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Abstract

Aspergillus fumigatus, the causal agent of human aspergilloses, is known to be non-patho-

genic in plants. It is present as saprophyte in different types of organic matter and develops

rapidly during the high-temperature phase of the composting process. Aspergilloses are

treated with demethylation inhibitor (DMI) fungicides and resistant isolates have been

recently reported. The present study aims to estimate the abundance, genetic diversity and

DMI sensitivity of A. fumigatus during the composting process of orange fruits. Composting

of orange fruits resulted in a 100-fold increase in A. fumigatus frequency already after 1

week, demonstrating that the degradation of orange fruits favoured the growth of A. fumiga-

tus in compost. Most of A. fumigatus isolates belonged to mating type 2, including those ini-

tially isolated from the orange peel, whereas mating type 1 evolved towards the end of the

composting process. None of the A. fumigatus isolates expressed simultaneously both mat-

ing types. The 52 investigated isolates exhibited moderate SSR polymorphisms by forma-

tion of one major (47 isolates) and one minor cluster (5 isolates). The latter included mating

type 1 isolates from the last sampling and the DMI-resistant reference strains. Only few iso-

lates showed cyp51A polymorphisms but were sensitive to DMIs as all the other isolates.

None of the A. fumigatus isolates owned any of the mutations associated with DMI resis-

tance. This study documents a high reproduction rate of A. fumigatus during the composting

process of orange fruits, requesting specific safety precautions in compost handling. Fur-

thermore, azole residue concentrations in orange-based compost were not sufficient to

select A. fumigatus resistant genotypes.
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Introduction

The production of compost recently gained much importance in the EU as a waste manage-

ment process. Composting reduces the volume of waste going to landfills, and the related CH4

and CO2 emission due to organic material degradation [1]. Composting process allows to

upcycle a variety of organic materials and biowastes originating from different sources. The

process begins with a thermophilic phase, when temperature reaches 55–65˚ C, followed by a

maturing and mesophilic stage when the temperature declines and the material stabilizes.

Reaching a temperature of 55˚ C for at least 3 days is an important step to guarantee sanitiza-

tion and microbial safety of compost products [2]. It is specifically recommended by compost

quality regulations applied in several EU countries.

The opportunistic fungal pathogen Aspergillus fumigatus (Fresen., syn. Neosartorya fumi-
gata, O’Gorman, Fuller and Dyer), causal agent of the “aspergilloses” in immunocompromised

human hosts, is known to be present in different types of compost [3–6]. It can survive suc-

cessfully under a wide range of environmental conditions, particularly due to its capacity to

resist high temperatures (thermo-tolerant).Consequently, it is prevalent during the high-tem-

perature phase of the composting process and it can be present in compost at concentrations

of up to 106−107 cfu/g dw [5,7,8]. The spores are released to the air during composting activi-

ties such as heat turning, reaching concentrations of 104−107/m3 air [9,10]. Although it can be

present in relatively high concentrations, the current hygienic EU regulations for compost do

not require an estimation of its presence but rather seek for the absence or limited presence of

other human pathogens such as Salmonella spp. and Escherichia coli [1].

Demethylation inhibitor fungicides (DMIs, chemically named also as ‘azoles’) are the prin-

cipal antifungal compounds used in the treatment (prophylactic and curative) of human and

animal diseases caused by A. fumigatus [11]. DMIs inhibit the enzyme lanosterol 14-α
demethylase (encoded by cyp51 gene, A and B paralogues), involved in ergosterol biosynthetic

pathway of fungi [12,13]. Chemically related molecules have also been used for fruit pre- and

post-harvest treatments and application of field crops in agriculture for more than 30 years

[14,15]. Resistance to medical triazoles (e. g. itraconazole) is well-known since the 1990s and

associated with several mutations in the cyp51A gene of A. fumigatus occurring in patients hav-

ing been treated with these antifungal compounds [16]. Recently, triazole resistant strains have

been isolated also from patients not previously treated with triazoles, suggesting that they have

picked up air spores originating from any kind of DMI treated material in agriculture and gen-

eral environment [3,17]. Since compost is one of the most important environmental sources

for A. fumigatus [14], DMI resistant strains might have their origin from this substrate contrib-

uting to human health risks [3]. Recently, many azole resistant strains of A. fumigatus contain-

ing a new resistance mutation with clinical relevance were found in compost produced from

conventional flower bulbs leftovers [6]. However, it is still not clear whether these mutants

evolved during the composting process (e.g. by DMI residues) or were selected by earlier DMI

treatment of plant material which was then used to produce the compost pile. Indeed, we pre-

viously investigated the presence of A. fumigatus isolates in commercial composts produced

from different wastes, with different composting methods in different locations (Italy, Spain,

Hungary, The Netherlands, Germany and United Kingdom): A. fumigatus was present in all

composts but not a single isolate shown mutations for DMI resistance [4,5].

The aim of this study was to estimate the presence and abundance of A. fumigatus during

the composting process of orange fruits, commonly treated with post-harvest fungicides like

imazalil (a DMI fungicide), and to evaluate whether this biowaste may be considered as a “hot

spot” for DMI resistance evolution. Furthermore, the genetic diversity of isolates, their sensi-

tivity to DMIs and the molecular characterization of the coding part of the cyp51A gene were
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assessed, in order to identify possible mutations occurring during the composting process.

