0200579