Our hypothesis was that the composting process of orange fruits would allow A. fumigatus to

multiply and reproduce, but that the low azole concentrations present in the orange peel

would not select for azole-resistant A. fumigatus genotypes.

Materials and methods

Collection of oranges samples, identification and quantification of A.

fumigatus isolates

Oranges samples (around 300 orange fruits) have been collected in Ivrea among leftovers from

the local carnival. Oranges were specifically produced for the carnival in the area of Corigliano

Calabro (Southern Italy, GPS coordinates: 39˚40’21.7"N 16˚25’42.0"E), and not used for food

purposes. The oranges were routinely treated by imazalil in order to prevent the development

of post-harvest fungal diseases, with a maximum residue level<5 mg per kg of orange fruits

according to EU regulation (http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/

public/?event=homepage&language=EN). Twenty percent of the oranges have been examined

for the presence of A. fumigatus, the rest was delivered to an industrial composting plant

located in Piedmont. Isolation and identification of A. fumigatus was carried out following the

protocol by Franceschini et al. [4]. One g of three subsamples (orange peel) was added to 9 ml

Ringer solution and shaken for 1 hour at 100 rpm. One hundred μl of suspension and serial

dilutions of it were plated on 20 ml of potato dextrose agar (PDA, Merck1, Darmstadt, Ger-

many) containing streptomycin (50 mg/l, Applichem, Darmstadt, Germany), in triplicates.

Plates were incubated at 42˚ C for 3–5 days.

Typical powdery green-grey colonies of two isolates (AR4.9 and AR6.1) from two orange

fruits were purified, and identified by macro and micro-morphological characteristics. The

plates were incubated at 50˚ C with the aim to distinguish A. fumigatus from other Aspergillus
species. Colonies capable to grow at 50˚ C were counted on all plates, multiplied by the dilu-

tion factor and converted to one gram of dry weight (dw) of the orange peel. Monoconidial

cultures obtained from each isolate were stored in 30% glycerol solution at -80˚ C.

Preparation of orange-based compost

The oranges were composted using a bench-scale system consisting of 3.5-L PVC plastic units

incubated at 50˚ C for 1 month starting from March 6th 2017. To do so, four kg of oranges

were crushed and added to each unit embedded in a plastic bag to avoid external contamina-

tions. The composting process started with a first phase of active degradation lasting nearly 7

weeks, followed by another 4 weeks of maturation phase at a pH > 7. Compost samples were

collected during 10 sampling dates (86 days in total), at a 7–14 days interval, and the compost-

ing material was well mixed every time (Table 1).

Identification and quantification of A. fumigatus isolates

Fifty A. fumigatus isolates (5 isolates per each sampling date) were collected during the com-

posting process and identified as described above (Table 1). For isolation of A. fumigatus from

compost, we used a selection medium without azoles in order to pick up isolates with reduced

sensitivity to DMIs as well as fully sensitive isolates for further in vitro sensitivity assays.

Fifty isolates from compost together with the two isolates from intact orange fruits were

used subsequently for molecular identification using internal transcribed spacer (ITS) region,

microsatellite analysis, sensitivity assays to DMIs, and molecular characterization of the

cyp51A gene. Fungal DNA was extracted by the EZNA1 Fungal DNA extraction kit (Omega
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Table 1. List of A. fumigatus isolates selected for sensitivity assays with accession numbers and mating type.

Code Sampling date Accession no.

(ITS)

Accession no.

(cyp51A)

Mating type

1 2

AR4.9 28 February 2017 MH026061 +

AR6.1 MH026062 +

502.1_13.3 13 March 2017 MG970365 MH026063 +

502.2_13.3 MG970366 +

502.3_13.3 MG970367 +

502.4_13.3 MG970368 +

502.5_13.3 MG970369 +

502.1_20.3 20 March 2017 MG970370 +

502.2_20.3 MG970371 +

502.3_20.3 MG970372 +

502.4_20.3 MG970373 +

502.5_20.3 MG970374 MH026064 +

502.1_27.3 27 March 2017 MG970375 +

502.2_27.3 MG970376 +

502.3_27.3 MG970377 +

502.4_27.3 MG970378 +

502.5_27.3 MG970379 MH026065 +

502.1_3.4 3 April 2017 MG970380 +

502.2_3.4 MG970381 +

502.3_3.4 MG970382 MH026066 +

502.4_3.4 MG970383 +

502.5_3.4 MG970384 +

502.1_10.4 10 April 2017 MG970385 MH026067 +

502.2_10.4 MG970386 +

502.3_10.4 MG970387 +

502.4_10.4 MG970388 +

502.5_10.4 MG970389 +

502.1_18.4 18 April 2017 MG970390 MH026068 +

502.2_18.4 MG970391 +

502.3_18.4 MG970392 +

502.4_18.4 MG970393 +

502.5_18.4 MG970394 +

502.1_24.4 24 April 2017 MG970395 +

502.2_24.4 MG970396 MH026069 +

502.3_24.4 MG970397 MH026070 +

502.4_24.4 MG970398 MH026071 +

502.5_24.4 MG970399 +

502.1_2.5 2 May 2017 MG970400 MH026072 +

502.2_2.5 MG970401 +

502.3_2.5 MG970402 +

502.4_2.5 MG970403 +

502.5_2.5 MG970404 +

502.1_8.5 8 May 2017 MG970405 MH026073 +

502.2_8.5 MG970406 +

502.3_8.5 MG970407 +

502.4_8.5 MG970408 +

502.5_8.5 MG970409 +

(Continued)
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Bio-Tek, Darmstadt, Germany) following the manufacturer’s instructions. The amplification

of the ITS region was performed as described by White et al. [18], and the sequences of the ITS

amplicons were used for molecular identification.

Mating types identification

Mating type of A. fumigatus isolates was determined by using multiplex PCR according to Pao-

letti et al. [19]. Multiplex PCR assay included MAT-1 specific primer (AFM1, 50-CCTTGAC
GCGATGGGGTGG- 30), MAT-2 specific primer (AFM2, 50-CGCTCCTCATCAGAACAACT
CG-30), and AFM3 common primer (50-CGGAAATCTGATGTCGCCACG-30) [19]. Reaction

volumes (25 μl) contained 10 ng DNA, 1× PCR buffer, 1.4 mM MgCl2, 0.4 μM primer AFM1,

0.4 μM primer AFM2, 0.8 μM AFM3, 0.2 mM dNTPs, and 1 U Taq DNA polymerase (Qiagen,

Hilden, Germany). PCR cycling conditions consisted of 5 min at 95˚ C of initial denaturation

step, followed by 35 cycles of 30 s at 95˚ C, 30 s at 60˚ C and 1 min at 72˚ C, and a final exten-

sion step of 5 min at 72˚ C. Five microliters of each PCR product were electrophoresed on a

1.2% agarose gel pre-stained with RedGel (Biotium, Hayward, CA, USA) and visualized under

UV light. The mating type of each isolate was assigned due to the size of the amplicon: 834 bp

(MAT-1), and 438 bp (MAT-2).

Genetic diversity assessment of A. fumigatus isolates

Six microsatellite regions (STRAf 3A, 3B, 3C, and STRAf 4A, 4B, 4C) of 52 A. fumigatus isolates

were amplified using the set of primers described by Valk et al. [20]. Four reference environ-

mental isolates (provided by B. Fraaije, Rothamsted Research, Harpenden, UK) were also

included in the analysis: wild-type isolate (WT), and resistant isolates (TR34+L98H from UK,

TR46+Y121F+T289A from UK and TR34+L98H from NL). The PCR mixture (20 μl) contained

1 ng of genomic DNA, 1× PCR buffer, 1 μM of each primer, 0.2 mM dNTPs, 2.0 mM of

MgCl2, and 1 U Taq DNA polymerase (Qiagen). PCR conditions were as follows: initial dena-

turation at 95˚ C for 10 min, followed by 30 cycles of denaturation at 95˚ C for 30 s, annealing

at 60˚ C for 30 s and extension at 72˚ C for 1 min, and final extension at 72˚ C for 10 min.

STRAf 3B and STRAf 4B microsatellite loci were amplified using an annealing temperature of

65˚ C. Amplified DNA fragments were separated on 3% MetaPhor1 agarose gel (Lonza,

Rockland, USA), and then analyzed by PyElph 1.4 software [21]. The calculation of genetic dis-

tance between isolates was performed by GenAlEx 6.502 software [22,23]. Cluster analyses of

polymorphism detected by six SSR markers were performed using the Unweighted Pair Group

Method with Arithmetic Averages (UPGMA) of the MEGA 7 software [24].

In vitro sensitivity testing of A. fumigatus isolates to DMIs

Fifty-two A. fumigatus isolates were tested for in vitro sensitivity to the DMIs by using one

post-harvest and veterinary medical DMI (imazalil, syn. enilconazole) and two human medical

Table 1. (Continued)

Code Sampling date Accession no.

(ITS)

Accession no.

(cyp51A)

Mating type

1 2

502.1_24.5 24 May 2017 MG970410 +

502.2_24.5 MG970411 MH026074 +

502.3_24.5 MG970412 MH026075 +

502.4_24.5 MG970413 MH026076 +

502.5_24.5 MG970414 +

https://doi.org/10.1371/journal.pone.0200569.t001
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DMIs (posaconazole and voriconazole). EUCAST protocol [25] was applied with slight modi-

fications (incubation temperature at 37˚ C, and visual reading of results using turbidity scale)

following the FRAC standard methods by in vitro assays for plant pathogens on microtiter

plates (http://www.frac.info/monitoring-methods). Four environmental isolates were addi-

tionally tested as the reference isolates (WT isolate and 3 resistant isolates as indicated above).

Imazalil (PESTANAL1 analytical standard, Sigma-Aldrich), voriconazole, and posacona-

zole (VETRANAL™ analytical standard, Sigma-Aldrich) were tested using 5-fold serial dilu-

tions (from 50 to 0.08 mg/l), in two replicates. RPMI 1640 medium (with L-glutamine, Sigma-

Aldrich) containing 2% glucose, 3-(N-morpholino) propanesulfonic acid (MOPS; final con-

centration of 0.165 mol/l, pH 7.0), and each specific fungicide was loaded (100 μl/well) into

flat-bottom Nunc™ 96-well microplate (Thermo Fisher Scientific, Wilmington, USA). One

hundred μl of A. fumigatus spore suspension (2–5 × 105 conidia/ml) was then added to each

well. Appropriate controls (without fungicide or without A. fumigatus) were also included.

The microplates were incubated for 48 hours at 37˚ C. Mycelial growth of all isolates was visu-

ally assessed [25] by grading turbidity scale (0–5) with 0 referring to optically clear and 5 indi-

cating no reduction in turbidity compared with that in the control (fungicide-free) well.

The percent growth inhibition (GI) was calculated as: % GI = (Gc–Gf / Gc) x 100, where

‘Gf’ indicates the growth percentage at each fungicide concentration, and ‘Gc’ refers to the

growth control. EC50 values (or concentrations causing 50% growth inhibition) were calcu-

lated using a ‘log/logit dose response’ parameter of the GraphPadPrism1 software (version

7.02; La Jolla, CA, USA). The log fungicide concentration vs. normalized response-variable

(GI) procedure using a logistic regression was calculated as: Y = Bottom + (Top-Bottom) / {1

+10 [(LogEC50-X) × HillSlope]}, with Y indicating the response, X referring to the fungicide

concentration, Top and Bottom indicating the plateaus in the Y axis units, and Hillslope refer-

ing to the steepness of the curve [26]. EC50 values were used rather than MIC values due to

their very precise calculation of the dose—response relationship (see FRAC guidelines).

The sensitivity distribution or frequency distribution of isolates at certain EC50 level was

determined for imazalil, posaconazole and voriconazole using the ‘box-and-whiskers’ plot

method. This method provides the variability, shape, and characteristic distribution values

through the maximum and minimum values (‘whiskers’), the interquartile range (the differ-

ences between the various interquartiles), box (50% of population), the median (central line)

value, and the average value [27].

Molecular characterization and sequence analyses of the cyp51A gene

The full cyp51A gene of 52 A. fumigatus isolates was amplified according to Snelders et al. [28]

using the primers P450-A1 (5’-ATGGTGCCGATGCTATGG-3’) and P450-A2 (5’-CTGTC
TCACTTGGATGTG-3’). The PCR cycling conditions consisted of an initial denaturation of 5

min at 95˚ C, followed by 40 cycles at 94˚ C for 30 s, 58˚ C for 45 s, and 72˚ C for 2 min, and a

final extension at 72˚ C for 7 min.

The ITS and cyp51A PCR products were sequenced at BMR Genomics (Padua, Italy). The

GenBank accession numbers of the ITS and cyp51A sequences are reported in Table 1. BLAST

searches of obtained sequences were performed against the GenBank databases at NCBI. Mul-

tiple sequence alignment was performed by Vector NTI Advance 11 software (InforMax,

North Bethesda, Maryland, USA) using the Clustal W algorithm [29]. The cyp51A sequence of

the WT isolate (accession no. AF338659), sensitive compost isolates [4,5] and resistant clinical

and environmental isolates (ITZ.86, 11_0087A, 14, and 98) [28,30–32] were included in the

analyses. Phylogenic analyses were carried out using MEGA 7 software, creating the neigh-

bour-joining (NJ) trees with 1000 bootstrap replications.
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Results

Morphological and molecular identification of A. fumigatus on orange peel

Out of 60 orange fruits, two A. fumigatus isolates (AR4.9 and AR6.1) were detected on the peel

of two different asymptomatic orange fruits, and identified morphologically (frequency of

3.3% on fruits) corresponding to a concentration of 0.01 to 0.04 × 103 cfu A. fumigatus per g of

dw of orange peel. The two isolates AR4.9 and AR6.1 were confirmed as A. fumigatus by mole-

cular characterization on the basis of ITS sequencing (GeneBank Accession Nrs. MG976901

and MG976902).

Identification and quantification of A. fumigatus isolates in orange-based

compost

In total, 50 orange-based compost isolates of A. fumigatus from different composting phases

were collected and identified on the basis of macro and micro morphological observations.

During each sampling date, one compost sample was collected and divided into three subsam-

ples. Five randomly selected colonies per each sample (including all three subsamples) were

confirmed as A. fumigatus by ability to grow at 50˚ C and sequencing ITS amplicons (Table 1).

The abundance of isolates was measured and expressed as cfu/g dw of compost (Fig 1A). The

values at the beginning of the composting process were at 8.8 × 103 cfu/g, increased more or

less steadily and reached highest concentrations on a plateau level at 430.7 to 605.7 × 103 cfu/g

at the last three dates of sampling (Fig 1A).

In addition, the pH of compost samples was measured; it was 3.6 at the beginning and

increased steadily during the composting process reaching a value of 7.8 at the end (Fig 1B).

The fungus was able to grow under both acidic and slightly basic conditions, with the highest

abundance at neutral to slightly basic conditions during the second half of composting when

the composting process was almost accomplished.

Mating types identification

Out of 52 A. fumigatus isolates, six expressed mating type 1 (12%) and 46 mating type 2 (88%)

(S1 Fig and Table 1). No isolate showed amplification of both mating-type bands. Interestingly,

all five isolates originating from the last (10th) sampling were of mating type 1, the other mat-

ing type 1 isolate came from the seventh sampling period.

Genetic diversity of A. fumigatus isolates

Based on six SSR markers, the genetic diversity within the population of 50 A. fumigatus iso-

lates from orange-based compost and 2 isolates from orange fruits was moderate, with two

Fig 1. Abundance of Aspergillus fumigatus (A) and measured pH values of orange-based compost (B) during the

composting process. Both analyses were done during 10 sampling periods. Points represent mean values, and error

bars show standard deviations.

https://doi.org/10.1371/journal.pone.0200569.g001
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main clusters (Fig 2). The first cluster contained most (47) of the isolates and all isolates that

were sensitive to DMIs. The second cluster included 3 reference DMI resistant isolates and the

orange-based compost isolate 502.3_24.5 that showed reduced sensitivity to voriconazole and

posaconazole (Table 2). Three resistant reference isolates were in a separate sub-cluster, while

the orange-based compost isolate 502.3_24.5 was distant from the other isolates. Interestingly,

all A. fumigatus isolates from the last sampling date and the reference wild-type isolate were

also included in the second cluster. Moreover, the sub-clusters in both clusters contained

mainly isolates from the same or close sampling periods.

In vitro sensitivity to DMIs of A. fumigatus isolates

Fifty A. fumigatus isolates from orange-based compost and 2 isolates from orange fruits were

investigated for sensitivity to the three DMI fungicides, voriconazole, posaconazole and imaza-

lil (Table 2). The intrinsic antifungal activity was highest for imazalil (mean EC50 = 0.06±0.01

mg/l, range<0.01–0.09 mg/l), followed by posaconazole (mean EC50 = 0.19±0.02 mg/l, range

<0.01–0.72 mg/l), and voriconazole (mean EC50 = 0.84±0.11 mg/l, range 0.11–0.70 mg/l). The

sensitivity range between the most and least sensitive isolate was 6-fold for voriconazole,

9-fold for imazalil, and 72-fold for posaconazole (Table 2).

Fifty-two A. fumigatus isolates were fully sensitive to the tested DMI fungicides, with excep-

tion of one isolate (502.3_24.5) in combination with two mecidal triazoles (voriconazole and

posaconazole). This isolate was the only one among five isolates from the same (and the last)

sampling date with an increased EC50 value. Two isolates (502.2_24.4, and 502.2_24.5) that

showed polymorphisms at aa positions 46, 120, 172 and 427 were also fully sensitive to the

three tested fungicides.

The ‘box-and-whiskers’ plots including one wild-type and three resistant reference isolates

showed important sensitivity variations in the 50% box of population for posaconazole, and high

maximum whiskers values for voriconazole and posaconazole. The sensitivity of the orange-based

compost isolate 502.3_24.5 was clearly outside the 50% box for voriconazole and posaconazole.

The highest whiskers value was observed for posaconazole. The most uniform sensitivity distribu-

tion taking in consideration all calculated parameters was found for imazalil (Fig 3).

Molecular characterization of the cyp51A coding gene sequence

Out of 14 A. fumigatus isolates from orange-based compost, two isolates (502.2_24.4 and

502.2_24.5) belonging to two different composting periods (24 April and 24 May) showed 4

shared cyp51A polymorphisms: F46Y, V120G, M172V, and E427K (Fig 4). The isolates

502.5_27.3 and 502.2_24.4 shared the mutation S52T, and the isolates 502.3_24.4 and

502.2_24.5 the mutation F495L. Single aa substitutions were also found in isolate 502.2_24.4 at

positions 115 (F to V), 142 (S to P) and 154 (E to D), and in the isolate 502.2_24.5 at position

496 (S to T). On the other hand, 10 other isolates did not show any polymorphisms, including

the isolate 502.3_24.5 that showed reduced sensitivity to voriconazole and posaconazole (Fig

4). Also, the two A. fumigatus isolates from orange fruits (AR4.9 and AR6.1) had no aa substi-

tutions. Mutations known to be responsible in DMI resistance (L98H, Y121F, and T289A)

were present in the resistant reference isolates but not in any of the sequenced A. fumigatus
isolates from compost, and orange fruits.

Moreover, all isolates from this and previous studies [4,5] were aligned in the coding region

of the cyp51A gene (515 aa). Phylogenetic analyses grouped the isolates in two clusters (S2

Fig). The main cluster contained all orange-based compost isolates, WT and resistant reference

isolates, while the second cluster included the compost isolates with a higher number of

cyp51A polymorphisms.
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Discussion

A. fumigatus is not a plant pathogen and does not invade living plant cells. However, it can

grow easily as saprophyte in decaying organic matter. Presence of A. fumigatus has also been

associated with the spoilage and loss of citrus fruits during storage [33]. Several Aspergillus
spp. have been reported as epiphytes on the peel of citrus fruits [34,35]. During the composting

process of orange fruits A. fumigatus population was found to increase a 100-fold already after

1 week, confirming the degradation power for organic matter at high temperatures of this

thermo-tolerant fungus [7]. The maturing phase of composting in which the temperatures

were still high and pH changed from acidic to slightly basic, caused a further increase of fungal

growth, demonstrating that degradation of orange fruits favoured the presence and abundance

of A. fumigatus in compost. Similarly, abundance of A. fumigatus increased tremendously in

corn silage already one week after silo opening [36]. Therefore, it can be expected that in all

organic substrates undergoing a thermophilic phase during degradation (eliminating a big

portion of the microbial populations) A. fumigatus may be present in rather high quantities.

This represents a quite high health risk especially for immunocompromised people and those

who are sensitive to allergic reactions. In addition, the fungus may contaminate the organic

substrates through the production of mycotoxic compounds such as fumigacin [14].

N. fumigata, the teleomorph (sexual) stage of A. fumigatus, is probably rare under natural

conditions and only recently discovered [37]. Genes associated with the expression of both

mating types are present in the genome of A. fumigatus. Mating type 1 is considered to be asso-

ciated to higher invasiveness of A. fumigatus in patients, whereas mating type 2 is more fre-

quent in environmental populations [38]. In our study, none of the isolates expressed

simultaneously both mating types, most of them belonged to mating type 2, including those

isolated from orange peels, whereas mating type 1 evolved towards the end of the composting

process. This pattern demonstrates that also mating type 1 isolates can develop in environmen-

tal populations even if there was a predominance of mating type 2 at the beginning of the

process.

The analysis of the SSR genetic diversity showed that the five isolates from the final com-

posting process belonged to mating type 1 also clustered together with three DMI resistant ref-

erence isolates in cluster II. Moreover, many of the cluster I isolates, including one other

mating type 1 isolate harbored several polymorphisms in cyp51A gene but were sensitive to the

three tested fungicides, suggesting that, in the presence of low azoles concentrations, compost-

ing of orange fruits would not select for azole-resistant A. fumigatus genotypes nor for the well

known mutations coding for triazole resistance (L98H, Y121F, T289A).

A. fumigatus isolates from orange-based compost (this study) exhibited moderate SSR poly-

morphisms supporting microsatellite genotypic results of other environmental populations

[39] and commercial compost [5]. Furthermore, it was not possible to separate DMI-sensitive

and DMI-resistant strains. Although three resistant reference strains grouped together in the

same sub-cluster, they were together with a wild-type reference isolate. Thus, SSR genotyping

is not related to fungicide sensitivity as was already observed in previous studies [5,30,39].

However, clustering might be related to the geographic origin as shown earlier by Santoro

et al. [5] and to a specific composting phase, since all isolates from mature compost were

grouped together in one cluster, while isolates from the earlier composting phases were in

another cluster. Our data also showed that SSR markers were polymorphic even within the

Fig 2. SSR genetic diversity of 52 A. fumigatus isolates from oranges and orange-based compost. Three reference

DMI resistant isolates are indicated in bold, and one compost isolate (502.3_24.5) with reduced sensitivity to

voriconazole and posaconazole, in italics. WT, wild-type reference isolate; UK, United Kingdom; NL, The Netherlands.

https://doi.org/10.1371/journal.pone.0200569.g002
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Table 2. Sensitivity to three DMI fungicides (EC50) of Aspergillus fumigatus isolates from orange fruits and orange-based compost.

No Isolate Voriconazole Posaconazole Imazalil Sample/origin

1 AR4.9 0.11 <0.01 <0.01 Orange/I

2 AR6.1 0.13 <0.01 <0.01 Orange/I

3 502.1_13.3 0.62 <0.01 0.08 Orange compost/I

4 502.2_13.3 0.38 0.07 0.03 Orange compost/I

5 502.3_13.3 0.22 0.48 0.08 Orange compost/I

6 502.4_13.3 0.41 0.04 0.08 Orange compost/I

7 502.5_13.3 0.26 <0.01 0.09 Orange compost/I

8 502.1_20.3 1.21 0.32 0.08 Orange compost/I

9 502.2_20.3 1.59 0.16 0.08 Orange compost/I

10 502.3_20.3 1.37 0.18 <0.01 Orange compost/I

11 502.4_20.3 1.70 0.24 0.09 Orange compost/I

12 502.5_20.3 1.59 0.19 0.03 Orange compost/I

13 502.1_27.3 1.33 0.03 <0.01 Orange compost/I

14 502.2_27.3 1.37 <0.01 <0.01 Orange compost/I

15 502.3_27.3 1.37 0.02 0.08 Orange compost/I

16 502.4_27.3 0.23 0.06 <0.01 Orange compost/I

17 502.5_27.3 1.33 <0.01 0.03 Orange compost/I

18 502.1_3.4 1.50 0.03 0.08 Orange compost/I

19 502.2_3.4 1.33 0.07 0.08 Orange compost/I

20 502.3_3.4 1.32 0.29 0.03 Orange compost/I

21 502.4_3.4 0.71 0.22 <0.01 Orange compost/I

22 502.5_3.4 0.86 0.62 <0.01 Orange compost/I

23 502.1_10.4 0.43 0.11 <0.01 Orange compost/I

24 502.2_10.4 1.54 0.33 0.07 Orange compost/I

25 502.3_10.4 0.14 0.27 0.08 Orange compost/I

26 502.4_10.4 0.43 0.72 0.08 Orange compost/I

27 502.5_10.4 0.41 0.47 0.03 Orange compost/I

28 502.1_18.4 0.13 0.36 0.08 Orange compost/I

29 502.2_18.4 1.36 0.41 0.08 Orange compost/I

30 502.3_18.4 1.20 0.20 0.09 Orange compost/I

31 502.4_18.4 0.63 0.68 0.08 Orange compost/I

32 502.5_18.4 0.57 <0.01 <0.01 Orange compost/I

33 502.1_24.4 0.23 0.43 <0.01 Orange compost/I

34 502.2_24.4 1.59 0.12 0.08 Orange compost/I

35 502.3_24.4 0.14 0.21 0.03 Orange compost/I

36 502.4_24.4 0.13 0.24 0.08 Orange compost/I

37 502.5_24.4 1.63 0.06 0.08 Orange compost/I

38 502.1_2.5 1.59 0.20 0.09 Orange compost/I

39 502.2_2.5 1.33 0.22 0.08 Orange compost/I

40 502.3_2.5 0.33 0.42 0.03 Orange compost/I

41 502.4_2.5 0.47 0.01 0.08 Orange compost/I

42 502.5_2.5 0.43 0.02 0.08 Orange compost/I

43 502.1_8.5 0.80 0.13 0.09 Orange compost/I

44 502.2_8.5 0.47 <0.01 0.08 Orange compost/I

45 502.3_8.5 0.63 0.27 0.03 Orange compost/I

46 502.4_8.5 0.77 <0.01 0.03 Orange compost/I

47 502.5_8.5 1.59 0.05 0.08 Orange compost/I

(Continued)
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same sample suggesting a high genetic drift or frequent mutations happening from one gener-

ation to the next. Also, A. fumigatus population may not simply grow clonally, but may

undergo continuous sexual or parasexual recombination as was already reported earlier [40].

Few A. fumigatus isolates in this study showed cyp51A polymorphisms but were sensitive to

DMIs as was reported already in environmental isolates: F46Y from soil and indoor/outdoor

hospital environment [3,28]; S52T from seeds and compost [3,5]; F115V, V120G, S142P and

E145Q from compost [5]; M172V from soil and indoor/outdoor hospital environment [3,28];

E427K from soil, indoor/outdoor hospital environment, and compost [3,4,28]; and F495L

from indoor/outdoor hospital environment [28]. These polymorphisms were reported also in

sensitive clinical isolates (reviewed by Stensvold et al. [41]). None of the orange-based compost

isolate in this study owned any of the cyp51A mutations related to DMI resistance, similarly to

our previous findings on compost and biochar isolates with different geographical origins

(Italy, Spain, Hungary, The Netherlands, Germany and United Kingdom) [4,5]. The cyp51A

amino acid changes found in this study more likely present particular genotypes related to

Table 2. (Continued)

No Isolate Voriconazole Posaconazole Imazalil Sample/origin

48 502.1_24.5 1.14 0.05 0.09 Orange compost/I

49 502.2_24.5 0.64 0.03 0.08 Orange compost/I

50 502.3_24.5 3.91� 1.27� 0.09 Orange compost/I

51 502.4_24.5 0.63 0.16 0.09 Orange compost/I

52 502.5_24.5 0.67 0.38 0.08 Orange compost/I

Mean EC50 0.84 ± 0.11 0.19 ± 0.02 0.06 ± 0.01

53 WT 0.41 <0.01 0.07 Ref/UK

54 TR34 +L98H 2.58 6.60 2.31 Ref/NL

55 TR34 +L98H 5.12 4.42 2.31 Ref/UK

56 TR46 +Y121F+T289A 4.42 4.37 0.96 Ref/UK

Ref = reference isolates, I = Italy, UK = United Kingdom, NL = The Netherlands.

�not included in calculations of mean EC50

https://doi.org/10.1371/journal.pone.0200569.t002

Fig 3. Sensitivity distribution (EC50) of Aspergillus fumigatus isolates from orange-based compost to three DMIs.

Three reference resistant isolates (TR34+L98H from UK, TR46+Y121F+T289A from UK, and TR34+L98H from NL)

are included and shown by cross. Orange-based compost isolate 502.3_24.5 with reduced sensitivity to voriconazole

and posaconazole is shown by star.

https://doi.org/10.1371/journal.pone.0200569.g003
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Fig 4. Cyp51A amino acid sequence multiple alignment of 14 isolates of A. fumigatus from orange-based compost

and 2 isolates from oranges. Two reference DMI resistant isolates (L98H, and Y121F+T289A) and wild-type

reference (WT) are included in analysis. Background amino acid colour: yellow = identical amino acids;

blue = conservative amino acids; green = block of similar amino acids; white = non similar amino acids.

https://doi.org/10.1371/journal.pone.0200569.g004
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specific developmental stage (soil, compost) rather than specific locations. Taking all isolates

from this and earlier studies [4,5] together, there was no cyp51A clustering pattern according

to geographic origin (countries) (see S2 Fig). On the other hand, the isolate 502.3_24.5

expressed reduced sensitivity to both medical triazoles, voriconazole and posaconazole

(although no cyp51A mutation was detected), but was fully sensitive to imazalil. This may sug-

gest that this isolate either has been selected preferentially by the medical triazoles (preferential

selection is known within DMIs in certain plant pathogens, [42]), or could express resistance

mechanisms that are specific for the two medical triazoles (e.g. ABC pumps).

It is still under debate whether DMI resistance in A. fumigatus has primarily medical origin

(due to medical/veterinary DMI treatments of aspergilloses) or environmental and/or agricultural

origin (due to DMI applications against plant pathogens and in material protection). Our findings

so far suggested that A. fumigatus of environmental origin is not a source for cyp51A mutations

associated with DMI resistance. The same findings were observed for environmental A. fumigatus
isolates from compost and biochar in our previous studies [4,5] and in other similar investigations

[43–45]. DMI resistance observed in A. fumigatus isolates of environmental and clinical origin in

other studies [6,30–32,39,46–48] might be associated to much higher azole concentrations in the

substrate (and subsequently higher selection pressure) or to certain geographic locations.

Composting obviously presents a very favourable niche for A. fumigatus to grow and multi-

ply, however the process itself might be disadvantageous for resistance evolution probably due

to degradation or adsorption of fungicides in the organic substrate [49]. Since imazalil is not as

persistent in soil environment (dissipation half-life (DT50): 30–170 days, [50]) and compost at

low pH (DT50: 55–120 days, [51, 52]) as certain agricultural triazoles, it can be assumed that its

residue quantities in the orange-based compost are not sufficient for a possible selection of

resistant individuals. Consequently, composting orange fruits would allow A. fumigatus to

reproduce, but not to select azole-resistant genotypes. Furthermore, our study demonstrates a

high genetic diversity in A. fumigatus isolates even when deriving from the same environmen-

tal sample, suggesting frequent sexual or para-sexual recombination events within the popula-

tion. However, it was not possible to genetically distinguish sensitive environmental from

resistant reference isolates because they were within the same clusters. Finally, more emphasize

should be given to the presence of A. fumigatus in compost in order to achieve better safety

precautions for people in close contact with compost (e.g. compost operators).

Conclusions

In the present study, the abundance, genetic diversity and DMI sensitivity of A. fumigatus was

evaluated during the composting process of orange fruits. Although composting presents a

very suitable niche for A. fumigatus grow, it may be assumed that imazalil residue concentra-

tions are not sufficient to select resistant genotypes during orange-based composting.

Supporting information

S1 Fig. Mating type identification of 25 Aspergillus fumigatus isolates by multiplex PCR

assay. The amplicons of 834 bp for MAT1-1 or 438 bp for MAT1-2 are indicated. L = GelPilot

1 kb Plus Ladder (Qiagen), 1 = 502.1_18.4, 2 = 502.2_18.4, 3 = 502.3_18.4, 4 = 502.4_18.4,

5 = 502.5_18.4, 6 = 502.1_24.4, 7 = 502.2_24.4, 8 = 502.3_24.4, 9 = 502.4_24.4, 10 = 502.5_24.4,

11 = 502.1_2.5, 12 = 502.2_2.5, 13 = 502.3_2.5, 14 = 502.4_2.5, 15 = 502.5_2.5, 16 = 502.1_8.5,

17 = 502.2_8.5, 18 = 502.3_8.5, 19 = 502.4_8.5, 20 = 502.5_8.5, 21 = 502.1_24.5, 22 =

502.2_24.5, 23 = 502.3_24.5, 24 = 502.4_24.5, 25 = 502.5_24.5, C = negative control.

(TIF)
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S2 Fig. Phylogenetic relationship of Aspergillus fumigatus isolates from orange-based,

green and brown composts, and biochars of different origins: Spanish (S), Hungarian (H),

Dutch (NL), British (UK) and Italian (I) isolates based on the cyp51A amino acid sequence

inferred by Neighbour-joining analysis. Bootstrap analysis is supported with 1000 replica-

tions. The isolate 502.3_24.5 with reduced sensitivity to voriconazole and posaconazole is

shown in italics. Cyp51A amino acid sequences are from this study, Francheschini et al. [4],

Santoro et al. [5]. Reference resistant isolates are also included and shown in bold: ITZ.86_Rc,

Snelders et al. [28]; 11_0087A_Re, Prigitano et al. [31]; 14_Re, Van der Linden et al. [30]; 98

Rc, Van Ingen et al. [32]. Wild-type AF338659 –WT, Mellado et al. [13].

(TIF)
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40. Varga J, Tóth B. Genetic variability and reproductive mode of Aspergillus fumigatus. Infect Genet Evol.

2003; 3: 3–17. PMID: 12797968

41. Stensvold CR, Jørgensen LN, Arendrup MC. Azole-Resistant Invasive Aspergillosis: Relationship to

Agriculture. Curr Fungal Infect Rep. 2012; 6: 178–191.

42. Fraaije BA, Cools HJ, Kim SH, Motteram J, Clark WS, Lucas JA. A novel substitution I381V in the sterol

14α-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides.

Mol Plant Pathol. 2007; 8: 245–254. https://doi.org/10.1111/j.1364-3703.2007.00388.x PMID:

20507496

43. Mortensen KL, Mellado E, Lass-Flörl C, Rodriguez-Tudela JL, Johansen HK, Arendrup MC. Environ-

mental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and

Spain. Antimicrob Agents Chemother. 2010; 54: 4545–4549. https://doi.org/10.1128/AAC.00692-10

PMID: 20805399

44. Astvad KM, Jensen RH, Hassan TM, Mathiasen EG, Thomsen GM, Pedersen UG, et al. First detection

of TR46/Y121F/T289A and TR34/L98H alterations in Aspergillus fumigatus isolates from azole-naive

patients in Denmark despite negative findings in the environment. Antimicrob Agents Chemother. 2014;

58: 5096–5101. https://doi.org/10.1128/AAC.02855-14 PMID: 24936595
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